Advertisement

Fog-Enabled Wireless Communication Networks

  • Yang Yang
  • Xiliang Luo
  • Xiaoli Chu
  • Ming-Tuo Zhou
Chapter

Abstract

Wireless communication networks are experiencing an unprecedented traffic growth and an increasing variety of services, each with potentially different traffic patterns and quality of service (QoS) and/or quality of experience (QoE) requirements. To cope with the continuing traffic growth and service expanding, future wireless networks will have to be heterogeneous and densely deployed, featuring the coexistence of different radio access technologies (RATs), and will be significantly more complex to deploy and operate than the existing wireless networks. This has made it evident for the necessity of wireless network self-optimization, where wireless networks are automated to minimize human intervention and to proactively optimize network deployment, operation, and multi-RAT resource allocation to meet increasing service demand from people and the Internet of Things (IoT). Recently, fog computing has been considered as a promising paradigm shift to enable autonomous management and operation of wireless networks. Since research on fog-enabled wireless network self-optimization has just started, there are many aspects that are not well understood and many open challenges that need to be addressed. In this chapter, we explore how fog computing would enable self-optimization for wireless networks, which will act as the infrastructure to provision ubiquitous wireless connectivity for the IoT. More specifically, we will first discuss different self-organizing network (SON) architectures and how they would benefit from the fog computing paradigm, and then look into how fog computing would provide new opportunities and enable new features for several important SON functionalities, including mobility load balancing, self-optimization of mobility robustness and handover, self-coordination of inter-cell interference, self-optimization of coverage and capacity, and self-optimized allocation of computing, storage, and networking resources in wireless networks.

Keywords

Wireless communication networks Fog computing Self-organizing network Self-optimization Self-coordination Mobility Load balancing Inter-cell interference Resource allocation 

References

  1. 1.
    Moysen J, Giupponi L (2017) From 4G to 5G: self-organized network management meets machine learning, arXiv:1707.09300v1 [cs.NI]Google Scholar
  2. 2.
    3GPP (2016) Technical specification group services and system aspects; telecommunication management; self-organizing networks (SON); concepts and requirements (Release 13). Technical Report TS 32.500, v13.0.0Google Scholar
  3. 3.
    Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role in the Internet of things. In: Proceedings of the first edition of the MCC workshop on mobile cloud computing, Helsinki, August 2012, pp 13–16Google Scholar
  4. 4.
    Tomovic S, Yoshigoe K, Maljevic I, Radusinovic I (2017) Software-defined fog network architecture for IoT. Wirel Pers Commun 92(1):181–196CrossRefGoogle Scholar
  5. 5.
    Bonomi F, Milito R, Natarajan P, Zhu J (2014) Fog computing: a platform for Internet of things and analytics. In: Big data and internet of things: a roadmap for smart environments, vol 546. Springer International Publishing, Cham, pp 169–186CrossRefGoogle Scholar
  6. 6.
    Chih-Lin I, Yuan Y, Huang J, Ma S, Cui C, Duan R (2015) Rethink fronthaul for soft RAN. IEEE Commun Mag 53(9):82–88CrossRefGoogle Scholar
  7. 7.
    Liang K, Zhao L, Chu X, Chen H (2017) An integrated architecture for software defined and virtualized radio access networks with fog computing. IEEE Netw 31(1):80–87CrossRefGoogle Scholar
  8. 8.
    Sun X, Ansari N (2016) EdgeIoT: mobile edge computing for the Internet of things. IEEE Commun Mag 54(12):22–29CrossRefGoogle Scholar
  9. 9.
    Yazici V, Kozat UC, Sunay MO (2014) A new control plane for 5G network architecture with a case study on unified handoff, mobility, and routing management. IEEE Commun Mag 52(11):76–85CrossRefGoogle Scholar
  10. 10.
    Zhang H, Long K, Chu X, Aghvami H, Leung V (2017) Network slicing based 5G and future mobile networks: mobility, resource management, and challenges. IEEE Commun Mag 55(8):138–145CrossRefGoogle Scholar
  11. 11.
    Zhang H, Qiu Y, Chu X, Long K, Leung V (2017) Fog radio access networks: mobility management, interference mitigation and resource optimization. IEEE Wirel Commun 24(6):120–127CrossRefGoogle Scholar
  12. 12.
    McKeown N, et al (2008) OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Comput Commun Rev 38(2):69–74CrossRefGoogle Scholar
  13. 13.
    3GPP (2013) Technical specification group radio access network; evolved universal terrestrial radio access network (EUTRAN); X2 application protocol (X2AP) (Release 11). Technical Report TS 36.423, v.10.7.0Google Scholar
  14. 14.
    3GPP (2014) Study on enhancements of OAM aspects of distributed self-organizing networks (SON) functions (Release 12). Technical Report TR 32.860Google Scholar
  15. 15.
    Mwanje S, Mitschele-Thiel A (2013) Minimizing handover performance degradation due to LTE self organized mobility load balancing. In: IEEE VTC Spring, Dresden, 2–5 June 2013, pp 1–5Google Scholar
  16. 16.
    Lopez-Perez D, Guvenc I, Chu X (2012) Mobility management challenges in 3GPP heterogeneous networks. IEEE Commun Mag 50(12):70–78CrossRefGoogle Scholar
  17. 17.
    Lopez-Perez D, Guvenc I, Chu X (2012) Theoretical analysis of handover failure and ping-pong rates for heterogeneous networks. In: IEEE ICC’12 WS, Ottawa, 10–15 June 2012, pp 6774–6779Google Scholar
  18. 18.
    Chu X, Lopez-Perez D, Yang Y, Gunnarsson F (eds.) (2013) Heterogeneous cellular networks – theory, simulation and deployment. Cambridge University Press, Cambridge, pp. 1–494. ISBN-13: 9781107023093Google Scholar
  19. 19.
    Mao Y, Zhang J, Letaief KB (2016) Dynamic computation offloading for mobile-edge computing with energy harvesting devices. IEEE J Sel Areas Commun 34(12):3590–3605CrossRefGoogle Scholar
  20. 20.
    Cho E, Myers S, Leskovec J (2011) Friendship and mobility: user movement in location-based social networks. In: Proceedings of the 17th ACM SIGKDD, San Diego, CA, August 2011, pp 1082–1090Google Scholar
  21. 21.
    Mwanje S, Mitschele-Thiel A (2014) Distributed cooperative Q-learning for mobility-sensitive handover optimization in LTE SON. In: IEEE ISCCGoogle Scholar
  22. 22.
    Chu X, Wu Y, Lopez-Perez D, Tao X (2011) On providing downlink services in collocated spectrum-sharing macro and femto networks. IEEE Trans Wirel Commun 10(12):4306–4315CrossRefGoogle Scholar
  23. 23.
    Zhang H, Jiang C, Beaulieu NC, Chu X, Wen X, Tao M (2014) Resource allocation in spectrum-sharing OFDMA femtocells with heterogeneous services. IEEE Trans Commun 62(7):2366–2377CrossRefGoogle Scholar
  24. 24.
    Ai Y, Peng M, Zhang K (2017) Edge cloud computing technologies for Internet of things: a primer. Digital Commun Netw. https://doi.org/10.1016/j.dcan.2017.07.001
  25. 25.
    Jia S, Ai Y, Zhao Z, Peng M, Hu C (2016) Hierarchical content caching in fog radio access networks: ergodic rate and transmit latency. China Commun 13:1–14CrossRefGoogle Scholar
  26. 26.
    Sun Y, Dang T, Zhou J (2016) User scheduling and cluster formation in fog computing based radio access networks. In: IEEE ICUWB, Nanjing, 16–19 October 2016Google Scholar
  27. 27.
    Zhang H, Jiang C, Beaulieu N, Chu X, Wang X, Quek TQS (2015) Resource allocation for cognitive small cell networks: a cooperative bargaining game theoretic approach. IEEE Trans Wirel Commun 14(6):3481–3493CrossRefGoogle Scholar
  28. 28.
    Liang C, Yu FR, Yao H, Han Z (2016) Virtual resource allocation in information-centric wireless networks with virtualization. IEEE Trans Veh Technol 65(12):9902–9914CrossRefGoogle Scholar
  29. 29.
    Zhang H, Chu X, Zheng W, Wen X (2012) Interference-aware resource allocation in co-channel deployment of OFDMA femtocells. In: IEEE ICC’12, Ottawa, 10–15 June 2012, pp 4663–4667Google Scholar
  30. 30.
    Lee G, Saad W, Bennis M (2017) An online optimization framework for distributed fog network formation with minimal latency, arXiv:1710.05239v1 [cs.IT]Google Scholar
  31. 31.
    Ge X, Huang M, Chen J, Xu H, Xu J, Zhang W, Yang Y (2016) Wireless single cellular coverage boundary models. IEEE Access 4:3569–3577CrossRefGoogle Scholar
  32. 32.
    Ge X, Qiu Y, Chen J, Huang M, Xu H, Xu J, Zhang W, Yang Y, Wang C, Thompson J (2016) Wireless fractal cellular networks. IEEE Wirel Commun 23(5):110–119CrossRefGoogle Scholar
  33. 33.
    Ge X, Zi R, Xiong X, Li Q, Wang L (2017) Millimeter wave communications with OAM-SM scheme for future mobile networks. IEEE J Sel Areas Commun 35(9):2163–2177CrossRefGoogle Scholar
  34. 34.
    Yang Y, Li Y, Li K, Zhao S, Chen R, Wang J, Ci S (2018) DECCO: Deep-learning enabled coverage and capacity optimization for massive MIMO systems. IEEE Access 6:23361–23371CrossRefGoogle Scholar
  35. 35.
    Sutton R, McAllester D, Singh S, Mansour Y (1999) Policy gradient methods for reinforcement learning with function approximation. In: Proceedings of the 12th international conference on neural information processing systems (NIPS), pp 1057–1063Google Scholar
  36. 36.
    Piamrat K, et al (2011) Radio resource management in emerging heterogeneous wireless networks. Comput Commun 34(9):1066–1076CrossRefGoogle Scholar
  37. 37.
    Silva ID, et al (2015) Tight integration of new 5G air interface and LTE to fulfil 5G requirements. In: IEEE VTC-SpringGoogle Scholar
  38. 38.
    Lyu X, Tian H, Sengul C, Zhang P (2017) Multiuser joint task offloading and resource optimization in proximate clouds. IEEE Trans Veh Technol 66(4):3435–3447CrossRefGoogle Scholar
  39. 39.
    Barbarossa S, Sardellitti S, Di Lorenzo P (2014) Communicating while computing: distributed mobile cloud computing over 5G heterogeneous networks. IEEE Signal Process Mag 31:45–55CrossRefGoogle Scholar
  40. 40.
    Mach P, Becvar Z (2017) Mobile edge computing: a survey on architecture and computation offloading. IEEE Commun Surv Tutorials 19(3):1628–1656CrossRefGoogle Scholar
  41. 41.
    Sardellitti S, Scutari G, Barbarossa S (2015) Joint optimization of radio and computational resources for multicell mobile-edge computing. IEEE Trans Signal Inf Process Netw 1(2): 89–103CrossRefMathSciNetGoogle Scholar
  42. 42.
    Munoz O, Pascual-Iserte A, Vidal J (2015) Optimization of radio and computational resources for energy efficiency in latency-constrained application offloading. IEEE Trans Veh Technol 64(10):4738–4755CrossRefGoogle Scholar
  43. 43.
    Zhang W, Wen Y, Wu D (2015) Collaborative task execution in mobile cloud computing under a stochastic wireless channel. IEEE Trans Wirel Commun 14(1):81–93CrossRefGoogle Scholar
  44. 44.
    Barbera MV, Kosta S, Mei A, Stefa J (2013) To offload or not to offload? The bandwidth and energy costs of mobile cloud computing. In: IEEE INFOCOM, pp 1285–1293Google Scholar
  45. 45.
    Shi W, Cao J, Zhang Q, Li Y, Xu L (2016) Edge computing: vision and challenges. IEEE Internet Things J 3(5):637–646CrossRefGoogle Scholar
  46. 46.
    Liu K, Zhang X, Huang Z (2016) A combinatorial optimization for energy-efficient mobile cloud offloading over cellular networks. In: IEEE GLOBECOM’16, pp 1–6Google Scholar
  47. 47.
    Kao Y-H, Krishnamachari B, Ra M-R, Bai F (2017) Hermes: latency optimal task assignment for resource-constrained mobile computing. IEEE Trans Mob Comput 16(11):3056–3069CrossRefGoogle Scholar
  48. 48.
    Dinh TQ, Tang J, La QD, Quek TQS (2017) Offloading in mobile edge computing: task allocation and computational frequency scaling. IEEE Trans Commun 65(8):3571–3584Google Scholar
  49. 49.
    Wang Y, Sheng M, Wang X, Wang L, Li J (2016) Mobile-edge computing: partial computation offloading using dynamic voltage scaling. IEEE Trans Commun 64(10):4268–4282Google Scholar
  50. 50.
    Chen X (2015) Decentralized computation offloading game for mobile cloud computing. IEEE Trans Parallel Distrib Syst 26(4):974–983CrossRefGoogle Scholar
  51. 51.
    Cardellini V, et al (2016) A game-theoretic approach to computation offloading in mobile cloud computing. Math Program 157(2):421–449CrossRefMathSciNetzbMATHGoogle Scholar
  52. 52.
    Du J, Zhao L, Feng J, Chu X (2018) Computation offloading and resource allocation in mixed fog/cloud computing systems with min-max fairness guarantee. IEEE Trans Commun 66(4):1594–1608CrossRefGoogle Scholar
  53. 53.
    Du J, Zhao L, Chu X, Yu F, Feng J, Chih-Lin I (2019) Enabling low-latency applications in LTE-A based mixed fog/cloud computing systems. IEEE Trans Veh Technol 68(2):1757–1771CrossRefGoogle Scholar
  54. 54.
    Wei Y, Yu F, Song M, Han Z (2019) Joint optimization of caching, computing, and radio resources for fog-enabled IoT using natural actor-critic deep reinforcement learning. IEEE Internet Things J 6(2):2061–2073CrossRefGoogle Scholar
  55. 55.
    Wang C, Liang C, Yu FR, Chen Q, Tang L (2017) Computation offloading and resource allocation in wireless cellular networks with mobile edge computing. IEEE Trans Wirel Commun 16(8):4924–4938CrossRefGoogle Scholar
  56. 56.
    Mao Y, Zhang J, Song SH, Letaief KB (2016) Power-delay tradeoff in multi-user mobile-edge computing systems. In: IEEE GLOBECOM’16, Washington, DCGoogle Scholar
  57. 57.
    Zhang X, Yang F (2017) Joint bandwidth and power allocation for energy efficiency optimization over heterogeneous LTE/WiFi multi-homing networks. In: IEEE WCNC’17, San Francisco, CAGoogle Scholar
  58. 58.
    Kwak J, Kim Y, Lee J, Chong S (2015) DREAM: dynamic resource and task allocation for energy minimization in mobile cloud systems. IEEE J Sel Areas Commun 33(12):2510–2523CrossRefGoogle Scholar
  59. 59.
    Yang L, Cao J, Tang S, Li T, Chan A (2012) A framework for partitioning and execution of data stream applications in mobile cloud computing. In: IEEE International Conference on Cloud Computing, pp 794–802Google Scholar
  60. 60.
    Sheng M, Zhai D, Wang X, Li Y, Shi Y, Li J (2017) Intelligent energy and traffic coordination for green cellular networks with hybrid energy supply. IEEE Trans Veh Technol 66(2):1631–1646CrossRefGoogle Scholar
  61. 61.
    Grant M, Boyd S, Ye Y (2009) CVX: Matlab software for disciplined convex programming. Available [Online]: http://cvxr.com/cvx/
  62. 62.
    IEEE P802.11 Wireless LANs (2004) TGn channel models. IEEE 802.11-03/940r4, Technical ReportGoogle Scholar
  63. 63.
    Zhai D, Sheng M, Wang X, Li Y, Song J, Li J (2016) Rate and energy maximization in SCMA networks with wireless information and power transfer. IEEE Commun Lett 20(2):360–363CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Yang Yang
    • 1
  • Xiliang Luo
    • 1
  • Xiaoli Chu
    • 2
  • Ming-Tuo Zhou
    • 3
  1. 1.Shanghai Institute of Fog Computing Technology (SHIFT), School of Information Science and TechnologyShanghaiTech UniversityShanghaiChina
  2. 2.Department of Electronic & Electrical EngineeringUniversity of SheffieldSheffieldUK
  3. 3.Chinese Academy of Sciences, Shanghai Institute of Microsystem and Information TechnologyShanghaiChina

Personalised recommendations