Advertisement

Rogue Waves: Transition to Turbulence and Control Through Spatial Incoherence

  • Giuseppe Di DomenicoEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Rogue waves are anomalously large amplitude phenomena developing suddenly out of normal waves, living for a short time and appearing with a probability much larger than expected from ordinary wave-amplitude statistics. These extreme events have been originally observed in ocean surfaces [1] and, later on, were observed in other physical contexts, like acoustic [2] and optical dynamics [3].

References

  1. 1.
    Müller P, Garrett C, Osborne A (2005) Rogue waves. Oceanography 18(3):66. http://dx.doi.org/10.5670/oceanog.2005.30CrossRefGoogle Scholar
  2. 2.
    Ganshin AN, Efimov VB, Kolmakov GV, Mezhov-Deglin LP, McClintock PV (2008) Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium. Phys Rev Lett 101(6):065303Google Scholar
  3. 3.
    Solli DR, Ropers C, Koonath P, Jalali B (2007) Optical rogue waves. Nature 450(7172):1054–1057ADSCrossRefGoogle Scholar
  4. 4.
    Armaroli A, Conti C, Biancalana F (2015) Rogue solitons in optical fibers: a dynamical process in a complex energy landscape? Optica 2(5):497–504ADSCrossRefGoogle Scholar
  5. 5.
    Birkholz S, Nibbering ETJ, Brée C, Skupin S, Demircan A, Genty G, Steinmeyer G (2013) Spatiotemporal rogue events in optical multiple filamentation. Phys Rev Lett 111(24):243903Google Scholar
  6. 6.
    Dudley JM, Dias F, Erkintalo M, Genty G (2014) Instabilities, breathers and rogue waves in optics. Nat Photon 8(10):755–764ADSCrossRefGoogle Scholar
  7. 7.
    Lecaplain C, Grelu P, Soto-Crespo JM, Akhmediev N (2012) Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser. Phys Rev Lett 108(23):233901Google Scholar
  8. 8.
    Onorato M, Waseda T, Toffoli A, Cavaleri L, Gramstad O, Janssen PA, Kinoshita T, Monbaliu J, Mori N, Osborne AR et al (2009) Statistical properties of directional ocean waves: the role of the modulational instability in the formation of extreme events. Phys Rev Lett 102(11):114502Google Scholar
  9. 9.
    Shats M, Punzmann H, Xia H (2010) Capillary rogue waves. Phys Rev Lett 104(10):104503ADSCrossRefGoogle Scholar
  10. 10.
    Arecchi FT, Bortolozzo U, Montina A, Residori S (2011) Granularity and inhomogeneity are the joint generators of optical rogue waves. Phys Rev Lett 106(15):153901ADSCrossRefGoogle Scholar
  11. 11.
    Höhmann R, Kuhl U, Stöckmann H-J, Kaplan L, Heller EJ (2010) Freak waves in the linear regime: a microwave study. Phys Rev Lett 104(9):093901ADSCrossRefGoogle Scholar
  12. 12.
    Liu C, Van Der Wel RE, Rotenberg N, Kuipers L, Krauss TF, Di Falco A, Fratalocchi A (2015) Triggering extreme events at the nanoscale in photonic seas. Nat Phys 11(4):358–363ADSCrossRefGoogle Scholar
  13. 13.
    Conforti M, Mussot A, Fatome J, Picozzi A, Pitois S, Finot C, Haelterman M, Kibler B, Michel C, Millot G (2015) Turbulent dynamics of an incoherently pumped passive optical fiber cavity: quasisolitons, dispersive waves, and extreme events. Phys Rev A 91(2):023823ADSCrossRefGoogle Scholar
  14. 14.
    Hammani K, Kibler B, Finot C, Picozzi A (2010) Emergence of rogue waves from optical turbulence. Phys Lett A 374(34):3585–3589ADSzbMATHCrossRefGoogle Scholar
  15. 15.
    Randoux S, Walczak P, Onorato M, Suret P (2016) Nonlinear random optical waves: integrable turbulence, rogue waves and intermittency. Phys D 333:323–335MathSciNetCrossRefGoogle Scholar
  16. 16.
    Suret P, El Koussaifi R, Tikan A, Evain C, Randoux S, Szwaj C, Bielawski S (2016) Single-shot observation of optical rogue waves in integrable turbulence using time microscopy. Nat Commun 7Google Scholar
  17. 17.
    Walczak P, Randoux S, Suret P (2015) Optical rogue waves in integrable turbulence. Phys Rev Lett 114(14):143903ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Bonatto C, Feyereisen M, Barland S, Giudici M, Masoller C, Rios Leite JR, Tredicce JR (2011) Deterministic optical rogue waves. Phys Rev Lett 107(5):053901Google Scholar
  19. 19.
    Gibson CJ, Yao AM, Oppo GL (2016) Optical rogue waves in vortex turbulence. Phys Rev Lett 116(4):043903Google Scholar
  20. 20.
    Marsal N, Caullet V, Wolfersberger D, Sciamanna M (2014) Spatial rogue waves in a photorefractive pattern-forming system. Opt Lett 39(12):3690–3693ADSCrossRefGoogle Scholar
  21. 21.
    Montina A, Bortolozzo U, Residori S, Arecchi FT (2009) Non-gaussian statistics and extreme waves in a nonlinear optical cavity. Phys Rev Lett 103(17):173901ADSCrossRefGoogle Scholar
  22. 22.
    Pisarchik AN, Jaimes-Reátegui R, Sevilla-Escoboza R, Huerta-Cuellar G, Taki M (2011) Rogue waves in a multistable system. Phys Rev Lett 107(27):274101Google Scholar
  23. 23.
    Selmi F, Coulibaly S, Loghmari Z, Sagnes I, Beaudoin G, Clerc MG, Barbay S (2016) Spatiotemporal chaos induces extreme events in an extended microcavity laser. Phys Rev Lett 116(1):013901Google Scholar
  24. 24.
    Onorato M, Residori S, Bortolozzo U, Montina A, Arecchi FT (2013) Rogue waves and their generating mechanisms in different physical contexts. Phys Rep 528(2):47–89ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Pierangeli D, Di Mei F, Conti C, Agranat AJ, DelRe E (2015) Spatial rogue waves in photorefractive ferroelectrics. Phys Rev Lett 115(9):093901Google Scholar
  26. 26.
    Landau LD, Lifshitz EM (2013) Fluid mechanics: Landau and Lifshitz: course of theoretical physics, vol 6. Elsevier, AmsterdamGoogle Scholar
  27. 27.
    Avila K, Moxey D, de Lozar A, Avila M, Barkley D, Hof B (2011) The onset of turbulence in pipe flow. Science 333(6039):192–196ADSzbMATHCrossRefGoogle Scholar
  28. 28.
    Grossmann S (2000) The onset of shear flow turbulence. Rev Mod Phys 72(2):603ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Masaki S, Keiichi T (2016) A universal transition to turbulence in channel flow. Nat PhysGoogle Scholar
  30. 30.
    Boyer F, Falcon E (2008) Wave turbulence on the surface of a ferrofluid in a magnetic field. Phys Rev Lett 101(24):244502ADSCrossRefGoogle Scholar
  31. 31.
    Picozzi A, Garnier J, Hansson T, Suret P, Randoux S, Millot G, Christodoulides DN (2014) Optical wave turbulence: Towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics. Phys Rep 542(1):1–132ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Nazarenko S (2011) Wave turbulence, vol 825. Springer Science & Business Media, BerlinGoogle Scholar
  33. 33.
    Mitschke F, Steinmeyer G, Schwache A (1996) Generation of one-dimensional optical turbulence. Phys D 96(1):251–258CrossRefGoogle Scholar
  34. 34.
    Mork J, Tromborg B, Mark J (1992) Chaos in semiconductor lasers with optical feedback: theory and experiment. IEEE J Quantum Electron 28(1):93–108ADSCrossRefGoogle Scholar
  35. 35.
    Aragoneses A, Carpi L, Tarasov N, Churkin DV, Torrent MC, Masoller C, Turitsyn SK (2016) Unveiling temporal correlations characteristic of a phase transition in the output intensity of a fiber laser. Phys Rev Lett 116(3):033902Google Scholar
  36. 36.
    Turitsyn SK, Babin SA, Turitsyna EG, Falkovich GE, Podivilov EV, Churkin DV (2013) Optical wave turbulence. Adv Wave Turbul 83:113–164MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Turitsyna EG, Smirnov SV, Sugavanam S, Tarasov N, Shu X, Babin SA, Podivilov EV, Churkin DV, Falkovich G, Turitsyn SK (2013) The laminar-turbulent transition in a fibre laser. Nat Photon 7(10):783–786ADSCrossRefGoogle Scholar
  38. 38.
    Wabnitz S (2014) Optical turbulence in fiber lasers. Opt Lett 39(6):1362–1365ADSCrossRefGoogle Scholar
  39. 39.
    Bortolozzo U, Laurie J, Nazarenko S, Residori S (2009) Optical wave turbulence and the condensation of light. JOSA B 26(12):2280–2284ADSCrossRefGoogle Scholar
  40. 40.
    Laurie J, Bortolozzo U, Nazarenko S, Residori S (2012) One-dimensional optical wave turbulence: experiment and theory. Phys Rep 514(4):121–175ADSCrossRefGoogle Scholar
  41. 41.
    Shih M-F, Jeng C-C, Sheu F-W, Lin C-Y (2002) Spatiotemporal optical modulation instability of coherent light in noninstantaneous nonlinear media. Phys Rev Lett 88(13):133902ADSCrossRefGoogle Scholar
  42. 42.
    Sun C, Jia S, Barsi C, Rica S, Picozzi A, Fleischer JW (2012) Observation of the kinetic condensation of classical waves. Nat Phys 8(6):470–474ADSCrossRefGoogle Scholar
  43. 43.
    Onorato M, Osborne AR, Serio M (2006) Modulational instability in crossing sea states: A possible mechanism for the formation of freak waves. Phys Rev Lett 96(1):014503Google Scholar
  44. 44.
    Pierangeli D, Parravicini J, Di Mei F, Parravicini GB, Agranat AJ, DelRe E (2014) Photorefractive light needles in glassy nanodisordered kntn. Opt Lett 39(6):1657–1660ADSCrossRefGoogle Scholar
  45. 45.
    Pierangeli D, Ferraro M, Di Mei F, Di Domenico G, De Oliveira CEM, Agranat AJ, DelRe E (2016) Super-crystals in composite ferroelectrics. Nat Commun 7:10674Google Scholar
  46. 46.
    DelRe E, Spinozzi E, Agranat AJ, Conti C (2011) Scale-free optics and diffractionless waves in nanodisordered ferroelectrics. Nat Photon 5(1):39–42ADSCrossRefGoogle Scholar
  47. 47.
    DelRe E, Di Mei F, Parravicini J, Parravicini G, Agranat AJ, Conti C (2015) Subwavelength anti-diffracting beams propagating over more than 1,000 rayleigh lengths. Nat PhotonGoogle Scholar
  48. 48.
    Di Mei F, Caramazza P, Pierangeli D, Di Domenico G, Ilan H, Agranat AJ, Di Porto P, DelRe E (2016) Intrinsic negative mass from nonlinearity. Phys Rev Lett 116(15):153902Google Scholar
  49. 49.
    DelRe E, Crosignani B, Di Porto P (2009) Photorefractive solitons and their underlying nonlocal physics. Prog Optics 53:153–200ADSCrossRefGoogle Scholar
  50. 50.
    Qieni L, Han J, Dai H, Ge B, Zhao S (2015) Visualization of spatial-temporal evolution of light-induced refractive index in mn: Fe: Ktn co-doped crystal based on digital holographic interferometry. IEEE Photon J 7(4):1–11Google Scholar
  51. 51.
    Agafontsev DS, Zakharov VE (2015) Integrable turbulence and formation of rogue waves. Nonlinearity 28(8):2791ADSMathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Leonetti M, Karbasi S, Mafi A, Conti C (2014) Light focusing in the anderson regime. arXiv:1407.8062
  53. 53.
    Segev M, Silberberg Y, Christodoulides DN (2013) Anderson localization of light. Nat Photon 7(3):197–204ADSCrossRefGoogle Scholar
  54. 54.
    Solli DR, Herink G, Jalali B, Ropers C (2012) Fluctuations and correlations in modulation instability. Nat Photon 6(7):463–468ADSCrossRefGoogle Scholar
  55. 55.
    Goodman JW (1975) Statistical properties of laser speckle patterns. In: Laser speckle and related phenomena. Springer, Berlin, pp 9–75Google Scholar
  56. 56.
    Pierangeli D, Di Mei F, Parravicini J, Parravicini GB, Agranat AJ, Conti C, DelRe E (2014) Observation of an intrinsic nonlinearity in the electro-optic response of freezing relaxors ferroelectrics. Opt Mater Express 4(8):1487–1493Google Scholar
  57. 57.
    Pierangeli D, Di Mei F, Di Domenico G, Agranat AJ, Conti C, DelRe E (2016a) Turbulent transitions in optical wave propagation. Phys Rev Lett 117(18):183902ADSCrossRefGoogle Scholar
  58. 58.
    Chen Z, Segev M, Christodoulides DN (2003) Experiments on partially coherent photorefractive solitons. J Opt A: Pure Appl Opt 5(6):S389ADSCrossRefGoogle Scholar
  59. 59.
    Mitchell M, Chen Z, Shih M, Segev M (1996) Self-trapping of partially spatially incoherent light. Phys Rev Lett 77(3):490ADSCrossRefGoogle Scholar
  60. 60.
    Bromberg Y, Lahini Y, Small E, Silberberg Y (2010) Hanbury brown and twiss interferometry with interacting photons. Nat Photon 4(10):721–726ADSCrossRefGoogle Scholar
  61. 61.
    Derevyanko S, Small E (2012) Nonlinear propagation of an optical speckle field. Phys Rev A 85(5):053816ADSCrossRefGoogle Scholar
  62. 62.
    Fressengeas N, Wolfersberger D, Maufoy J, Kugel G (1998) Build up mechanisms of (1+ 1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons. Opt Commun 145(1):393–400ADSCrossRefGoogle Scholar
  63. 63.
    DelRe E, Palange E (2006) Optical nonlinearity and existence conditions for quasi-steady-state photorefractive solitons. JOSA B 23(11):2323–2327ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Electrical EngineeringTel Aviv UniversityTel AvivIsrael

Personalised recommendations