Advertisement

Institutions for SQL Database Schemas and Datasets

  • Martin Glauer
  • Till MossakowskiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11563)

Abstract

Databases and the query language SQL play a major role in modern applications. In this paper we present an institution-based formalisation of relational databases that uses structures close to those used in SQL. This is the essential difference to other category-theoretical formalisations of databases, which often depart quite far from the SQL standard. We also study SQL queries, using institutional monads, and prove cocompleteness and amalgamation results for the institution.

Keywords

Databases SQL Category theory Institutions Queries Derived signature morphisms 

References

  1. 1.
    Alagić, S., Bernstein, P.A.: A model theory for generic schema management. In: Ghelli, G., Grahne, G. (eds.) DBPL 2001. LNCS, vol. 2397, pp. 228–246. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-46093-4_14CrossRefGoogle Scholar
  2. 2.
    Borzyszkowski, T.: Generalized interpolation in CASL. Inf. Process. Lett. 76(1–2), 19–24 (2000)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Diaconescu, R.: Herbrand theorems in arbitrary institutions. Inf. Process. Lett. 90, 29–37 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Diaconescu, R., Goguen, J., Stefaneas, P.: Logical support for modularisation. In: Huet, G., Plotkin, G. (eds.) Proceedings of a Workshop on Logical Frameworks (1991)Google Scholar
  5. 5.
    Diaconescu, R.: Institution-Independent Model Theory. SUL. Birkhäuser, Basel (2008).  https://doi.org/10.1007/978-3-7643-8708-2CrossRefzbMATHGoogle Scholar
  6. 6.
    Doan, A., Halevy, A.Y., Ives, Z.G.: Principles of Data Integration. Morgan Kaufmann, San Francisco (2012). http://research.cs.wisc.edu/dibook/Google Scholar
  7. 7.
    Ehrig, H., Große-Rhode, M.: Functorial theory of parameterized specifications in a general specification framework. Theor. Comput. Sci. 135, 221–266 (1994)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 2. EATCS, vol. 21. Springer, Heidelberg (1990).  https://doi.org/10.1007/978-3-642-61284-8CrossRefzbMATHGoogle Scholar
  9. 9.
    Goguen, J., Roşu, G.: Institution morphisms. Form. Asp. Comput. 13, 274–307 (2002)CrossRefGoogle Scholar
  10. 10.
    Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification and programming. J. ACM (JACM) 39(1), 95–146 (1992)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Melton, J.: ISO/IEC 9075–2: 2003 (SQL/foundation). ISO standard (2003)Google Scholar
  12. 12.
    Mimram, S., Di Giusto, C.: A categorical theory of patches. Electron. Notes Theor. Comput. Sci. 298, 283–307 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Mossakowski, T., Krumnack, U., Maibaum, T.: What is a derived signature morphism? In: Codescu, M., Diaconescu, R., Ţuţu, I. (eds.) WADT 2015. LNCS, vol. 9463, pp. 90–109. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-28114-8_6CrossRefGoogle Scholar
  14. 14.
    Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-71209-1_40CrossRefGoogle Scholar
  15. 15.
    Mossakowski, T., Tarlecki, A.: A relatively complete calculus for structured heterogeneous specifications. In: Muscholl, A. (ed.) FoSSaCS 2014. LNCS, vol. 8412, pp. 441–456. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54830-7_29CrossRefGoogle Scholar
  16. 16.
    Object Management Group: The distributed ontology, modeling, and specification language (DOL) (2018). oMG standard available at http://www.omg.org/spec/DOL/
  17. 17.
    Rosser, J.B., Turquette, A.: Many-Valued Logics. North-Holland, Amsterdam (1952)zbMATHGoogle Scholar
  18. 18.
    Sannella, D., Tarlecki, A.: Specifications in an arbitrary institution. Inf. Comput. 76, 165–210 (1988)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Software Development. EATCS. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-17336-3CrossRefzbMATHGoogle Scholar
  20. 20.
    Schorlemmer, W.M., Kalfoglou, Y.: Institutionalising ontology-based semantic integration. Appl. Ontol. 3(3), 131–150 (2008).  https://doi.org/10.3233/AO-2008-0041CrossRefGoogle Scholar
  21. 21.
    Schultz, P., Spivak, D., Vasilakopoulou, C., Wisnesky, R.: Algebraic databases. Theory Appl. Categ. 32(16), 547–619 (2017)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Schultz, P., Spivak, D.I., Wisnesky, R.: Algebraic model management: a survey. In: James, P., Roggenbach, M. (eds.) WADT 2016. LNCS, vol. 10644, pp. 56–69. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-72044-9_5CrossRefGoogle Scholar
  23. 23.
    Schultz, P., Wisnesky, R.: Algebraic data integration. J. Funct. Program. 27, e24 (2017).  https://doi.org/10.1017/S0956796817000168MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Spivak, D.I., Wisnesky, R.: Relational foundations for functorial data migration. In: Proceedings of the 15th Symposium on Database Programming Languages, pp. 21–28. ACM (2015)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  1. 1.Otto von Guericke University MagdeburgMagdeburgGermany

Personalised recommendations