Methanotroph Ecology, Environmental Distribution and Functioning

  • Paul L. E. BodelierEmail author
  • German Pérez
  • Annelies J. Veraart
  • Sascha M. B. Krause
Part of the Microbiology Monographs book series (MICROMONO, volume 32)


The dynamics of methane concentrations in the atmosphere in recent decades has demonstrated many anomalies which are poorly understood. The only biological way of degrading this potent greenhouse gas is by microbial oxidation. Aerobic methanotrophic bacteria (MB) play an important role in many ecosystems worldwide degrading methane before it can escape to the atmosphere. This group of bacteria has intensively been studied as a model microbial functional guild because there is a strong link between the consumption of methane and the composition of MB communities, facilitating the study of microbial “behavior” in the environment. These studies have revealed a strong biogeography of MB which is displayed in their phylogeny not only on the basis of single functional marker genes but also on genome sequence basis. Novel environmental controlling factors have been revealed (e.g. rare earth metals) as well as novel organisms with as yet unknown traits for MB. The resistance and resilience of methane consumption and methane consuming communities have been shown to depend on specific community members. The current knowledge on environmental distribution and of MB has led to propose a life-history scheme, classifying MB communities on their collective traits rather than singly on their capacity the oxidise methane alone.


Aerobic methanotrophs Biogeography Ecology Traits Life-history 



This publication is publication number 6717 of the Netherlands Institute of Ecology (NIOO-KNAW). This publication was supported by a grant of the Applied and Engineering Science division of the Netherlands Organization of Scientific Research (NWO-TTW) grant number 16475.


  1. Arp J, Gotze S, Mukherji R, Mattern DJ, Garcia-Altares M, Klapper M, Brock DA, Brakhage AA, Strassmann JE, Queller DC, Bardl B, Willing K, Peschel G, Stallforth P (2018) Synergistic activity of cosecreted natural products from amoebae-associated bacteria. Proc Natl Acad Sci USA 115:3758–3763PubMedCrossRefGoogle Scholar
  2. Bao ZH, Okubo T, Kubota K, Kasahara Y, Tsurumaru H, Anda M, Ikeda S, Minamisawa K (2014) Metaproteomic identification of diazotrophic methanotrophs and their localization in root tissues of field-grown rice plants. Appl Environ Microbiol 80:5043–5052PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bastviken D, Cole J, Pace M, Tranvik L (2004) Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochem Cycles 18. CrossRefGoogle Scholar
  4. Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A (2011) Freshwater methane emissions offset the continental carbon sink. Science 331:50PubMedCrossRefGoogle Scholar
  5. Beck DAC, Kalyuzhnaya MG, Malfatti S, Tringe SG, Glavina Del Rio T, Ivanova N, Lidstrom ME, Chistoserdova L (2013) A metagenomic insight into freshwater methane-utilizing communities and evidence for cooperation between the Methylococcaceae and the Methylophilaceae. PeerJ 1:e23-e23PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bessette S, Moalic Y, Gautey S, Lesongeur F, Godfroy A, Toffin L (2017) Relative abundance and diversity of bacterial methanotrophs at the oxic-anoxic interface of the Congo deep-sea fan. Front Microbiol 8:715PubMedPubMedCentralCrossRefGoogle Scholar
  7. Biderre-Petit C, Jezequel D, Dugat-Bony E, Lopes F, Kuever J, Borrel G, Viollier E, Fonty G, Peyret P (2011) Identification of microbial communities involved in the methane cycle of a freshwater meromictic lake. FEMS Microbiol Ecol 77:533–545PubMedCrossRefGoogle Scholar
  8. Blees J, Niemann H, Wenk CB, Zopfi J, Schubert CJ, Kirf MK, Veronesi ML, Hitz C, Lehmann MF (2014) Micro-aerobic bacterial methane oxidation in the chemocline and anoxic water column of deep south-Alpine Lake Lugano (Switzerland). Limnol Oceanogr 59:311–324CrossRefGoogle Scholar
  9. Bodelier PLE (2011) Interactions between nitrogenous fertilizers and methane cycling in wetland and upland soils. Curr Opin Environ Sustain 3:379–388CrossRefGoogle Scholar
  10. Bodelier PLE, Frenzel P (1999) Contribution of methanotrophic and nitrifying bacteria to CH4 and NH4 + oxidation in the rhizosphere of rice plants as determined by new methods of discrimination. Appl Environ Microbiol 65:1826–1833PubMedPubMedCentralGoogle Scholar
  11. Bodelier PLE, Laanbroek HJ (2004) Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol Ecol 47:265–277PubMedCrossRefGoogle Scholar
  12. Bodelier PLE, Steenbergh AK (2014a) Interactions between methane and the nitrogen cycle in light of climate change. Curr Opin Environ Sustain 9–10:26–36CrossRefGoogle Scholar
  13. Bodelier PLE, Steenbergh AK (2014b) Interactions between methane and nitrogen cycling; current metagenomic studies and future trends. In: Marco D (ed) Metagenomics of the microbial nitrogen cycle: theory, methods and applications. Caister Academic Press, Norfolk, pp 33–63Google Scholar
  14. Bodelier PLE, Roslev P, Henckel T, Frenzel P (2000) Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature 403:421–424PubMedCrossRefGoogle Scholar
  15. Bodelier PLE, Gillisen MJB, Hordijk K, Damste JSS, Rijpstra WIC, Geenevasen JA, Dunfield PF (2009) A reanalysis of phospholipid fatty acids as ecological biomarkers for methanotrophic bacteria. ISME J 3:606–617PubMedCrossRefGoogle Scholar
  16. Bodelier PLE, Meima-Franke M, Hordijk CA, Steenbergh AK, Hefting MM, Bodrossy L, von Bergen M, Seifert J (2013) Microbial minorities modulate methane consumption through niche partitioning. ISME J 7:2214–2228PubMedPubMedCentralCrossRefGoogle Scholar
  17. Boschker HTS, Nold SC, Wellsbury P, Bos D, de Graaf W, Pel R, Parkes RJ, Cappenberg TE (1998) Direct linking of microbial populations to specific biogeochemical processes by C-13-labelling of biomarkers. Nature 392:801–805CrossRefGoogle Scholar
  18. Bowman JP, Sly LI, Nichols PD, Hayward AC (1993) Revised taxonomy of the methanotrophs – description of methylobacter gen-nov, emendation of methylococcus, validation of methylosinus and methylocystis species, and a proposal that the family methylococcaceae includes only the group-i methanotrophs. Int J Syst Bacteriol 43:735–753CrossRefGoogle Scholar
  19. Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang QL (2013) Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Change Biol 19:1325–1346CrossRefGoogle Scholar
  20. Bussmann I (2005) Methane release through resuspension of littoral sediment. Biogeochemistry 74:283–302CrossRefGoogle Scholar
  21. Cai YF, Zheng Y, Bodelier PLE, Conrad R, Jia ZJ (2016) Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat Commun 7:11728PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cappenberg TE (1974) Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. II. Inhibition experiments. Antonie van Leeuwenhoek 40:297–306PubMedCrossRefGoogle Scholar
  23. Carini S, Bano N, LeCleir G, Joye SB (2005) Aerobic methane oxidation and methanotroph community composition during seasonal stratification in Mono Lake, California (USA). Environ Microbiol 7:1127–1138PubMedCrossRefGoogle Scholar
  24. Chang J, Gu WY, Park D, Semrau JD, DiSpirito AA, Yoon S (2018) Methanobactin from methylosinus trichosporium OB3b inhibits N2O reduction in denitrifiers. ISME J 12:2086–2089PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chistoserdova L (2016) Lanthanides: new life metals? World J Microbiol Biotechnol 32:138PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chistoserdova L, Kalyuzhnaya MG (2018) Current trends in methylotrophy. Trends Microbiol 26:703–714PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chowdhury TR, Dick RP (2013) Ecology of aerobic methanotrophs in controlling methane fluxes from wetlands. Appl Soil Ecol 65:8–22CrossRefGoogle Scholar
  28. Chronopoulou PM, Shelley F, Pritchard WJ, Maanoja ST, Trimmer M (2017) Origin and fate of methane in the Eastern Tropical North Pacific oxygen minimum zone. ISME J 11:1386–1399PubMedPubMedCentralCrossRefGoogle Scholar
  29. Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609PubMedPubMedCentralGoogle Scholar
  30. Conrad R (2007) Microbial ecology of methanogens and methanotrophs. Adv Agron 96:1–63CrossRefGoogle Scholar
  31. Crevecoeur SVW, Comte J, Matveev A, Lovejoy C (2017) Diversity and potential activity of methanotrophs in high methane-emitting permafrost thaw ponds. PLoS One 12:e0188223PubMedPubMedCentralCrossRefGoogle Scholar
  32. Crombie AT, Murrell JC (2014) Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris. Nature 510:148PubMedCrossRefGoogle Scholar
  33. Daebeler A, Bodelier PLE, Yan Z, Hefting MM, Jia ZJ, Laanbroek HJ (2014) Interactions between Thaumarchaea, Nitrospira and methanotrophs modulate autotrophic nitrification in volcanic grassland soil. ISME J 8:2397–2410PubMedPubMedCentralCrossRefGoogle Scholar
  34. Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A, Kirkegaard RH, von Bergen M, Rattei T, Bendinger B, Nielsen PH, Wagner M (2015) Complete nitrification by Nitrospira bacteria. Nature 528:504PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dam B, Dam S, Blom J, Liesack W (2013) Genome analysis coupled with physiological studies reveals a diverse nitrogen metabolism in methylocystis sp. strain SC2. PLoS One 8:e74767PubMedPubMedCentralCrossRefGoogle Scholar
  36. Danilova OV, Suzina NE, Van De Kamp J, Svenning MM, Bodrossy L, Dedysh SN (2016) A new cell morphotype among methane oxidizers: a spiral-shaped obligately microaerophilic methanotroph from northern low-oxygen environments. ISME J 10:2734–2743PubMedPubMedCentralCrossRefGoogle Scholar
  37. Dean JF, Middelburg JJ, Rockmann T, Aerts R, Blauw LG, Egger M, Jetten MS, Jong AE, Meisel OH, Rasigraf O (2018) Methane feedbacks to the global climate system in a warmer world. Rev Geophys 56:207–250CrossRefGoogle Scholar
  38. Dedysh SN (2009) Exploring methanotroph diversity in acidic northern wetlands: molecular and cultivation-based studies. Microbiology 78:655–669CrossRefGoogle Scholar
  39. Dedysh SN, Knief C (2018) Diversity and phylogeny of described aerobic methanotrophs. In: Kalyuzhnaya MG, Xing XH (eds) Methane biocatalysis: paving the way to sustainability. Springer, Cham, pp 17–42CrossRefGoogle Scholar
  40. Dedysh SN, Belova SE, Bodelier PLE, Smirnova KV, Khmelenina VN, Chidthaisong A, Trotsenko YA, Liesack W, Dunfield PF (2007) Methylocystis heyeri sp nov., a novel type II methanotrophic bacterium possessing ‘signature’ fatty acids of type I methanotrophs. Int J Syst Evol Microbiol 57:472–479PubMedCrossRefPubMedCentralGoogle Scholar
  41. DelSontro T, del Giorgio PA, Prairie YT (2017) No longer a paradox: the interaction between physical transport and biological processes explains the spatial distribution of surface water methane within and across lakes. Ecosystems 21:1073–1087CrossRefGoogle Scholar
  42. DiSpirito AA, Semrau JD, Murrell JC, Gallagher WH, Dennison C, Vuilleumier S (2016) Methanobactin and the link between copper and bacterial methane oxidation. Microbiol Mol Biol Rev 80:387–409PubMedPubMedCentralCrossRefGoogle Scholar
  43. Dunfield PF (2007) The soil methane sink. In: Reay DS, Hewitt CN, Smith KA, Grace J (eds) Greenhouse gas sinks. CABI, Wallingford, pp 152–170CrossRefGoogle Scholar
  44. Dunfield PF, Dedysh SN (2014) Methylocella: a gourmand among methanotrophs. Trends Microbiol 22:368–369PubMedCrossRefPubMedCentralGoogle Scholar
  45. Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, Ly B, Saw JH, Zhou Z, Ren Y (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450:879-U18CrossRefGoogle Scholar
  46. Durisch-Kaiser E, Klauser L, Wehrli B, Schubert C (2005) Evidence of intense archaeal and bacterial methanotrophic activity in the Black Sea water column. Appl Environ Microbiol 71:8099–8106PubMedPubMedCentralCrossRefGoogle Scholar
  47. Ebrahimi A, Or D (2018) On upscaling of soil microbial processes and biogeochemical fluxes from aggregates to landscapes. J Geophys Res Biogeosci 123:1526–1547CrossRefGoogle Scholar
  48. Edwards CROT, Miller JM, Wiggins JB, Wang W, Lee CK, Cary SC, Pointing SB, Lau MCY (2017) Draft genome sequence of uncultured upland soil cluster Gammaproteobacteria gives molecular insights into high-affinity methanotrophy. Genome Announc 5:e00047-17Google Scholar
  49. Eller G, Känel L, Krüger M (2005) Cooccurrence of aerobic and anaerobic methane oxidation in the water column of lake Plußsee. Appl Environ Microbiol 71:8925–8928PubMedPubMedCentralCrossRefGoogle Scholar
  50. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJ, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJ, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MS, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548PubMedPubMedCentralCrossRefGoogle Scholar
  51. Farhan Ul Haque M, Crombie AT, Ensminger SA, Baciu C, Murrell JC (2018) Facultative methanotrophs are abundant at terrestrial natural gas seeps. Microbiome 6:118PubMedPubMedCentralCrossRefGoogle Scholar
  52. Fest B, Hinko-Najera N, von Fischer JC, Livesley SJ, Arndt SK (2017) Soil methane uptake increases under continuous throughfall reduction in a temperate evergreen, Broadleaved Eucalypt Forest. Ecosystems 20:368–379CrossRefGoogle Scholar
  53. Graf JS, Mayr MJ, Marchant HK, Tienken D, Hach PF, Brand A, Schubert CJ, Kuypers MMM, Milucka J (2018) Bloom of a denitrifying methanotroph, ‘Candidatus Methylomirabilis limnetica’, in a deep stratified lake. Environ Microbiol 20:2598–2614PubMedCrossRefGoogle Scholar
  54. Gray ND, McCann CM, Christgen B, Ahammad SZ, Roberts JA, Graham DW (2014) Soil geochemistry confines microbial abundances across an arctic landscape; implications for net carbon exchange with the atmosphere. Biogeochemistry 120:307–317CrossRefGoogle Scholar
  55. Grossart HP, Frindte K, Dziallas C, Eckert W, Tang KW (2011) Microbial methane production in oxygenated water column of an oligotrophic lake. Proc Natl Acad Sci USA 108:19657–19661PubMedCrossRefGoogle Scholar
  56. Guerrero-Cruz S, Cremers G, van Alen TA, den Camp H, Jetten MSM, Rasigraf O, Vaksmaa A (2018) Response of the anaerobic methanotroph “Candidatus Methanoperedens nitroreducens” to oxygen stress. Appl Environ Microbiol 84:17CrossRefGoogle Scholar
  57. Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439PubMedPubMedCentralGoogle Scholar
  58. Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567CrossRefGoogle Scholar
  59. He D, Ren L, Wu Q (2012) Epiphytic bacterial communities on two common submerged macrophytes in Taihu Lake: diversity and host-specificity. Chin J Oceanol Limnol 30:237–247CrossRefGoogle Scholar
  60. He ZF, Wang JQ, Hu JJ, Yu HG, Jetten MSM, Liu H, Ren H, Zhang X, Hua M, Xu X, Zheng P, Hu B (2019) Regulation of coastal methane sinks by a structured gradient of microbial methane oxidizers. Environ Pollut 244:228–237PubMedCrossRefGoogle Scholar
  61. Hernandez ME, Beck DAC, Lidstrom ME, Chistoserdova L (2015) Oxygen availability is a major factor in determining the composition of microbial communities involved in methane oxidation. PeerJ 3:13CrossRefGoogle Scholar
  62. Heyer J, Galchenko VF, Dunfield PF (2002) Molecular phylogeny of type II methane-oxidizing bacteria isolated from various environments. Microbiology 148:2831–2846CrossRefGoogle Scholar
  63. Ho A, Bodelier PLE (2015) Diazotrophic methanotrophs in peatlands: the missing link? Plant Soil 389:419–423CrossRefGoogle Scholar
  64. Ho A, Erens H, Mujinya BB, Boeckx P, Baert G, Schneider B, Frenzel P, Boon N, Van Ranst E (2013a) Termites facilitate methane oxidation and shape the methanotrophic community. Appl Environ Microbiol 79:7234–7240PubMedPubMedCentralCrossRefGoogle Scholar
  65. Ho A, Kerckhof FM, Luke C, Reim A, Krause S, Boon N, Bodelier PL (2013b) Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies. Environ Microbiol Rep 5:335–345PubMedCrossRefGoogle Scholar
  66. Ho ADRK, Thas O, De Neve J, Hoefman S, Vandamme P, Heylen K, Boon N (2014) The more, the merrier: heterotroph richness stimulates methanotrophic activity. ISME J 8:1945–1948PubMedPubMedCentralCrossRefGoogle Scholar
  67. Ho A, Reim A, Kim SY, Meima-Franke M, Termorshuizen A, De Boer W, van der Putten WH, Bodelier PL (2015) Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application. Glob Change Biol 21:3864–3879CrossRefGoogle Scholar
  68. Ho A, Angel R, Veraart AJ, Daebeler A, Jia ZJ, Kim SY, Kerckhof FM, Boon N, Bodelier PL (2016a) Biotic interactions in microbial communities as modulators of biogeochemical processes: methanotrophy as a model system. Front Microbiol 7:1285PubMedPubMedCentralCrossRefGoogle Scholar
  69. Ho A, van den Brink E, Reim A, Krause SMB, Bodelier PLE (2016b) Recurrence and frequency of disturbance have cumulative effect on methanotrophic activity, abundance, and community structure. Front Microbiol 6:1493PubMedPubMedCentralGoogle Scholar
  70. Ho A, Di Lonardo DP, Bodelier PLE (2017a) Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol Ecol 93.
  71. Ho A, Ijaz UZ, Janssens TKS, Ruijs R, Kim SY, de Boer W, Termorshuizen A, Putten WH, Bodelier PL (2017b) Effects of bio-based residue amendments on greenhouse gas emission from agricultural soil are stronger than effects of soil type with different microbial community composition. Glob Change Biol Bioenergy 9:1707–1720CrossRefGoogle Scholar
  72. Ho A, Lee HJ, Reumer M, Meima-Franke M, Raaijmakers C, Zweers H, de Boer W, Van der Putten WH, Bodelier PLE (2019) Unexpected role of canonical aerobic methanotrophs in upland agricultural soils. Soil Biol Biochem 131:1–8CrossRefGoogle Scholar
  73. Iguchi H, Yurimoto H, Sakai Y (2011) Stimulation of methanotrophic growth in cocultures by cobalamin excreted by rhizobia. Appl Environ Microbiol 77:8509–8515PubMedPubMedCentralCrossRefGoogle Scholar
  74. Ikeda S, Sasaki K, Okubo T, Yamashita A, Terasawa K, Bao Z, Liu D, Watanabe T, Murase J, Asakawa S, Eda S, Mitsui H, Sato T, Minamisawa K (2014) Low nitrogen fertilization adapts rice root microbiome to low nutrient environment by changing biogeochemical functions. Microbes Environ 29:50–59PubMedPubMedCentralCrossRefGoogle Scholar
  75. in ‘t Zandt MH, de Jong AEE, Slomp CP, Jetten MSM (2018) The hunt for the most-wanted chemolithoautotrophic spookmicrobes. FEMS Microbiol Ecol 94.
  76. IPCC (2014) Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  77. Jeong SY, Kim TG (2019) Development of a novel methanotrophic process with the helper micro-organism Hyphomicrobium sp. NM3. J Appl Microbiol 126:534–544PubMedCrossRefGoogle Scholar
  78. Kalyuzhnaya MG, Yang S, Rozova ON, Smalley NE, Clubb J, Lamb A, Gowda GA, Raftery D, Fu Y, Bringel F, Vuilleumier S, Beck DA, Trotsenko YA, Khmelenina VN, Lidstrom ME (2013) Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat Commun 4:2785PubMedPubMedCentralCrossRefGoogle Scholar
  79. Karl DM, Beversdorf L, Björkman KM, Church MJ, Martinez A, Delong EF (2008) Aerobic production of methane in the sea. Nat Geosci 1:473–478CrossRefGoogle Scholar
  80. Keltjens JT, Pol A, Reimann J, Op den Camp HJM (2014) PQQ-dependent methanol dehydrogenases: rare-earth elements make a difference. Appl Microbiol Biotechnol 98:6163–6183PubMedCrossRefGoogle Scholar
  81. Khadem AF, Pol A, Wieczorek A, Mohammadi SS, Francoijs KJ, Stunnenberg HG, Jetten MS, Op den Camp HJ (2011) Autotrophic methanotrophy in verrucomicrobia: methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation. J Bacteriol 193:4438–4446PubMedPubMedCentralCrossRefGoogle Scholar
  82. Khadka R, Clothier L, Wang L, Lim CK, Klotz MG, Dunfield PF (2018) Evolutionary history of copper membrane monooxygenases. Front Microbiol 9:2493PubMedPubMedCentralCrossRefGoogle Scholar
  83. Kip N, van Winden JF, Pan Y, Bodrossy L, Reichart G-J, Smolders AJP, Jetten MSM, Damsté JSS, Op den Camp HJM (2010) Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nat Geosci 3:617–621CrossRefGoogle Scholar
  84. Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L, Cameron-Smith P, Castaldi S, Chevallier F, Feng L, Fraser A, Heimann M, Hodson EL, Houweling S, Josse B, Fraser PJ, Krummel PB, Lamarque J-F, Langenfelds RL, Le Quéré C, Naik V, O’Doherty S, Palmer PI, Pison I, Plummer D, Poulter B, Prinn RG, Rigby M, Ringeval B, Santini M, Schmidt M, Shindell DT, Simpson IJ, Spahni R, Steele LP, Strode SA, Sudo K, Szopa S, van der Werf GR, Voulgarakis A, van Weele M, Weiss RF, Williams JE, Zeng G (2013) Three decades of global methane sources and sinks. Nat Geosci 6:813–823CrossRefGoogle Scholar
  85. Kits KD, Klotz MG, Stein LY (2015) Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1. Environ Microbiol 17:3219–3232PubMedCrossRefGoogle Scholar
  86. Kits KDSC, Lebedeva EV, Han P, Bulaev A, Pjevac P, Daebeler A, Romano S, Albertsen M, Stein LY, Daims H, Wagner M (2017) Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549:269–272PubMedPubMedCentralCrossRefGoogle Scholar
  87. Knief C (2015) Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front Microbiol 6:1346PubMedPubMedCentralCrossRefGoogle Scholar
  88. Knief C, Dunfield PF (2005) Response and adaptation of different methanotrophic bacteria to low methane mixing ratios. Environ Microbiol 7:1307–1317PubMedCrossRefGoogle Scholar
  89. Kojima H, Iwata T, Fukui M (2009) DNA-based analysis of planktonic methanotrophs in a stratified lake. Freshwater Biol 54:1501–1509CrossRefGoogle Scholar
  90. Kojima H, Tokizawa R, Kogure K, Kobayashi Y, Itoh M, Shiah FK, Okuda N, Fukui M (2014) Community structure of planktonic methane-oxidizing bacteria in a subtropical reservoir characterized by dominance of phylotype closely related to nitrite reducer. Sci Rep 4:5728PubMedPubMedCentralCrossRefGoogle Scholar
  91. Kolb S (2009) The quest for atmospheric methane oxidizers in forest soils. Environ Microbiol Rep 1:336–346PubMedCrossRefGoogle Scholar
  92. Kolb S, Horn MA (2012) Microbial CH4 and N2O consumption in acidic wetlands. Front Microbiol 3:78PubMedPubMedCentralCrossRefGoogle Scholar
  93. Kox MAR, Aalto SL, Penttila T, Ettwig KF, Jetten MSM, van Kessel M (2018) The influence of oxygen and methane on nitrogen fixation in subarctic Sphagnum mosses. AMB Exp 8:76CrossRefGoogle Scholar
  94. Krause S, Meima-Franke M, Hefting MM, Bodelier PLE (2013) Spatial patterns of methanotrophic communities along a hydrological gradient in a riparian wetland. FEMS Microbiol Ecol 86:59–70PubMedCrossRefGoogle Scholar
  95. Krause S, Le Roux X, Niklaus PA, Van Bodegom PM, Lennon JT, Bertilsson S, Grossart H-P, Philippot L, Bodelier PLE (2014) Trait-based approaches for understanding microbial biodiversity and ecosystem functioning. Front Microbiol 5:10CrossRefGoogle Scholar
  96. Krause SMB, Johnson T, Karunaratne YS, Fu YF, Beck DAC, Chistoserdova L, Lidstrom ME (2017) Lanthanide-dependent cross-feeding of methane-derived carbon is linked by microbial community interactions. Proce Natl Acad Sci USA 114:358–363CrossRefGoogle Scholar
  97. Krause SMB, Meima-Franke M, Veraart AJ, Ren GD, Ho A, Bodelier PLE (2018) Environmental legacy contributes to the resilience of methane consumption in a laboratory microcosm system. Sci Rep 8:8862PubMedPubMedCentralCrossRefGoogle Scholar
  98. Kruger M, Eller G, Conrad R, Frenzel P (2002) Seasonal variation in pathways of CH4 production and in CH4 oxidation in rice fields determined by stable carbon isotopes and specific inhibitors. Glob Change Biol 8:265–280CrossRefGoogle Scholar
  99. Krukenberg V, Riedel D, Gruber-Vodicka HR, Buttigieg PL, Tegetmeyer HE, Boetius A, Wegener G (2018) Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia. Environ Microbiol 20:1651–1666PubMedPubMedCentralCrossRefGoogle Scholar
  100. Kuypers MMM, Marchant HK, Kartal B (2018) The microbial nitrogen-cycling network. Nat Rev Microbiol 16:263–276PubMedCrossRefGoogle Scholar
  101. Larmola T, Tuittila E-S, Tiirola M, Nykänen H, Martikainen PJ, Yrjälä K, Tuomivirta T, Fritze H (2010) The role of Sphagnum mosses in the methane cycling of a boreal mire. Ecology 91:2356–2365PubMedCrossRefGoogle Scholar
  102. Larmola T, Leppanen SM, Tuittila ES, Aarva M, Merila P, Fritze H, Tiirola M (2014) Methanotrophy induces nitrogen fixation during peatland development. Proc Natl Acad Sci USA 111:734–739CrossRefGoogle Scholar
  103. Lau MCY, Stackhouse BT, Layton AC, Chauhan A, Vishnivetskaya TA, Chourey K, Ronholm J, Mykytczuk NC, Bennett PC, Lamarche-Gagnon G, Burton N, Pollard WH, Omelon CR, Medvigy DM, Hettich RL, Pfiffner SM, Whyte LG, Onstott TC (2015) An active atmospheric methane sink in high Arctic mineral cryosols. ISME J 9:1880–1891PubMedPubMedCentralCrossRefGoogle Scholar
  104. Lenhart K, Bunge M, Ratering S, Neu TR, Schuttmann I, Greule M, Kammann C, Schnell S, Müller C, Zorn H, Keppler F (2012) Evidence for methane production by saprotrophic fungi. Nat Commun 3:1046PubMedCrossRefGoogle Scholar
  105. Levine UY, Teal TK, Robertson GP, Schmidt TM (2011) Agriculture’s impact on microbial diversity and associated fluxes of carbon dioxide and methane. ISME J 5:1683–1691PubMedPubMedCentralCrossRefGoogle Scholar
  106. Makipaa R, Leppanen SM, Munoz SS, Smolander A, Tiirola M, Tuomivirta T, Fritze H (2018) Methanotrophs are core members of the community in decayingdiazotroph Norway spruce logs. Soil Biol Biochem 120:230–232CrossRefGoogle Scholar
  107. Maurer D, Kolb S, Haumaier L, Borken W (2008) Inhibition of atmospheric methane oxidation by monoterpenes in Norway spruce and European beech soils. Soil Biol Biochem 40:3014–3020CrossRefGoogle Scholar
  108. McDonald IR, Bodrossy L, Chen Y, Murrell JC (2008) Molecular ecology techniques for the study of aerobic methanotrophs. Appl Environ Microbiol 74:1305–1315PubMedCrossRefGoogle Scholar
  109. McGinnis DF, Flury S, Tang KW, Grossart HP (2017) Porewater methane transport within the gas vesicles of diurnally migrating Chaoborus spp.: an energetic advantage. Sci Rep 7:44478PubMedPubMedCentralCrossRefGoogle Scholar
  110. McGlynn SE, Chadwick GL, O’Neill A, Mackey M, Thor A, Deerinck TJ, Ellisman MH, Orphan VJ (2018) Subgroup characteristics of marine methane-oxidizing ANME-2 archaea and their syntrophic partners as revealed by integrated multimodal analytical microscopy. Appl Environ Microbiol 84:e00399-18Google Scholar
  111. Menyailo OV, Abraham W-R, Conrad R (2010) Tree species affect atmospheric CH4 oxidation without altering community composition of soil methanotrophs. Soil Biol Biochem 42:101–107CrossRefGoogle Scholar
  112. Michaud AB, Dore JE, Achberger AM, Christner BC, Mitchell AC, Skidmore ML, Vick-Majors TJ, Priscu JC (2017) Microbial oxidation as a methane sink beneath the West Antarctic Ice Sheet. Nat Geosci 10:582CrossRefGoogle Scholar
  113. Milucka J, Kirf M, Lu L, Krupke A, Lam P, Littmann S, Kuypers MM, Schubert CJ (2015) Methane oxidation coupled to oxygenic photosynthesis in anoxic waters. ISME J 9:1991PubMedPubMedCentralCrossRefGoogle Scholar
  114. Naguib M, Overbeck J (1970) On methane oxidizing bacteria in fresh waters. I. Introduction to the problem and investigations on the presence of obligate methane oxidizers. Zeitschrift für allgemeine Mikrobiologie 10:17–36PubMedCrossRefGoogle Scholar
  115. Naqvi SWA, Lam P, Narvenkar G, Sarkar A, Naik H, Pratihary A, Shenoy DM, Gauns M, Kurian S, Damare S, Duret M, Lavik G, Kuypers MMM (2018) Methane stimulates massive nitrogen loss from freshwater reservoirs in India. Nat Commun 9:1265PubMedPubMedCentralCrossRefGoogle Scholar
  116. Nauer PA, Dam B, Liesack W, Zeyer J, Schroth MH (2012) Activity and diversity of methane-oxidizing bacteria in glacier forefields on siliceous and calcareous bedrock. Biogeosciences 9:2259–2274CrossRefGoogle Scholar
  117. Nauer PA, Hutley LB, Arndt SK (2018) Termite mounds mitigate half of termite methane emissions. Proc Natl Acad Sci USA 115:13306–13311PubMedCrossRefGoogle Scholar
  118. Nazaries L, Tate KR, Ross DJ, Singh J, Dando J, Saggar S, Baggs EM, Millard P, Murrell JC, Singh BK (2011) Response of methanotrophic communities to afforestation and reforestation in New Zealand. ISME J 5:1832–1836PubMedPubMedCentralCrossRefGoogle Scholar
  119. Nazaries L, Karunaratne SB, Delgado-Baquerizo M, Campbell CD, Singh BK (2018) Environmental drivers of the geographical distribution of methanotrophs: insights from a national survey. Soil Biol Biochem 127:264–279CrossRefGoogle Scholar
  120. Nguyen AD, Hwang IY, Lee OK, Hur DH, Jeon YC, Hadiyati S, Kim MS, Yoon SH, Jeong H, Lee EY (2018) Functional analysis of methylomonas sp. DH-1 genome as a promising biocatalyst for bioconversion of methane to valuable chemicals. Catalysts 8:117CrossRefGoogle Scholar
  121. Nisbet EG, Dlugokencky EJ, Bousquet P (2014) Methane on the rise-again. Science 343:493–495PubMedCrossRefGoogle Scholar
  122. Oliveira Junior ES, Temmink RJM, Buhler BF, Souza RM, Resende N, Spanings T, Muniz CC, Lamers LPM, Kosten S (2019) Benthivorous fish bioturbation reduces methane emissions, but increases total greenhouse gas emissions. Freshw Biol 64:197–207CrossRefGoogle Scholar
  123. Orata FD, Kits KD, Stein LY (2018) Complete genome sequence of methylomonas denitrificans strain FJG1, an obligate aerobic methanotroph that can couple methane oxidation with denitrification. Microbiol Resour Announ 6.
  124. Orellana LH, Chee-Sanford JC, Sanford RA, Loffler FE, Konstantinidis KT (2018) Year-round shotgun metagenomes reveal stable microbial communities in agricultural soils and novel ammonia oxidizers responding to fertilization. Appl Environ Microbiol 84.
  125. Osborne CD, Haritos VS (2018) Horizontal gene transfer of three co-inherited methane monooxygenase systems gave rise to methanotrophy in the proteobacteria. Mol Phylogenet Evol 129:171–181PubMedCrossRefGoogle Scholar
  126. Oshkin IY, Beck DAC, Lamb AE, Tchesnokova V, Benuska G, McTaggart TL, Kalyuzhnaya MG, Dedysh SN, Lidstrom ME, Chistoserdova L (2015) Methane-fed microbial microcosms show differential community dynamics and pinpoint taxa involved in communal response. ISME J 9:1119–1129PubMedPubMedCentralCrossRefGoogle Scholar
  127. Oswald K, Milucka J, Brand A, Littmann S, Wehrli B, Kuypers MM, Schubert CJ (2015) Light-dependent aerobic methane oxidation reduces methane emissions from seasonally stratified lakes. PLoS One 10:e0132574PubMedPubMedCentralCrossRefGoogle Scholar
  128. Oswald K, Milucka J, Brand A, Hach P, Littmann S, Wehrli B, Kuypers MMM, Schubert CJ (2016) Aerobic gammaproteobacterial methanotrophs mitigate methane emissions from oxic and anoxic lake waters. Limnol Oceanogr 61:S101–SS18CrossRefGoogle Scholar
  129. Oswald K, Graf JS, Littmann S, Tienken D, Brand A, Wehrli B, Albertsen M, Daims H, Wagner M, Kuypers MM, Schubert CJ, Milucka J (2017) Crenothrix are major methane consumers in stratified lakes. ISME J 11:2124–2140PubMedPubMedCentralCrossRefGoogle Scholar
  130. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, Hugenholtz P (2018) A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 36:996PubMedCrossRefGoogle Scholar
  131. Pieja AJ, Morse MC, Cal AJ (2017) Methane to bioproducts: the future of the bioeconomy? Curr Opin Chem Biol 41:123–131PubMedCrossRefGoogle Scholar
  132. Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MSM, den Camp H (2007) Methanotrophy below pH1 by a new Verrucomicrobia species. Nature 450:874–U17PubMedCrossRefPubMedCentralGoogle Scholar
  133. Pol A, Barends TRM, Dietl A, Khadem AF, Eygensteyn J, Jetten MS, Op den Camp HJ (2014) Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ Microbiol 16:255–264PubMedCrossRefGoogle Scholar
  134. Ponnudurai R, Kleiner M, Sayavedra L, Petersen JM, Moche M, Otto A, Becher D, Takeuchi T, Satoh N, Dubilier N, Schweder T, Markert S (2017) Metabolic and physiological interdependencies in the Bathymodiolus azoricus symbiosis. ISME J 11:463–477PubMedCrossRefGoogle Scholar
  135. Pratscher J, Dumont MG, Conrad R (2011) Assimilation of acetate by the putative atmospheric methane oxidizers belonging to the USC alpha clade. Environ Microbiol 13:2692–2701PubMedCrossRefGoogle Scholar
  136. Pratscher J, Vollmers J, Wiegand S, Dumont MG, Kaster AK (2018) Unravelling the identity, metabolic potential and global biogeography of the atmospheric methane-oxidizing upland soil cluster alpha. Environ Microbiol 20:1016–1029PubMedCrossRefGoogle Scholar
  137. Puri AW, LiuD SAL, Yu Z, Pesesky MW, Greenberg PE, Lidstrom ME (2019) Interspecies chemical signaling in a methane-oxidizing bacterial community. Appl Environ Microbiol 85(7):e02702-18Google Scholar
  138. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN: 3-900051-07-0,
  139. Raghoebarsing AA, Smolders AJP, Schmid MC, Rijpstra WIC, Wolters-Arts M, Derksen J, Jetten MS, Schouten S, Sinninghe Damsté JS, Lamers LP, Roelofs JG, Op den Camp HJ, Strous M (2005) Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature 436:1153–1156PubMedCrossRefGoogle Scholar
  140. Rahman MT, Crombie A, Chen Y, Stralis-Pavese N, Bodrossy L, Meir P, McNamara NP, Murrell JC (2010) Environmental distribution and abundance of the facultative methanotroph Methylocella. ISME J 5(6):1061PubMedPubMedCentralCrossRefGoogle Scholar
  141. Reay DS, Smith P, Christensen TR, James RH, Clark H (2018) Methane and global environmental change. Annu Rev Environ Resour 43:165–192CrossRefGoogle Scholar
  142. Reeburgh WS, Heggie DT (1977) Microbial methane consumption reactions and their effect on methane distributions in freshwater and marine environments. Limnol Oceanogr 22:1–9CrossRefGoogle Scholar
  143. Reim A, Luke C, Krause S, Pratscher J, Frenzel P (2012) One millimetre makes the difference: high-resolution analysis of methane-oxidizing bacteria and their specific activity at the oxic-anoxic interface in a flooded paddy soil. ISME J 6:2128–2139PubMedPubMedCentralCrossRefGoogle Scholar
  144. Reumer M, Harnisz M, Lee HJ, Reim A, Grunert O, Putkinen A, Fritze H, Bodelier PLE, Ho A (2018) Impact of peat mining and restoration on methane turnover potential and methane-cycling microorganisms in a Northern bog. Appl Environ Microbiol 84:e02218-17Google Scholar
  145. Rissanen AJ, Saarenheimo J, Tiirola M, Peura S, Aalto SL, Karvinen A, Nykänen H (2018) Gammaproteobacterial methanotrophs dominate methanotrophy in aerobic and anaerobic layers of boreal lake waters. Aquat Microb Ecol 81:257–276CrossRefGoogle Scholar
  146. Roland FAE, Darchambeau F, Morana C, Bouillon S, Borges AV (2017) Emission and oxidation of methane in a meromictic, eutrophic and temperate lake (Dendre, Belgium). Chemosphere 168:756–764PubMedCrossRefGoogle Scholar
  147. Rubin-Blum M, Antony CP, Borowski C, Sayavedra L, Pape T, Sahling H, Bohrmann G, Kleiner M, Redmond MC, Valentine DL, Dubilier N (2017) Short-chain alkanes fuel mussel and sponge Cycloclasticus symbionts from deep-sea gas and oil seeps. Nat Microbiol 2:17093PubMedPubMedCentralCrossRefGoogle Scholar
  148. Ruff SE, Arnds J, Knittel K, Amann R, Wegener G, Ramette A, Boetius A (2013) Microbial communities of deep-sea methane seeps at Hikurangi continental margin (New Zealand). PLoS One 8:e72627PubMedPubMedCentralCrossRefGoogle Scholar
  149. Ruff SE, Felden J, Gruber-Vodicka HR, Marcon Y, Knittel K, Ramette A, Boetius A (2019) In situ development of a methanotrophic microbiome in deep-sea sediments. ISME J 13:197–213PubMedPubMedCentralCrossRefGoogle Scholar
  150. Saunois M, Bousquet P, Poulter B, Peregon A, Ciais P, Canadell JG, Dlugokencky EJ, Etiope G, Bastviken D, Houweling S, Janssens-Maenhout G, Tubiello FN, Castaldi S, Jackson RB, Alexe M, Arora VK, Beerling DJ, Bergamaschi P, Blake DR, Brailsford G, Brovkin V, Bruhwiler L, Crevoisier C, Crill P, Covey K, Curry C, Frankenberg C, Gedney N, Höglund-Isaksson L, Ishizawa M, Ito A, Joos F, Kim HS, Kleinen T, Krummel P, Lamarque JF, Langenfelds R, Locatelli R, Machida T, Maksyutov S, McDonald KC, Marshall J, Melton JR, Morino I, Naik V, O'Doherty S, Parmentier FJW, Patra PK, Peng C, Peng S et al (2016) The global methane budget 2000–2012. Earth Syst Sci Data 8:697–751CrossRefGoogle Scholar
  151. Schnyder E, Bodelier PLE, Hartmann M, Henneberger R, Niklaus PA (2018) Positive diversity-functioning relationships in model communities of methanotrophic bacteria. Ecology 99:714–723PubMedCrossRefGoogle Scholar
  152. Schubert CJ, Vazquez F, Losekann-Behrens T, Knittel K, Tonolla M, Boetius A (2011) Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno). FEMS Microbiol Ecol 76:26–38PubMedCrossRefGoogle Scholar
  153. Schulz-Bohm K, Martin-Sanchez L, Garbeva P (2017) Microbial volatiles: small molecules with an important role in infra- and inter-kingdom interactions. Front Microbiol 8:2484PubMedPubMedCentralCrossRefGoogle Scholar
  154. Segers R (1998) Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41:23–51CrossRefGoogle Scholar
  155. Semrau JD (2018) Metals and methanotrophy. Appl Environ Microbiol 84:e02289-17Google Scholar
  156. Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34:496–531PubMedPubMedCentralCrossRefGoogle Scholar
  157. Sharp CE, Smirnova AV, Graham JM, Stott MB, Khadka R, Moore TR, Grasby SE, Strack M, Dunfield PF (2014) Distribution and diversity of Verrucomicrobia methanotrophs in geothermal and acidic environments. Environ Microbiol 16:1867–1878PubMedCrossRefGoogle Scholar
  158. Singleton CM, McCalley CK, Woodcroft BJ, Boyd JA, Evans PN, Hodgkins SB, Chanton JP, Frolking S, Crill PM, Saleska SR, Rich VI, Tyson GW (2018) Methanotrophy across a natural permafrost thaw environment. ISME J 12:2544–2558PubMedPubMedCentralCrossRefGoogle Scholar
  159. Smith GJ, Angle JC, Solden LM, Borton MA, Morin TH, Daly RA, Johnston MD, Stefanik KC, Wolfe R, Gil B, Wrighton KC (2018) Members of the genus methylobacter are inferred to account for the majority of aerobic methane oxidation in oxic soils from a freshwater wetland. Mbio 9.
  160. Söhngen NL (1906) Ueber Bakterien, welche Methan als Kohlenstoffnahrung und Energiequelle gebrauchen. Centralbl Bakteriol Parasitenk Infektionskr Hyg Abt II 15:513–517Google Scholar
  161. Stock M, Hoefman S, Kerckhof FM, Boon N, De Vos P, De Baets B, Heylen K, Waegeman W (2013) Exploration and prediction of interactions between methanotrophs and heterotrophs. Res Microbiol 164:1045–1054PubMedCrossRefGoogle Scholar
  162. Stoecker K, Bendinger B, Schoning B, Nielsen PH, Nielsen JL, Baranyi C, Toenshoff ER, Daims H, Wagner M (2006) Cohn’s Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. Proc Natl Acad Sci USA 103:2363–2367PubMedCrossRefPubMedCentralGoogle Scholar
  163. Tang KW, McGinnis DF, Ionescu D, Grossart H-P (2016) Methane production in oxic lake waters potentially increases aquatic methane flux to air. Environ Sci Technol Lett 3:227–233CrossRefGoogle Scholar
  164. Tate KR (2015) Soil methane oxidation and land-use change – from process to mitigation. Soil Biol Biochem 80:260–272CrossRefGoogle Scholar
  165. Tavormina PL, Ussler W 3rd, Orphan VJ (2008) Planktonic and sediment-associated aerobic methanotrophs in two seep systems along the North American margin. Appl Environ Microbiol 74:3985–3995PubMedPubMedCentralCrossRefGoogle Scholar
  166. Tays C, Guarnieri MT, Sauvageau D, Stein LY (2018) Combined effects of carbon and nitrogen source to optimize growth of proteobacterial methanotrophs. Front Microbiol 9:2239PubMedPubMedCentralCrossRefGoogle Scholar
  167. Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, Prill RJ, Tripathi A, Gibbons SM, Ackermann G, Navas-Molina JA, Janssen S, Kopylova E, Vázquez-Baeza Y, González A, Morton JT, Mirarab S, Zech Xu Z, Jiang L, Haroon MF, Kanbar J, Zhu Q, Jin Song S, Kosciolek T, Bokulich NA, Lefler J, Brislawn CJ, Humphrey G, Owens SM, Hampton-Marcell J, Berg-Lyons D, McKenzie V, Fierer N, Fuhrman JA, Clauset A, Stevens RL, Shade A, Pollard KS, Goodwin KD, Jansson JK, Gilbert JA, Knight R (2017) A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551:457PubMedPubMedCentralCrossRefGoogle Scholar
  168. Tveit A, Schwacke R, Svenning MM, Urich T (2013) Organic carbon transformations in high-Arctic peat soils: key transformations and microorganisms. ISME J 7:299–311PubMedCrossRefGoogle Scholar
  169. Tveit AT, Urich T, Svenning MM (2014) Metatranscriptomic analysis of Arctic peat soil microbiota. Appl Environ Microbiol 80:5761–5772PubMedPubMedCentralCrossRefGoogle Scholar
  170. Tveit AT, Urich T, Frenzel P, Svenning MM (2015) Metabolic and trophic interactions modulate methane production by Arctic peat microbiota in response to warming. Proc Natl Acad Sci USA 112:E2507–E2E16PubMedCrossRefGoogle Scholar
  171. Vaksmaa A, Guerrero-Cruz S, van Alen TA, Cremers G, Ettwig KF, Lüke C, Jetten MSM (2017a) Enrichment of anaerobic nitrate-dependent methanotrophic ‘Candidatus Methanoperedens nitroreducens’ archaea from an Italian paddy field soil. Appl Microbiol Biotechnol 101:7075–7084PubMedPubMedCentralCrossRefGoogle Scholar
  172. Vaksmaa A, van Alen TA, Ettwig KF, Lupotto E, Vale G, Jetten MSM, Luke C (2017b) Stratification of diversity and activity of methanogenic and methanotrophic microorganisms in a nitrogen-fertilized Italian paddy soil. Front Microbiol 8:15CrossRefGoogle Scholar
  173. van der Wal A, Geydan TD, Kuyper TW, de Boer W (2013) A thready affair: linking fungal diversity and community dynamics to terrestrial decomposition processes. FEMS Microbiol Rev 37:477–494PubMedCrossRefGoogle Scholar
  174. van der Wal A, Ottosson E, de Boer W (2015) Neglected role of fungal community composition in explaining variation in wood decay rates. Ecology 96:124–133PubMedCrossRefGoogle Scholar
  175. van Kessel M, Speth DR, Albertsen M, Nielsen PH, Op den Camp HJM, Kartal B, Jetten MS, Lucker S (2015) Complete nitrification by a single microorganism. Nature 528:555PubMedPubMedCentralCrossRefGoogle Scholar
  176. van Kruistum H, Bodelier PLE, Ho A, Meima-Franke M, Veraart AJ (2018) Resistance and recovery of methane-oxidizing communities depends on stress regime and history; a microcosm study. Front Microbiol 9:1714PubMedPubMedCentralCrossRefGoogle Scholar
  177. van Teeseling MCF, Pol A, Harhangi HR, van der Zwart S, Jetten MSM, den Camp H (2014) Expanding the verrucomicrobial methanotrophic world: description of three novel species of methylacidimicrobium gen. nov. Appl Environ Microbiol 80:6782–6791PubMedPubMedCentralCrossRefGoogle Scholar
  178. Veraart AJ, Steenbergh AK, Ho A, Kim SY, Bodelier PLE (2015) Beyond nitrogen: the importance of phosphorus for CH4 oxidation in soils and sediments. Geoderma 259:337–346CrossRefGoogle Scholar
  179. Veraart AJ, Garbeva P, van Beersum F, Ho A, Hordijk CA, Meima-Franke M, Zweers AJ, Bodelier PLE (2018) Living apart together-bacterial volatiles influence methanotrophic growth and activity. ISME J 12:1163–1166PubMedPubMedCentralCrossRefGoogle Scholar
  180. Verbeke TJ, Dedysh SN, Dunfield PF (2018) Methanotrophy in acidic soils, including Northern Peatlands. In: McGenity TJ (ed) Microbial communities utilizing hydrocarbons and lipids: members, metagenomics and ecophysiology. Springer, Cham, pp 1–25Google Scholar
  181. Versantvoort W, Guerrero-Cruz S, Speth DR, Frank J, Gambelli L, Cremers G, van Alen T, Jetten MSM, Kartal B, Op den Camp HJM, Reimann J (2018) Comparative genomics of candidatus methylomirabilis species and description of Ca. methylomirabilis lanthanidiphila. Front Microbiol 9:1672PubMedPubMedCentralCrossRefGoogle Scholar
  182. Vigliotta G, Nutricati E, Carata E, Tredici SM, De Stefano M, Pontieri P, Massardo DR, Prati MV, De Bellis L, Alifano P (2007) Clonothrix fusca Roze 1896, a filamentous, sheathed, methanotrophic gamma-proteobacterium. Appl Environ Microbiol 73:3556–3565PubMedPubMedCentralCrossRefGoogle Scholar
  183. Vollmer D, Regan HM, Andelman SJ (2016) Assessing the sustainability of freshwater systems: a critical review of composite indicators. Ambio 45:765–780PubMedPubMedCentralCrossRefGoogle Scholar
  184. Vorob’ev AV, de Boer W, Folman LB, Bodelier PLE, Doronina NV, Suzina NE, Trotsenko YA, Dedysh SN (2009) Methylovirgula ligni gen. nov., sp nov., an obligately acidophilic, facultatively methylotrophic bacterium with a highly divergent mxaF gene. Int J Syst Evol Microbiol 59:2538–2545PubMedCrossRefGoogle Scholar
  185. Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W, Dunfield PF, Dedysh SN (2011) Methyloferula stellata gen. nov., sp nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int J Syst Evol Microbiol 61:2456–2463PubMedCrossRefGoogle Scholar
  186. Walter KM, Smith LC, Chapin FS 3rd (2007) Methane bubbling from northern lakes: present and future contributions to the global methane budget. Philos Trans A Math Phys Eng Sci 365:1657–1676PubMedCrossRefGoogle Scholar
  187. Wang JJ, Krause S, Muyzer G, Meima-Franke M, Laanbroek HJ, Bodelier PLE (2012) Spatial patterns of iron- and methane-oxidizing bacterial communities in an irregularly flooded, riparian wetland. Front Microbiol 3:13Google Scholar
  188. Waring CL, Hankin SI, Griffith DWT, Kertesz MA, Kobylski V, Wilson NL, Coleman NV, Kettlewell G, Zlot R, Bosse M, Bell G (2017) Seasonal total methane depletion in limestone caves. Sci Rep 7:8314PubMedPubMedCentralCrossRefGoogle Scholar
  189. Watsuji TO, Yamamoto A, Takaki Y, Ueda K, Kawagucci S, Takai K (2014) Diversity and methane oxidation of active epibiotic methanotrophs on live Shinkaia crosnieri. ISME J 8:1020–1031PubMedPubMedCentralCrossRefGoogle Scholar
  190. Welte CU, Rasigraf O, Vaksmaa A, Versantvoort W, Arshad A, Op den Camp HJ, Jetten MS, Luke C, Reimann J (2016) Nitrate- and nitrite-dependent anaerobic oxidation of methane. Environ Microbiol Rep 8:941–955PubMedCrossRefGoogle Scholar
  191. Whittenbury R, Philips KC, Wilkinson JF (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218PubMedPubMedCentralCrossRefGoogle Scholar
  192. Wieczorek AS, Drake HL, Kolb S (2011) Organic acids and ethanol inhibit the oxidation of methane by mire methanotrophs. FEMS Microbiol Ecol 77:28–39PubMedCrossRefGoogle Scholar
  193. Wieder WR, Allison SD, Davidson EA, Georgiou K, Hararuk O, He Y, Hopkins F, Luo Y, Smith MJ, Sulman B, Todd-Brown K, Wang Y-P, Xia J, Xu X (2015) Explicitly representing soil microbial processes in Earth system models. Glob Biogeochem Cycles 29:1782–1800CrossRefGoogle Scholar
  194. Yan X, Xu X, Ji M, Zhang Z, Wang M, Wu S, Wang G, Zhang C, Liu H (2019) Cyanobacteria blooms: a neglected facilitator of CH4 production in eutrophic lakes. Sci Total Environ 651:466–474PubMedCrossRefGoogle Scholar
  195. Yu ZCL (2017) Communal metabolism of methane and the rare earth element switch. J Bacteriol 199:e00328-17Google Scholar
  196. Yvon-Durocher G, Montoya J, Woodward G, Jones J, Trimmer M (2011) Warming increases the proportion of primary production emitted as methane from freshwater mesocosms. Glob Change Biol 17:1225–1234CrossRefGoogle Scholar
  197. Zhao R, Wang HM, Cheng XY, Yun Y, Qiu X (2018) Upland soil cluster γ dominates the methanotroph communities in the karst Heshang Cave. FEMS Microbiol Ecol 94.
  198. Zheng Y, Huang R, Wang BZ, Bodelier PLE, Jia ZJ (2014) Competitive interactions between methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil. Biogeosciences 11:3353–3368CrossRefGoogle Scholar
  199. Zhou X, Jin F, Lu C, Baoyin T, Jia Z (2018) Shifts in the community composition of methane-cycling microorganisms during lake shrinkage. Geoderma 311:9–14CrossRefGoogle Scholar
  200. Zigah PK, Oswald K, Brand A, Dinkel C, Wehrli B, Schubert CJ (2015) Methane oxidation pathways and associated methanotrophic communities in the water column of a tropical lake. Limnol Oceanogr 60:553–572CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Paul L. E. Bodelier
    • 1
    Email author
  • German Pérez
    • 1
  • Annelies J. Veraart
    • 2
  • Sascha M. B. Krause
    • 3
  1. 1.Department of Microbial EcologyNetherlands Institute of Ecology (NIOO-KNAW)WageningenThe Netherlands
  2. 2.Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland ResearchRadboud UniversityNijmegenThe Netherlands
  3. 3.Johann Heinrich von Thünen Institute, Federal Research Institute for Rural Areas, Forestry and FisheriesBraunschweigGermany

Personalised recommendations