Advertisement

Promoting Inclusivity Through Time-Dynamic Discourse Analysis in Digitally-Mediated Collaborative Learning

  • Nia Dowell
  • Yiwen Lin
  • Andrew GodfreyEmail author
  • Christopher Brooks
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11625)

Abstract

The availability of naturally occurring educational discourse data within educational platforms presents a golden opportunity to make advances in understanding online learner ecologies and enabling new kinds of personalized interventions focused on increasing inclusivity and equity. However, to gain a more substantive view of how peer interaction is influenced by group composition and gender, learning and computational sciences require new automated methodological approaches that will provide a deeper understanding of learners’ communication patterns and interaction dynamics across digitally-meditated group learning platforms. In the current research, we explore learners’ discourse by employing Group Communication Analysis (GCA), a computational linguistics methodology for quantifying and characterizing the discourse sociocognitive processes between learners in online interactions. The aim of this study is to use GCA to investigate the influence of gender and gender pairing on students’ intra- and interpersonal discourse processes in online environments. Students were randomly assigned to one of three groups of varying gender composition: 75% women, 50% women, or 25% women. Our results suggest that the sociocognitive discourse patterns, as captured by the GCA, reveal deeper level patterns in the way individuals interact within online environments along gender and group composition lines. The scalability of the methodology opens the door for future research efforts directed towards understanding, and creating more equitable and inclusive online peer-interactions.

Keywords

Group Communication Analysis Collaborative learning Group processes Gender difference 

References

  1. 1.
    Bernard, R.M., et al.: A meta-analysis of three types of interaction treatments in distance education. Rev. Educ. Res. 79(3), 1243–1289 (2009)CrossRefGoogle Scholar
  2. 2.
    Borokhovski, E., Tamim, R., Bernard, R.M., Abrami, P.C., Sokolovskaya, A.: Are contextual and designed student-student interaction treatments equally effective in distance education? Distance Educ. 33(3), 311–329 (2012)CrossRefGoogle Scholar
  3. 3.
    Bransford, J.D., Brown, A.L., Cocking, R.R.: How People Learn: Brain, Mind, Experience, and School (Exp Sub edition). National Academies Press, Washington (2000)Google Scholar
  4. 4.
    Çakır, M.P., Zemel, A., Stahl, G.: The joint organization of interaction within a multimodal CSCL medium. Int. J. Comput.-Support. Collaborative Learn. 4(2), 115–149 (2009)CrossRefGoogle Scholar
  5. 5.
    Chopade, P., Stoeffler, K., M Khan, S., Rosen, Y., Swartz, S., von Davier, A.: Human-agent assessment: interaction and sub-skills scoring for collaborative problem solving. In: Penstein Rosé, C., Martínez-Maldonado, R., Hoppe, H.U., Luckin, R., Mavrikis, M., Porayska-Pomsta, K., McLaren, B., du Boulay, B. (eds.) AIED 2018. LNCS (LNAI), vol. 10948, pp. 52–57. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93846-2_10CrossRefGoogle Scholar
  6. 6.
    Dasgupta, N., Scircle, M.M., Hunsinger, M.: Female peers in small work groups enhance women’s motivation, verbal participation, and career aspirations in engineering. Proc. Natl. Acad. Sci. 112(16), 4988–4993 (2015)CrossRefGoogle Scholar
  7. 7.
    Dich, Y., Reilly, J., Schneider, B.: Using physiological synchrony as an indicator of collaboration quality, task performance and learning. In: Penstein Rosé, C., Martínez-Maldonado, R., Hoppe, H.U., Luckin, R., Mavrikis, M., Porayska-Pomsta, K., McLaren, B., du Boulay, B. (eds.) AIED 2018. LNCS (LNAI), vol. 10947, pp. 98–110. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93843-1_8CrossRefGoogle Scholar
  8. 8.
    Ding, N., Bosker, R.J., Harskamp, E.G.: Exploring gender and gender pairing in the knowledge elaboration processes of students using computer-supported collaborative learning. Comput. Educ. 56(2), 325–336 (2011)CrossRefGoogle Scholar
  9. 9.
    Dowell, N.M., Cade, W.L., Tausczik, Y., Pennebaker, J., Graesser, A.C.: What works: creating adaptive and intelligent systems for collaborative learning support. In: Trausan-Matu, S., Boyer, K.E., Crosby, M., Panourgia, K. (eds.) ITS 2014. LNCS, vol. 8474, pp. 124–133. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07221-0_15CrossRefGoogle Scholar
  10. 10.
    Dowell, N.M., Graesser, A.C.: Modeling learners’ cognitive, affective, and social processes through language and discourse. J. Learn. Anal. 1(3), 183–186 (2015)CrossRefGoogle Scholar
  11. 11.
    Dowell, N.M., Nixon, T., Graesser, A.C.: Group communication analysis: a computational linguistics approach for detecting sociocognitive roles in multi-party interactions. Behav. Res. Methods 51, 1007–1041 (2019)CrossRefGoogle Scholar
  12. 12.
    Dowell, N. M., Poquet, O., Brooks, C.: Applying group communication analysis to educational discourse interactions at scale. In: Proceedings of the 13th International Conference on the Learning Sciences. London, England (2018)Google Scholar
  13. 13.
    Eddy, S.L., Brownell, S.E., Thummaphan, P., Lan, M.-C., Wenderoth, M.P.: Caution, student experience may vary: social identities impact a student’s experience in peer discussions. CBE Life Sci. Educ. 14(4), ar45 (2015)CrossRefGoogle Scholar
  14. 14.
    Fitzpatrick, H., Hardman, M.: Mediated activity in the primary classroom: girls, boys and computers. Learn. Instr. 10(5), 431–446 (2000)CrossRefGoogle Scholar
  15. 15.
    Freeman, S., et al.: Active learning increases student performance in science, engineering, and mathematics. Proc. Natl. Acad. Sci. 111(23), 8410–8415 (2014)CrossRefGoogle Scholar
  16. 16.
    Goldstone, R.L., Lupyan, G.: Discovering psychological principles by mining naturally occurring data sets. Top. Cognitive Sci. 8(3), 548–568 (2016)CrossRefGoogle Scholar
  17. 17.
    Graesser, A.C., Dowell, N., Clewley, D.: Assessing collaborative problem solving through conversational agents. In: von Davier, A.A., Zhu, M., Kyllonen, P.C. (eds.) Innovative Assessment of Collaboration. MEMA, pp. 65–80. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-33261-1_5CrossRefGoogle Scholar
  18. 18.
    Hu, X., Cai, Z., Wiemer-Hastings, P., Graesser, A.C., McNamara, D.S.: Strengths, Limitations, and Extensions of LSA. The Handbook of Latent Semantic Analysis, pp. 401–426 (2007)Google Scholar
  19. 19.
    Landauer, T.K., McNamara, D.S., Dennis, S., Kintsch, W. (eds.): Handbook of Latent Semantic Analysis. Psychology Press (2013)Google Scholar
  20. 20.
    Inzlicht, M., Ben-Zeev, T.: A threatening intellectual environment: why females are susceptible to experiencing problem-solving deficits in the presence of males. Psychol. Sci. 11(5), 365–371 (2000)CrossRefGoogle Scholar
  21. 21.
    Johnson, D.R.: Campus racial climate perceptions and overall sense of belonging among racially diverse women in STEM majors. J. Coll. Student Dev. 53(2), 336–346 (2012)CrossRefGoogle Scholar
  22. 22.
    Johnson, D.W., Johnson, R.T.: Learning Together and Alone. Cooperative, Competitive, and Individualistic Learning, 4th edn. Allyn and Bacon, Needham Heights (1994)Google Scholar
  23. 23.
    Joiner, R., Messer, D., Littleton, K., Light, P.: Gender, computer experience and computer-based problem solving. Comput. Educ. 26(1), 179–187 (1996)CrossRefGoogle Scholar
  24. 24.
    Joksimović, S.A., Gašević, D.A., Loughin, T.M.C., Kovanović, V.B., Hatala, M.D.: Learning at distance: effects of interaction traces on academic achievement. Comput. Educ. 87, 204–217 (2015)CrossRefGoogle Scholar
  25. 25.
    Kessels, U., Hannover, B.: When being a girl matters less: accessibility of gender-related self-knowledge in single-sex and coeducational classes and its impact on students’ physics-related self-concept of ability. Br. J. Educ. Psychol. 78(Pt 2), 273–289 (2008)CrossRefGoogle Scholar
  26. 26.
    Kreijns, K., Kirschner, P.A., Jochems, W.: Identifying the pitfalls for social interaction in computer-supported collaborative learning environments: a review of the research. Comput. Hum. Behav. 19(3), 335–353 (2003)CrossRefGoogle Scholar
  27. 27.
  28. 28.
    Office of Science and Technology Policy: STEM depiction opportunities. The White House President Barack Obama (2016). https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/imageofstemdepictiondoc_02102016_clean.pdf
  29. 29.
    Perera, N., Wise, A.F.: Beyond Demographic Boxes: Relationships Between Students’ Cultural Orientations and Collaborative Communication. In: Smith, B.K., Borge, M., Mercier, E., Lim, K.Y. (eds.). Presented at the Making a Difference: Prioritizing Equity and Access in CSCL, 12th International Conference on Computer Supported Collaborative Learning (CSCL), Philadelphia, PA: International Society of the Learning Sciences (2017). http://www.diva-portal.org/smash/get/diva2:1172562/FULLTEXT01.pdf#page=187
  30. 30.
    Prinsen, F.R., Volman, M.L.L., Terwel, J.: Gender-related differences in computer-mediated communication and computer-supported collaborative learning. J. Comput. Assist. Learn. 23(5), 393–409 (2007)CrossRefGoogle Scholar
  31. 31.
    Reimann, P.: Time is precious: variable- and event-centred approaches to process analysis in CSCL research. Int. J. Comput.-Support. Collaborative Learn. 4(3), 239–257 (2009)CrossRefGoogle Scholar
  32. 32.
    Savicki, V., Kelley, M.: Computer mediated communication: gender and group composition. Cyberpsychol. Behav. Impact Internet Multimedia Virtual Reality Behav. Soc. 3(5), 817–826 (2000)Google Scholar
  33. 33.
    Stahl, G.: Group practices: a new way of viewing CSCL. Int. J. Comput.-Support. Collaborative Learn. 12(1), 113–126 (2017)CrossRefGoogle Scholar
  34. 34.
    Stahl, G., Koschmann, T., Suthers, D.D.: Computer-supported collaborative learning: an historical perspective. In: Sawyer, R.K. (ed.) Cambridge Handbook of the Learning Sciences, pp. 409–426. Cambridge University Press, Cambridge (2006)Google Scholar
  35. 35.
    Stahl, G., Rosé, C.P.: Theories of Team Cognition: Cross-Disciplinary Perspectives. In: Salas, E., Fiore, S.M., Letsky, M.P. (eds.), pp. 111–134. Routledge, New York (2013)Google Scholar
  36. 36.
    Stewart, A., D’Mello, S.K.: Connecting the dots towards collaborative AIED: linking group makeup to process to learning. In: Penstein Rosé, C., Martínez-Maldonado, R., Hoppe, H.U., Luckin, R., Mavrikis, M., Porayska-Pomsta, K., McLaren, B., du Boulay, B. (eds.) AIED 2018. LNCS (LNAI), vol. 10947, pp. 545–556. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93843-1_40CrossRefGoogle Scholar
  37. 37.
    Suthers, D.D., Dwyer, N., Medina, R., Vatrapu, R.: A framework for conceptualizing, representing, and analyzing distributed interaction. Int. J. Comput.-Support. Collaborative Learn. 5(1), 5–42 (2010)CrossRefGoogle Scholar
  38. 38.
    Theobald, E.J., Eddy, S.L., Grunspan, D.Z., Wiggins, B.L., Crowe, A.J.: Student perception of group dynamics predicts individual performance: comfort and equity matter. PLoS ONE 12(7), e0181336 (2017)CrossRefGoogle Scholar
  39. 39.
    Underwood, J., Underwood, G., Wood, D.: When does gender matter?: interactions during computer-based problem solving. Learn. Instr. 10(5), 447–462 (2000)CrossRefGoogle Scholar
  40. 40.
    Walton, G.M., Cohen, G.L., Cwir, D., Spencer, S.J.: Mere belonging: the power of social connections. J. Pers. Soc. Psychol. 102(3), 513–532 (2012)CrossRefGoogle Scholar
  41. 41.
    Wang, S.-L., Lin, S.S.J.: The effects of group composition of self-efficacy and collective efficacy on computer-supported collaborative learning. Comput. Hum. Behav. 23(5), 2256–2268 (2007)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Wunnasri, W., Pailai, J., Hayashi, Y., Hirashima, T.: Reciprocal kit-building of concept map to share each other’s understanding as preparation for collaboration. In: Penstein Rosé, C., Martínez-Maldonado, R., Hoppe, H.U., Luckin, R., Mavrikis, M., Porayska-Pomsta, K., McLaren, B., du Boulay, B. (eds.) AIED 2018. LNCS (LNAI), vol. 10947, pp. 599–612. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93843-1_44CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nia Dowell
    • 1
  • Yiwen Lin
    • 1
  • Andrew Godfrey
    • 1
    Email author
  • Christopher Brooks
    • 1
  1. 1.University of MichiganAnn ArborUSA

Personalised recommendations