Advertisement

Publishing Uncertainty on the Semantic Web: Blurring the LOD Bubbles

  • Ahmed El Amine Djebri
  • Andrea G. B. TettamanziEmail author
  • Fabien GandonEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11530)

Abstract

The open nature of the Web exposes it to the many imperfections of our world. As a result, before we can use knowledge obtained from the Web, we need to represent that fuzzy, vague, ambiguous and uncertain information. Current standards of the Semantic Web and Linked Data do not support such a representation in a formal way and independently of any theory. We present a new vocabulary and a framework to capture and handle uncertainty in the Semantic Web. First, we define a vocabulary for uncertainty and explain how it allows the publishing of uncertainty information relying on different theories. In addition, we introduce an extension to represent and exchange calculations involved in the evaluation of uncertainty. Then we show how this model and its operational definitions support querying a data source containing different levels of uncertainty metadata. Finally, we discuss the perspectives with a view on supporting reasoning over uncertain linked data.

Keywords

Uncertainty Linked data Semantic web 

References

  1. 1.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43 (2001)CrossRefGoogle Scholar
  2. 2.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data: the story so far. In: Semantic Services, Interoperability and Web Applications: Emerging Concepts, pp. 205–227. IGI Global (2011)Google Scholar
  3. 3.
    Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1247–1250. ACM (2008)Google Scholar
  4. 4.
    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 6, 734–749 (2005)CrossRefGoogle Scholar
  5. 5.
    Mohirta, M., Cernian, A., Carstoiu, D., Vladu, A.M., Olteanu, A., Sgarciu, V.: A semantic Web based scientific news aggregator. In: 2011 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI), pp. 285–289. IEEE (2011)Google Scholar
  6. 6.
    Gandon, F., Governatori, G., Villata, S.: Normative requirements as linked data. In: The 30th International Conference on Legal Knowledge and Information Systems (JURIX 2017) (2017)Google Scholar
  7. 7.
    Benslimane, D., Sheng, Q.Z., Barhamgi, M., Prade, H.: The uncertain web: concepts, challenges, and current solutions. ACM Trans. Internet Technol. (TOIT) 16(1), 1 (2016)CrossRefGoogle Scholar
  8. 8.
    Dubois, D., Prade, H.: Formal representations of uncertainty. In: Decision-making Process, chap. 3, pp. 85–156. Wiley (2010).  https://doi.org/10.1002/9780470611876.ch3
  9. 9.
    Klir, G.J., Smith, R.M.: On measuring uncertainty and uncertainty-based information: recent developments. Ann. Math. Artif. Intell. 32(1–4), 5–33 (2001)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Laskey, K.J., Laskey, K.B.: Uncertainty reasoning for the world wide web: report on the URW3-XG incubator group. In: URSW. Citeseer (2008)Google Scholar
  11. 11.
    Reynolds, D.: Uncertainty reasoning for linked data. In: Proceedings of the Fifth International Conference on Uncertainty Reasoning for the Semantic Web, vol. 527, pp. 85–88. CEUR-WS.org (2009)Google Scholar
  12. 12.
    Hayes, P.: RDF semantics, W3C recommendation (2004). http://www.w3.org/TR/rdf-mt/
  13. 13.
    McGlothlin, J.P., Khan, L.R.: Materializing and persisting inferred and uncertain knowledge in RDF datasets. In: AAAI, vol. 10, pp. 11–15 (2010)Google Scholar
  14. 14.
    d’Amato, C., Bryl, V., Serafini, L.: Semantic knowledge discovery and data-driven logical reasoning from heterogeneous data sources. In: Bobillo, F., et al. (eds.) URSW 2012, URSW 2011, URSW 2013. LNCS, vol. 8816, pp. 136–183. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-13413-0_9CrossRefGoogle Scholar
  15. 15.
    Ding, Z., Peng, Y., Pan, R.: BayesOWL: uncertainty modeling in semantic web ontologies. In: Ma, Z. (ed.) Soft Computing in Ontologies and Semantic Web, pp. 3–29. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Stoilos, G., Stamou, G.B., Tzouvaras, V., Pan, J.Z., Horrocks, I.: Fuzzy OWL: uncertainty and the semantic web. In: OWLED (2005)Google Scholar
  17. 17.
    Safia, B.B., Aicha, M.: Poss-OWL 2: possibilistic extension of OWL 2 for an uncertain geographic ontology. Procedia Comput. Sci. 35, 407–416 (2014)CrossRefGoogle Scholar
  18. 18.
    Dividino, R., Sizov, S., Staab, S., Schueler, B.: Querying for provenance, trust, uncertainty and other meta knowledge in RDF. Web Seman. Sci. Serv. Agents World Wide Web 7(3), 204–219 (2009)CrossRefGoogle Scholar
  19. 19.
    Bouquet, P., Serafini, L., Stoermer, H.: Introducing context into RDF knowledge bases. SWAP. 5, 14–16 (2005)Google Scholar
  20. 20.
    Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs, provenance and trust. In: Proceedings of the 14th International Conference on World Wide Web, pp. 613–622. ACM (2005)Google Scholar
  21. 21.
    Consortium, W.W.W., et al.: RDF 1.1 concepts and abstract syntax (2014)Google Scholar
  22. 22.
    Brickley, D., Guha, R.V., McBride, B.: RDF Schema 1.1. W3C recommendation 25, 2004–2014 (2014)Google Scholar
  23. 23.
    Corby, O., Faron-Zucker, C.: RDF/SPARQL design pattern for contextual metadata. In: Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence. WI 2007, pp. 470–473. IEEE Computer Society, Washington, DC (2007)Google Scholar
  24. 24.
    Corby, O., Faron-Zucker, C., Gandon, F.: LDScript: a linked data script language. In: dAmato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 208–224. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68288-4_13CrossRefGoogle Scholar
  25. 25.
    Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: DBpedia-a crystallization point for the web of data. Web Seman. Sci. Serv. Agents World Wide Web 7(3), 154–165 (2009)CrossRefGoogle Scholar
  26. 26.
    Cabrio, E., Villata, S., Gandon, F.: Classifying inconsistencies in DBpedia language specific chapters. In: LREC, pp. 1443–1450 (2014)Google Scholar
  27. 27.
    Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic, vol. 4. Prentice Hall, Upper Saddle River (1995)zbMATHGoogle Scholar
  28. 28.
    da Costa Pereira, C., Dubois, D., Prade, H., Tettamanzi, A.G.B.: Handling topical metadata regarding the validity and completeness of multiple-source information: a possibilistic approach. In: Moral, S., Pivert, O., Sánchez, D., Marín, N. (eds.) SUM 2017. LNCS (LNAI), vol. 10564, pp. 363–376. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-67582-4_26CrossRefGoogle Scholar
  29. 29.
    Corby, O., Zucker, C.F.: Corese: a corporate semantic web engine. In: International Workshop on Real World RDF and Semantic Web Applications, International World Wide Web Conference (2002)Google Scholar
  30. 30.
    Cabrio, E., Villata, S., Palmero Aprosio, A.: A RADAR for information reconciliation in question answering systems over linked data 1. Seman. Web 8(4), 601–617 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Université Côte d’Azur, Inria, CNRS, I3SSophia AntipolisFrance

Personalised recommendations