Advertisement

Data Mining Technique (Maximum Entropy Model) for Mapping Gully Erosion Susceptibility in the Gorganrood Watershed, Iran

  • Narges Javidan
  • Ataollah Kavian
  • Hamid Reza Pourghasemi
  • Christian Conoscenti
  • Zeinab Jafarian
Chapter
Part of the Advances in Science, Technology & Innovation book series (ASTI)

Abstract

Soil erosion is a serious problem affecting most of the countries. This study was carried out in Gorganrood Watershed (Iran), which extends for 10,197 km2 and is severely affected by gully erosion. A gully headcut inventory map consisting of 307 gully headcut points was provided by Google Earth images, field surveys, and national reports. Gully conditioning factors including significant geo-environmental and morphometric variables were selected as predictors. Maximum entropy (ME) model was exploited to model gully susceptibility, whereas the area under the ROC curve (AUC) and drawing receiver operating characteristic (ROC) curves were employed to evaluate the performance of the model.

The highly acceptable predictive skill of the ME model confirms the reliability of the procedure adopted to using this model in other gully erosion studies, as they are qualified to rapidly producing accurate and robust GESMs (gully erosion susceptibility maps) for making decisions and management of soil and water. The result is useful for local administrators to recognize the areas that are most susceptible to gully erosion and to best allocate resources for soil conservation approaches.

Three different sample datasets including 70% for training and 30% for validation were randomly prepared to evaluate the robustness of the model for gully erosion. The accuracy of the predictive model was evaluated by drawing ROC curves and by calculating the area under the ROC curve (AUC). The ME model performed excellently both in the degree of fitting and in predictive performance (AUC values well above 0.8), which resulted in accurate predictions.

Keywords

Gully erosion Susceptibility Geographic information systems (GIS) Maximum entropy (ME) model Area under the ROC curve (AUC) 

Notes

Acknowledgments

This research was supported by Regional Water Authority of Golestan province, and the authors would like to thank them for providing the discharge and meteorological data and the Forests, Ranges and Catchment Management Organization (FRWO) of Golestan for providing the data and maps.

References

  1. Archer, G.E.B., Saltelli, A., Sobol, I. M., 1997. Sensitivity measures, ANOVA-like techniques and the use of bootstrap. Journal of Statistical Computation and Simulation, 58(2), 99-120CrossRefGoogle Scholar
  2. Angileri, S.E., Conoscenti, C., Hochschild, V., Märker, M., Rotigliano, E., & Agnesi, V., 2016. Water erosion susceptibility mapping by applying stochastic gradient treeboost to the imera Meridionale River basin (Sicily, Italy). Geomorphology, 262, 61-76.Google Scholar
  3. Böhner, J., Selige, T., 2006. Spatial prediction of soil attributes using terrain analysis and climate regionalisation. Gottinger Geographische Abhandlungen, 115, 13-28Google Scholar
  4. Boubli, J. P., De Lima, M.G., 2009. Modeling the geographical distribution and fundamental niches of Cacajao spp. and Chiropotes israelita in Northwestern Amazonia via a maximum entropy algorithm. International Journal of Primatology, 30(2), 217-228.CrossRefGoogle Scholar
  5. Baldwin, R.A., 2009. Use of maximum entropy modeling in wildlife research. Entropy 11, 854–866.CrossRefGoogle Scholar
  6. Bui, D., Pradhan, B., Lofman, O., Revhaug, I., Dick, O.B., 2012. Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS. Computers & Geosciences, 45, 199–211.Google Scholar
  7. Ballabio, C., & Sterlacchini, S., 2012. Support vector machines for landslide susceptibility mapping: the Staffora River Basin case study, Italy. Mathematical geosciences, 44(1), 47-70.Google Scholar
  8. Cosby, B.J., Hornberger, G.M., Clapp, R.B., Ginn, T.R., 1984. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour Res, 20, 682–690.CrossRefGoogle Scholar
  9. Chang-Jo, F.C., Fabbri, A.G., 2003. Validation of spatial prediction models for landslide hazard mapping. Natural Hazards, 30 (3), 451–472.CrossRefGoogle Scholar
  10. Chaplot, V., Giboire, G., Marchand, P., Valentin, C., 2005. Dynamic modelling for linear erosion initiation and development under climate and land-use changes in northern Laos. Catena, 63(2-3), 318-328. doi: https://doi.org/10.1016/j.catena.2005.06.008 CrossRefGoogle Scholar
  11. [CONRWMGP] Central Office of Natural Resources and Watershed Management in Golestan Province., 2009. Detailed action plan, Iran, pp 230.Google Scholar
  12. Chen, Y., Lawless, C., Gillespie, C.S., Wu, J., Boys, R.J., Wilkinson, D.J., 2010. CaliBayes and BASIS: integrated tools for the calibration, simulation and storage of biological simulation models. Briefings in bioinformatics, 11(3), 278-289.CrossRefGoogle Scholar
  13. Convertino, M., Muñoz-Carpena, R., Chu-Agor, M.L., Kiker, G.L., Linkov, I., 2014. Untangling drivers of species distributions: global sensitivity and uncertainty analyses of MAXENT. Environmental Modelling & Software, 51, 296–309.Google Scholar
  14. Conoscenti, C., Agnesi, V., Angileri, S., Cappadonia, C., Rotigliano, E., Märker, M., 2013. A GIS-based approach for gully erosion susceptibility modelling: a test in Sicily, Italy. Environ Earth Sci, 70,1179-1195.CrossRefGoogle Scholar
  15. Conoscenti, C., Angileri, S., Cappadonia, C., Rotigliano, E., Agnesi, V., Märker, M., 2014. Gully erosion susceptibility assessment by means of GIS-based logistic regression: A case of Sicily (Italy). Geomorphology, 204(1), 399–411.CrossRefGoogle Scholar
  16. Conoscenti, C., Ciaccio, M., Caraballo-Arias, N. A., Gómez-Gutiérrez, Á., Rotigliano, E., & Agnesi, V., 2015. Assessment of susceptibility to earth-flow landslide using logistic regression and multivariate adaptive regression splines: a case of the Belice River basin (western Sicily, Italy). Geomorphology, 242, 49-64.Google Scholar
  17. Conoscenti, C., Rotigliano, E., Cama, M., Caraballo-Arias, N.A., Lombardo, L. and Agnesi, V., 2016. Exploring the effect of absence selection on landslide susceptibility models: A case study in Sicily, Italy. Geomorphology, 261, 222–235.CrossRefGoogle Scholar
  18. Conforti, M., Aucelli, P. P., Robustelli, G., & Scarciglia, F., 2011. Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy). Natural hazards, 56(3), 881-898.Google Scholar
  19. Cama, M., Lombardo, L., Conoscenti, C., Rotigliano, E., 2017. Improving transferability strategies for debris flow susceptibility assessment: Application to the Saponara and Itala catchments (Messina, Italy). Geomorphology, 288, 52–65.CrossRefGoogle Scholar
  20. Douaik, M., Phillips, S., Schapire, R., 2004. Performance guarantees for regularized maximum entropy density estimation. Proceedings of the 17th Annual Conference on Computational Learning Theory. Springer, Berlin, Heidelberg, pp. 655–662.Google Scholar
  21. Douaik, A., Meirvenne, M.V., Tόth, T., 2005. Soil salinity mapping using spatio-temporal Kriging and Bayesian maximum entropy with interval soft data. Geoderma, 128, 234–248.CrossRefGoogle Scholar
  22. Diniz-Filho, J.A.F., Bini, L.M., Rangel, T.F., Loyola, R.D., Hof, C., Nogués-Bravo, D., Araújo, M.B., 2009. Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography, 32, 897–906.CrossRefGoogle Scholar
  23. Duc, D.M., 2012., Rainfall-triggered large landslides on 15 December 2005 in Van Canh District, Binh Dinh Province, Vietnam. Landslides, 10, 219–230.Google Scholar
  24. Dube, F., Nhapi, I., Murwira, A., Gumindoga, W., Goldin, J., Mashauri, D.A., 2014. Potential of weight of evidence modelling for gully erosion hazard assessment in Mbire District-Zimbabwe. Physics and Chemistry of the Earth, Parts A/B/C, 67, 145–152.CrossRefGoogle Scholar
  25. Ercanoglu, M., Gokceoglu, C., 2002. Assessment of landslide susceptibility for a landslide prone area (north of Yenice, NW Turkey) by fuzzy approach. Environmental geology, 41, 720–730.CrossRefGoogle Scholar
  26. Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Lohmann, L.G., Loiselle, B.A., 2006. Novel methods improve prediction of species’ distribution from occurrence data. Ecography, 29, 129–151.doi: https://doi.org/10.1111/j.2006.0906-7590.04596.x.CrossRefGoogle Scholar
  27. Edrén, S.M., Wisz, M.S., Teilmann, J., Dietz, R., Söderkvist, J., 2010. Modelling spatial patterns in harbour porpoise satellite telemetry data using maximum entropy. Ecography, 33, 698-708. CrossRefGoogle Scholar
  28. Fernández, D.S., Lutz, M.A., 2010. Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis. Engineering Geology, 111, 90–98.CrossRefGoogle Scholar
  29. Jungerius, P.D., Matundura, J., Van de Ancker, J.a.M., 2002. Road construction and gully erosion in West Pokot, Kenya. Earth Surface Processes and Landforms, 27, 1237–1247.CrossRefGoogle Scholar
  30. Jenness, J., 2013. DEM Surface Tools for ArcGIS. Jenness Enterprises Available at. http://www.jennessent.com/arcgis/surface:area.htm.
  31. Jaafari, A., Najafi, A., Pourghasemi, H.R., Rezaeian, J., Sattarian, A., 2014. GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran. International Journal of Environmental Science and Technology, 11(4), 909-926.CrossRefGoogle Scholar
  32. Hosmer, D.W., Lemeshow, S., 2000. Applied Logistic Regression, Wiley Series in Probability and Statistics. Wiley.Google Scholar
  33. Imeson, A. C., & Kwaad, F. J. P. M., 1980. Gully types and gully prediction. Geografisch Tijdschrift, 14(5), 430-441.Google Scholar
  34. Govers, G., 1985. Selectivity and transport capacity of thin flows in relation to rill erosion. Catena 12(1), 35-49. doi: https://doi.org/10.1016/S0341-8162(85)80003-5.CrossRefGoogle Scholar
  35. Gyssels, G., Poesen, J., Nachtergaele, J., Govers, G., 2002. The impact of sowing density of small grains on rill and ephemeral gully erosion in concentrated flow zones. Soil and Tillage Research, 64(3), 189–201.CrossRefGoogle Scholar
  36. Geissen, V., Kampichler, C., López-de Llergo-Juárez, J.J., Galindo-Acántara, A., 2007. Superficial and subterranean soil erosion in Tabasco, tropical Mexico: Development of a decision tree modeling approach. Geoderma 139(3-4), 277–287. doi: https://doi.org/10.1016/j.geoderma.2007.01.002 CrossRefGoogle Scholar
  37. Grabs, T., Seibert, J., Bishop, K., Laudon, H., 2009. Modeling spatial patterns of saturated areas: a comparison of the topographic wetness index and a dynamic distributed model. Journal of Hydrology, 373, 15–23.CrossRefGoogle Scholar
  38. Gómez Gutiérrez, Á., Schnabel, S., Lavado Contador, J.F., 2009. Using and comparing two nonparametric methods (CART and MARS) to model the potential distribution of gullies. Ecological Modelling 220(24), 3630-3637. doi: https://doi.org/10.1016/j.ecolmodel.2009.06.020.CrossRefGoogle Scholar
  39. Geroy, I.J., Gribb, M.M., Marshall, H.P., Chandler, D.G., Benner, S.G., McNamara, J.P., 2011. Aspect influences on soil water retention and storage. Hydrological Processes, 25(25), 3836–3842.CrossRefGoogle Scholar
  40. Glenn, E., Morino, K., Nagler, P., Murray, R., Pearlstein, S., Hultine, K., 2012. Roles of saltcedar (Tamarix spp.) and capillary rise in salinizing a non-flooding terrace on a flow-regulated desert river. Journal of arid environments, 79, 56-65.CrossRefGoogle Scholar
  41. Gómez Gutiérrez, Á., Conoscenti, C., Angileri, S.E., Rotigliano, E., Schnabel, S., 2015. Using Topographical attributes to model the spatial distribution of gullying from two Mediterranean basins: advantages and limitations. Natural Hazards. doi: https://doi.org/10.1007/s11069-015-1703-0.CrossRefGoogle Scholar
  42. Gallardo-Cruz, J.A., Pérez-García, E.A., Meave, J.A., 2009. β-Diversity and vegetation structure as influenced by slope aspect and altitude in a seasonally dry tropical landscape. Landscape Ecology. 24(4), 473–482.CrossRefGoogle Scholar
  43. Kosmas, C., Danalatos, N., Cammeraat, L.H., Chabart, M., Diamantopoulos, J., Farand, R., Gutierrez, L., Jacob, A., Marques, H., Martinez-Fernandez, J., Mizara, A., Moustakas, N., Nicolau, J.M., Oliveros, C., Pinna, G., Puddu, R., Puigdefabregas, J., Roxo, M., Simao, A., Stamou, G., Tomasi, N., Usai D., Vacca, A., 1997. The effect of land use on runoff and soil erosion rate under Mediterranean conditions. Catena 29, 45-59. doi: https://doi.org/10.1016/S0341-8162(96)00062-8.CrossRefGoogle Scholar
  44. Kia, M. B., Pirasteh, S., Pradhan, B., Mahmud, A.R., Sulaiman, W.N.A., Moradi, A., 2012. An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environmental Earth Sciences, 67(1), 251-264.Google Scholar
  45. Khosravi, K., Nohani, E., Maroufinia, E., Pourghasemi, H.R., 2016. A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. Natural Hazards, 83(2), 947-987.CrossRefGoogle Scholar
  46. Kornejady, A., Ownegh, M., Bahremand, A., 2017a. Landslide susceptibility assessment using maximum entropy model with two different data sampling methods. Catena, 152, 144-162.CrossRefGoogle Scholar
  47. Kornejady, A., Ownegh, M., Rahmati, O., Bahremand, A., 2017b. Landslide susceptibility assessment using three bivariate models considering the new topo-hydrological factor: HAND. Geocarto International, 32, 1–68Google Scholar
  48. Lal, R., 2003. Offsetting global CO2 emissions by restoration of degraded soils and intensification of world agriculture and forestry. Land Degradation & Development, vol. 14(3), 309-322. doi: https://doi.org/10.1002/ldr.562.CrossRefGoogle Scholar
  49. Lan, H.X., Zhou, C.H., Wang, L.J., Zhang, H.Y., Li, R.H., 2004. Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed, Yunnan, China. Engineering geology, 76, 109–128.CrossRefGoogle Scholar
  50. Lee, S., Ryu, J.H., Kim, I.S., 2007. Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: case study of Youngin, Korea. Landslides, 4(4), 327–338.CrossRefGoogle Scholar
  51. Lee, M. J., Kang, J. E., & Jeon, S., 2012. Application of frequency ratio model and validation for predictive flooded area susceptibility mapping using GIS. In Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International, pp, 895-898.Google Scholar
  52. Lucà, F., Conforti, M., Robustelli, G., 2011. Comparison of GIS-based gullying susceptibility mapping using bivariate and multivariate statistics: Northern Calabria, South Italy. Geomorphology, 134, 297–308.CrossRefGoogle Scholar
  53. Lin, Y.P., Deng, D., Lin, W.C., Lemmens, R., Crossman, N.D., Henle, K., Schmeller, D.S., 2015. Uncertainty analysis of crowd-sourced and professionally collected field data used in species distribution models of Taiwanese moths. Biological conservation, 181, 102-110.CrossRefGoogle Scholar
  54. Lombardo, L., Cama, M., Conoscenti, C., Märker, M., & Rotigliano, E., 2015. Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messina (Sicily, southern Italy). Natural Hazards, 79(3), 1621-1648.Google Scholar
  55. Lombardo, L., Bachofer, F., Cama, M., Märker, M., & Rotigliano, E., 2016. Exploiting Maximum Entropy method and ASTER data for assessing debris flow and debris slide susceptibility for the Giampilieri catchment (north-eastern Sicily, Italy). Earth Surface Processes and Landforms, 41(12), 1776-1789.Google Scholar
  56. Miller, J.R., Ritter, D.F., Kochel, R.C., 1990. Morphometric assessment of lithologic controls on drainage basin evolution in the Crawford Upland, south-central Indiana. American Journal of Science, 290, 569–599.CrossRefGoogle Scholar
  57. Moore, I.D., Grayson, R.B., Ladson, A.R., 1991. Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological processes, 5(1), 3-30.CrossRefGoogle Scholar
  58. Maier, H.R., Dandy, G.C., 2000. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental modelling & software, 15, 101–124Google Scholar
  59. Maestre, F.T., Cortina, J., 2002. Spatial patterns of surface soil properties and vegetation in a Mediterranean semiarid steppe. Plant Soil, 241(2), 279–291.Google Scholar
  60. Marmion, M., Hjort, J., Thuiller, W., Luoto, M., 2008. A comparison of predictive methods in modelling the distribution of periglacial landforms in Finnish Lapland. Earth surface processes and landforms, 33(14), 2241-2254.CrossRefGoogle Scholar
  61. Medley, K.A., 2010. Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. Global ecology and biogeography, 19(1), 122-133.CrossRefGoogle Scholar
  62. Magliulo, P., 2010. Soil erosion susceptibility maps of the Janare Torrent Basin (Southern Italy). J. Maps , 6, 435–447.CrossRefGoogle Scholar
  63. Magliulo, P., 2012. Assessing the susceptibility to water-induced soil erosion using a geomorphological, bivariate statistics-based approach. Environ. earth Sci, 67, 1801–1820. CrossRefGoogle Scholar
  64. Moreno, R., Zamora, R., Molina, J.R., Vasquez, A., Herrera, M.Á., 2011. Predictive modeling of microhabitats for endemic birds in South Chilean temperate forests using maximum entropy (Maxent). Ecological Informatics, 6(6), 364-370.CrossRefGoogle Scholar
  65. Märker, M., Pelacani, S., Schröder, B., 2011. A functional entity approach to predict soil erosion processes in a small Plio-Pleistocene Mediterranean catchment in Northern Chianti, Italy. Geomorphology 125(4), 530-540. doi: https://doi.org/10.1016/j.geomorph.2010.10.022 CrossRefGoogle Scholar
  66. Meinhardt, M., Fink, M., Tunschel, H., 2015. Landslide susceptibility analysis in central Vietnam based on an incomplete landslide inventory: comparison of a new method to calculate weighting factors by means of bivariate statistics. Geomorphology, 234, 80–97.CrossRefGoogle Scholar
  67. Moghaddam, D.D., Rezaei, M., Pourghasemi, H.R., Pourtaghie, Z.S., Pradhan, B., 2015. Groundwater spring potential mapping using bivariate statistical model and GIS in the Taleghan watershed, Iran. Arabian Journal of Geosciences, 8(2), 913-929CrossRefGoogle Scholar
  68. Nagarajan, R., Roy, A., Kumar, R.V., Mukherjee, A., Khire, M.V. 2000. Landslide hazard susceptibility mapping based on terrain and climatic factors for tropical monsoon regions. Bulletin of Engineering Geology and the Environment, 58(4), 275-287.CrossRefGoogle Scholar
  69. Nampak, H., Pradhan, B., Manap, M.A., 2014. Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. Journal of Hydrology, 513, 283-300.CrossRefGoogle Scholar
  70. Naghibi, S.A., Pourghasemi, H.R., 2015. A comparative assessment between three machine learning models and their performance comparison by bivariate and multivariate statistical methods in groundwater potential mapping. Water resources management, 29(14), 5217-5236.CrossRefGoogle Scholar
  71. O’brien, R. M., 2007. A caution regarding rules of thumb for variance inflation factors. Quality & quantity, 41(5), 673-690.Google Scholar
  72. Ozdemir, A., 2011. Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey). Journal of Hydrology, 405(1-2), 123-136CrossRefGoogle Scholar
  73. Oh, H. J., Pradhan, B., 2011. Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Computers & Geosciences, 37(9), 1264-1276.Google Scholar
  74. Phillips, S.J., Dudík, M., Schapire, R.E., 2004 A maximum entropy approach to species distribution modeling. In Proceedings of the twenty-first international conference on Machine learning (p. 83). ACM, Banff, Canada.Google Scholar
  75. Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological modelling, 190(3-4), 231-259.CrossRefGoogle Scholar
  76. Phillips, S.J., Dudík, M., 2008. Modeling of species distributions with maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175.CrossRefGoogle Scholar
  77. Pradhan, B., 2010. Flood susceptible mapping and risk area estimation using logistic regression, GIS and remote sensing. Journal of Spatial Hydrology, 9,1–18.Google Scholar
  78. Pradhan, B., 2013. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences, 51, 350-365.Google Scholar
  79. Pourghasemi, H.R., Jirandeh, A.G., Pradhan, B., Xu, C., Gokceoglu, C., 2013. Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. Journal of Earth System Science, 122(2), 349-369.CrossRefGoogle Scholar
  80. Pourtaghi, Z.S., Pourghasemi, H.R., 2014. GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province, Iran. Hydrogeology Journal, 22(3), 643-662.CrossRefGoogle Scholar
  81. Poiraud, A., 2014. Landslide susceptibility–certainty mapping by a multi-method approach: a case study in the tertiary basin of Puy-en-Velay (Massif central, France). Geomorphology, 216, 208–224.CrossRefGoogle Scholar
  82. Park, S., Choi, C., Kim, B., Kim, J., 2013. Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environmental earth sciences, 68(5), 1443-1464Google Scholar
  83. Park, N.W., 2015. Using maximum entropy modeling for landslide susceptibility mapping with multiple geoenvironmental data sets. Environmental Earth Sciences, 73(3), 937-949.CrossRefGoogle Scholar
  84. Razandi, Y., Pourghasemi, H.R., Neisani, N.S., Rahmati, O. 2015. Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Science Informatics, 8(4), 867-883.CrossRefGoogle Scholar
  85. Rahmati, O., Pourghasemi, H. R., Melesse, A.M., 2016. Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: a case study at Mehran Region, Iran. Catena, 137, 360-372.CrossRefGoogle Scholar
  86. Rahmati, O., Tahmasebipour, N., Haghizadeh, A., Pourghasemi, H.R., Feizizadeh, B., 2017. Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion. Geomorphology, 298, 118-137.CrossRefGoogle Scholar
  87. Rahmati, O., Naghibi, S.A., Shahabi, H., Bui, D.T., Pradhan, B., Azareh, A., Melesse, A.M., 2018. Groundwater spring potential modelling: comprising the capability and robustness of three different modeling approaches. Journal of hydrology, 565, 248-261.CrossRefGoogle Scholar
  88. Swets, J.A., 1988. Measuring the accuracy of diagnostic systems. Science, 240 (4857),1285–1293.CrossRefGoogle Scholar
  89. Shimizu, M., 1988. Prediction of slope failures due to heavy rain using the tank model. Proceedings of the 5th International Symposium on Landslides. Lausanne, 1, pp. 771–776.Google Scholar
  90. Sidle, R.C., Ochiai, H., 2006. Landslides: processes, prediction, and land use. Water Research Monograph, 18. Washington, DC: American Geophysical Union; p 312.Google Scholar
  91. Svoray, T., Michailov, E., Cohen, A., Rokah, L., & Sturm, A., 2012. Predicting gully initiation: comparing data mining techniques, analytical hierarchy processes and the topographic threshold. Earth Surface Processes and Landforms, 37(6), 607-619.Google Scholar
  92. Song, Y., Gong, J., Gao, S., Wang, D., Cui, T., Li, Y., Wei, B., 2012. Susceptibility assessment of earthquake-induced landslides using Bayesian network: a case study in Beichuan, China. Computers & Geosciences, 42, 189-199.Google Scholar
  93. Shafapour Tehrany, M., Pradhan, B., Jebur, M.N., 2013. Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. Journal of Hydrology, 504, 69–79.CrossRefGoogle Scholar
  94. Shafapour Tehrany, M., Lee, MJ., Pradhan, B., Jebur, M.N, Lee, S., 2014a. Flood susceptibility mapping using integrated bivariate and multivariate statistical models. Environmental earth sciences, 72, 4001–4015CrossRefGoogle Scholar
  95. Shafapour Tehrany, M., Pradhan, B., Jebur, M.N., 2014b. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of Hydrology, 512:332–343CrossRefGoogle Scholar
  96. Saponaro, A., Pilz, M., Wieland, M., Bindi, D., Moldobekov, B., Parolai, S., 2015. Landslide susceptibility analysis in data-scarce regions: the case of Kyrgyzstan. Bulletin of Engineering Geology and the Environment, 74(4), 1117-1136.CrossRefGoogle Scholar
  97. Thomalla, F., Downing, T., Spanger-Siegfried, E., Han, G., Rockström, J., 2006. Reducing hazard vulnerability: towards a common approach between disaster risk reduction and climate adaptation. Disasters, 30(1), 39–48.CrossRefGoogle Scholar
  98. Tahmassebipoor, N., Rahmati, O., Noormohamadi, F., Lee, S., 2016. Spatial analysis of groundwater potential using weights-of-evidence and evidential belief function models and remote sensing. Arabian Journal of Geosciences, 9(1), 79.Google Scholar
  99. Umar, Z., Pradhan, B., Ahmad, A., Jebur, M.N., Tehrany, M.S., 2014. Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia. Catena, 118,124–135.CrossRefGoogle Scholar
  100. Vandekerckhove, L., Poesen, J, Oostwoudwijdenes, D.J., Gyssels, G., Beuselinck, L., De Luna, E., 2000. Characteristics and controlling factors of bank gullies in two semi arid Mediterranean environments. Geomorphology, 33,37–58CrossRefGoogle Scholar
  101. Vandekerckhove, L., Poesen, J., Govers, G., 2003. Medium-term gully headcut retreat rates in Southeast Spain determined from aerial photographs and ground measurements. Catena, 50 (2-4), 329-352.CrossRefGoogle Scholar
  102. Vanwalleghem, T., Poesen, J., Nachtergaele, J., Verstraeten, G., 2005. Characteristics, controlling factors and importance of deep gullies under cropland on loess derived soils. Geomorphology 69:76–91.CrossRefGoogle Scholar
  103. Vahidnia, M.H., Alesheikh, A.A., Alimohammadi, A., Hosseinali, F., 2010. A GIS-based neuro-fuzzy procedure for integrating knowledge and data in landslide susceptibility mapping. Computers & Geosciences. 36, 1101–1114.Google Scholar
  104. Yost, A. C., Petersen, S. L., Gregg, M., & Miller, R., 2008. Predictive modeling and mapping sage grouse (Centrocercus urophasianus) nesting habitat using Maximum Entropy and a long-term dataset from Southern Oregon. Ecological Informatics, 3(6), 375-386Google Scholar
  105. Yalcin, A., 2008. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena, 72, 1–12.CrossRefGoogle Scholar
  106. Youssef, A.M., 2015. Landslide Susceptibility Delineation in the Ar-Rayth Area, Jizan, Kingdom of Saudi Arabia, by using analytical hierarchy process, frequency ratio, and logistic regression models. Environmental Earth Sciences, 73(12), 8499-8518CrossRefGoogle Scholar
  107. Zucca, C., Canu, A., Della Peruta, R., 2006. Effects of land use and landscape on spatial distribution and morphological features of gullies in an agropastoral area in Sardinia (Italy). Catena, 68(2), 87–95.CrossRefGoogle Scholar
  108. Zipkin, E.F., Grant, E.H.C., Fagan, W.F., 2012. Evaluating the predictive abilities of community occupancy models using AUC while accounting for imperfect detection. Ecological Applications, 22(7), 1962-1972.CrossRefGoogle Scholar
  109. Zakerinejad, R., Märker, M., 2014. Prediction of Gully erosion susceptibilities using detailed terrain analysis and maximum entropy modeling: a case study in the Mazayejan Plain, Southwest Iran. Geogr Fis Din Quat, 37(1), 67-76.Google Scholar
  110. Zhu, A.X., Wang, R.X., Qiao, J.P., Qin, C.Z., Chen, Y.B., Liu, J., Du, F., Lin, Y., Zhu, T.X., 2014. An expert knowledge-based approach to landslide susceptibility mapping using GIS and fuzzy logic. Geomorphology, 214, 128–138.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Narges Javidan
    • 1
  • Ataollah Kavian
    • 1
  • Hamid Reza Pourghasemi
    • 2
  • Christian Conoscenti
    • 3
  • Zeinab Jafarian
    • 1
  1. 1.Sari Agricultural Sciences and Natural Resources UniversitySariIran
  2. 2.Department of Natural Resources and Environmental Engineering, College of AgricultureShiraz UniversityShirazIran
  3. 3.Physical Geography and GeomorphologyUniversity of PalermoPalermoItaly

Personalised recommendations