Advertisement

Exploring and Conceptualising Attestation

  • Ian Oliver
  • John HowseEmail author
  • Gem Stapleton
  • Zohreh Shams
  • Mateja Jamnik
Conference paper
  • 275 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11530)

Abstract

When formalising the rules of trust in the remote attestation of TPM-based computer systems it is paramount that the rules are precisely understood, supporting unambiguous communication of information about system requirements between engineers. We present a diagrammatic approach to modelling rules of trust using an extended version of concept diagrams. Within the context of our proof-of-concept Network Function Virtualisation and Attestation environment, these rules allow different level of trust to be explored and, importantly, allow us to identify when a computer system should not be trusted. To ensure that the modelling approach can be applied to general systems, we include generic patterns for extending our domain model and rules of trust. Consequently, through the use of a formal, yet accessible, diagrammatic notation, domain experts can define rules of trust for their systems.

Keywords

Attestation Trust Networks Specification Diagrams 

References

  1. 1.
    Abrial, J.: The B-Book: Assigning Programs to Meanings. CUP, Cambridge (1996)CrossRefGoogle Scholar
  2. 2.
    Alharbi, E., Howse, J., Stapleton, G., Hamie, A., Touloumis, A.: Visual logics help people: an evaluation of diagrammatic, textual and symbolic notations. In: Visual Languages and Human-Centric Computing, pp. 255–259. IEEE (2017)Google Scholar
  3. 3.
    Baader, F., Horrocks, I., Sattler, U.: Description logics as ontology languages for the semantic web. In: Hutter, D., Stephan, W. (eds.) Mechanizing Mathematical Reasoning. LNCS (LNAI), vol. 2605, pp. 228–248. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-32254-2_14CrossRefGoogle Scholar
  4. 4.
    Chapman, P., Stapleton, G., Howse, J., Oliver, I.: Deriving sound inference rules for concept diagrams. In: IEEE Symposium on Visual Languages and Human-Centric Computing, pp. 87–94. IEEE (2011)Google Scholar
  5. 5.
    Dai, W., et al.: TEE: a virtual DRTM based execution environment for secure cloud-end computing. Future Gener. Comput. Syst. 49, 47–57 (2015)CrossRefGoogle Scholar
  6. 6.
    Gurr, C.: Effective diagrammatic communication: syntactic, semantic and pragmatic issues. J. Vis. Lang. Comput. 10(4), 317–342 (1999)CrossRefGoogle Scholar
  7. 7.
    Hou, T., Chapman, P., Blake, A.: Antipattern comprehension: an empirical evaluation. In: Formal Ontology in Information Systems. Frontiers in Artificial Intelligence, vol. 283, pp. 211–224. IOS Press (2016)Google Scholar
  8. 8.
    Howse, J., Stapleton, G., Taylor, K., Chapman, P.: Visualizing ontologies: a case study. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 257–272. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25073-6_17CrossRefGoogle Scholar
  9. 9.
    Oliver, I., Holtmanns, S., Miche, Y., Lal, S., Hippeläinen, L., Kalliola, A., Ravidas, S.: Experiences in trusted cloud computing. In: Yan, Z., Molva, R., Mazurczyk, W., Kantola, R. (eds.) NSS 2017. LNCS, vol. 10394, pp. 19–30. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-64701-2_2CrossRefGoogle Scholar
  10. 10.
    Sato, Y., Masuda, S., Someya, Y., Tsujii, T., Watanabe, S.: An fMRI analysis of the efficacy of Euler diagrams in logical reasoning. In: IEEE Symposium on Visual Languages and Human-Centric Computing, pp. 143–151. IEEE (2015)Google Scholar
  11. 11.
    Sato, Y., Mineshima, K.: How diagrams can support syllogistic reasoning: an experimental study. J. Log. Lang. Inf. 24, 409–455 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Shams, Z., Sato, Y., Jamnik, M., Stapleton, G.: Accessible reasoning with diagrams: from cognition to automation. In: Chapman, P., Stapleton, G., Moktefi, A., Perez-Kriz, S., Bellucci, F. (eds.) Diagrams 2018. LNCS (LNAI), vol. 10871, pp. 247–263. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-91376-6_25CrossRefGoogle Scholar
  13. 13.
    Shimojima, A.: Semantic Properties of Diagrams and Their Cognitive Potentials. CSLI Publications, Stanford (2015)Google Scholar
  14. 14.
    Spivey, J.: The Z Notation: A Reference Manual. Prentice Hall, New York (1989)zbMATHGoogle Scholar
  15. 15.
    Stapleton, G., Howse, J., Chapman, P., Delaney, A., Burton, J., Oliver, I.: Formalizing concept diagrams. In: 19th International Conference on Distributed Multimedia Systems, pp. 182–187. Knowledge Systems Institute (2013)Google Scholar
  16. 16.
    Yang, Y., Shiwei, X., Hunguo, Z., Fan, Z.: Using first order logic to reason about TCG’s TPM specification. In: International Forum on Information Technology and Applications, pp. 259–263. IEEE (2009)Google Scholar
  17. 17.
    Zimmer, V., Dasari, R., Brogan, S.: TCG-based firmware: white paper by Intel Corporation and IBM Corporation Trusted Platforms (2009). https://people.eecs.berkeley.edu/kubitron/cs194-24/hand-outs/SF09_EFIS001_UEFI_PI_TCG_White_Paper.pdf. Accessed May 2018

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Nokia Bell LabsEspooFinland
  2. 2.Centre for Secure, Intelligent and Usable SystemsUniversity of BrightonBrightonUK
  3. 3.University of CambridgeCambridgeUK

Personalised recommendations