On the Decidability of Finding a Positive ILP-Instance in a Regular Set of ILP-Instances

  • Petra WolfEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11612)


The regular intersection emptiness problem for a decision problem P (\( int_{\mathrm {Reg}} \)(P)) is to decide whether a potentially infinite regular set of encoded P-instances contains a positive one. Since \( int_{\mathrm {Reg}} \)(P) is decidable for some NP-complete problems and undecidable for others, its investigation provides insights in the nature of NP-complete problems. Moreover, the decidability of the \( int_{\mathrm {Reg}} \)-problem is usually achieved by exploiting the regularity of the set of instances; thus, it also establishes a connection to formal language and automata theory. We consider the \( int_{\mathrm {Reg}} \)-problem for the well-known NP-complete problem Integer Linear Programming (ILP). It is shown that any DFA that describes a set of ILP-instances (in a natural encoding) can be reduced to a finite core of instances that contains a positive one if and only if the original set of instances did. This result yields the decidability of \( int_{\mathrm {Reg}} \)(ILP).


Deterministic finite automaton Regular languages Regular intersection emptiness problem Decidability Integer linear programming 



The author thanks Markus L. Schmid for proofreading and helpful discussions and is grateful to the anonymous reviewers for their suggestions. The author was partially supported by DFG (FE 560/9-1).


  1. 1.
    Anderson, T., Loftus, J., Rampersad, N., Santean, N., Shallit, J.: Detecting palindromes, patterns and borders in regular languages. Inf. Comput. 207(11), 1096–1118 (2009). Scholar
  2. 2.
    Bodlaender, H.L., Heggernes, P., Lokshtanov, D.: Graph modification problems (Dagstuhl seminar 14071). Dagstuhl Rep. 4(2), 38–59 (2014)Google Scholar
  3. 3.
    Cook, S.A.: The complexity of theorem-proving procedures. In: Harrison, M.A., Banerji, R.B., Ullman, J.D. (eds.) Proceedings of 3rd Annual ACM Symposium on Theory of Computing, STOC 1971, pp. 151–158. ACM, New York (1971)Google Scholar
  4. 4.
    Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with moves. ACM Trans. Algorithms 3(1), 2:1–2:19 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Eiben, E., Ganian, R., Knop, D., Ordyniak, S.: Unary integer linear programming with structural restrictions. In: Lang, J. (ed.) Proceedings of 27th International Joint Conference on Artificial Intelligence, IJCAI 2018, pp. 1284–1290 (2018)Google Scholar
  6. 6.
    Emde Boas van, P.: The Convenience of Tilings. Lecture Notes in Pure and Applied Mathematics, pp. 331–363. Marcel Dekker Inc., New York (1997)zbMATHGoogle Scholar
  7. 7.
    Ganian, R., Ordyniak, S.: The complexity landscape of decompositional parameters for ILP. Artif. Intell. 257, 61–71 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. PAA Pattern Anal. Appl. 13(1), 113–129 (2010). Scholar
  9. 9.
    Güler, D., Krebs, A., Lange, K.-J., Wolf, P.: Deciding regular intersection emptiness of complete problems for PSPACE and the polynomial hierarchy. In: Klein, S.T., Martín-Vide, C., Shapira, D. (eds.) LATA 2018. LNCS, vol. 10792, pp. 156–168. Springer, Cham (2018). Scholar
  10. 10.
    Hladík, M.: Interval linear programming: a survey. In: Mann, Z.A. (ed.) Linear Programming – New Frontiers in Theory and Applications, Chap. 2, pp. 85–120. Nova Science Publishers, New York (2012)Google Scholar
  11. 11.
    Lange, K., Reinhardt, K.: Set automata. In: Combinatorics, Complexity and Logic; Proceeding, DMTCS 1996, pp. 321–329 (1996)Google Scholar
  12. 12.
    Lempitsky, V.S., Kohli, P., Rother, C., Sharp, T.: Image segmentation with a bounding box prior. In: ICCV 2009, pp. 277–284. IEEE Computer Society (2009)Google Scholar
  13. 13.
    Li, H.: Two-view motion segmentation from linear programming relaxation. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2007), pp. 1–8. IEEE Computer Society (2007)Google Scholar
  14. 14.
    Liu, Y., Wang, J., Guo, J.: An overview of kernelization algorithms for graph modification problems. Tsinghua Sci. Technol. 19(4), 346–357 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Rubtsov, A.A.: Regular realizability problems and regular languages. CoRR abs/1503.05879 (2015).
  16. 16.
    Rubtsov, A.A., Vyalyi, M.N.: Regular realizability problems and models of a generalized nondeterminism. CoRR abs/1105.5894 (2011).
  17. 17.
    Tarasov, S., Vyalyi, M.: Orbits of linear maps and regular languages. In: Kulikov, A., Vereshchagin, N. (eds.) CSR 2011. LNCS, vol. 6651, pp. 305–316. Springer, Heidelberg (2011). Scholar
  18. 18.
    Vyalyi, M.N.: On models of a nondeterministic computation. In: Frid, A., Morozov, A., Rybalchenko, A., Wagner, K.W. (eds.) CSR 2009. LNCS, vol. 5675, pp. 334–345. Springer, Heidelberg (2009). Scholar
  19. 19.
    Vyalyi, M.N.: On regular realizability problems. Probl. Inf. Transm. 47(4), 342–352 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Vyalyi, M.N.: On expressive power of regular realizability problems. Probl. Inf. Transm. 49(3), 276–291 (2013). Scholar
  21. 21.
    Vyalyi, M.N., Rubtsov, A.A.: On regular realizability problems for context-free languages. Probl. Inf. Transm. 51(4), 349–360 (2015). Scholar
  22. 22.
    Wagner, K., Wechsung, G.: Computational Complexity. Springer, Netherlands (1986)zbMATHGoogle Scholar
  23. 23.
    Wolf, P.: Decidability of the regular intersection emptiness problem. Master’s thesis, Wilhelm Schickhard Institut für Informatik, Universität Tübingen (2018)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  1. 1.FB 4 - Abteilung InformatikwissenschaftenUniversität TrierTrierGermany

Personalised recommendations