Skip to main content

Managing Drylands for Sustainable Agriculture

  • Chapter
  • First Online:
  • 1330 Accesses

Abstract

Major constraints to rainfed production systems in the world’s drylands include low and highly variable rainfall, nutrient deficiencies and land degradation by wind and water erosion. Although the same principles to cope with these limitations could be in theory applied to all dryland situations, there is no a universal recipe for sustainable dryland agriculture. In this chapter, the authors recall some of the challenges that have been identified for semiarid rainfed farming systems, namely soil conservation, water use efficiency, nutrient use efficiency and climate change mitigation, as well as some sustainable cropping and management strategies that have been formulated and recommended to address them appropriately. To this end, the authors provide examples supporting those practices mainly from semiarid Mediterranean agroecosystems. Among all the strategies discussed in this Chapter, and despite their limitations, the maintenance of a protective crop residue cover and the reduction of tillage operations appear to be the simplest technological options not only to control soil erosion but also to improve water and nutrient use efficiency and mitigate greenhouse gas emissions. The authors conclude that sustainable agricultural management in drylands should be primarily based on conservation agriculture practices and associated local-based crop residue management systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abiven S, Menasseri S, Chenu C (2009) The effects of organic inputs over time on soil aggregate stability-A literature analysis. Soil Biol Biochem 41:1–12

    Article  CAS  Google Scholar 

  • Álvaro-Fuentes J, Cantero-Martínez C (2010) Short communication. Potential to mitigate anthropogenic CO2 emissions by tillage reduction in dryland soils of Spain. Span J Agric Res 8:1271–1276

    Article  Google Scholar 

  • Álvaro-Fuentes J, Arrúe JL, Gracia R, López MV (2007) Soil management effects on aggregate dynamics in semiarid Aragon (NE Spain). Sci Total Environ 378:179–182

    Article  PubMed  CAS  Google Scholar 

  • Álvaro-Fuentes J, Arrúe JL, Gracia R, López MV (2008) Tillage and cropping intensification effects on soil aggregation: temporal dynamics and controlling factors under semiarid conditions. Geoderma 145:390–396

    Article  Google Scholar 

  • Álvaro-Fuentes J, Cantero-Martínez C, López MV, Paustian K, Denef K, Stewart CE, Arrúe JL (2009a) Soil aggregation and soil organic carbon stabilization: effects of management in semiarid Mediterranean agroecosystems. Soil Sci Soc Am J 73:1519–1529

    Article  CAS  Google Scholar 

  • Álvaro-Fuentes J, Lampurlanés J, Cantero-Martínez C (2009b) Alternate crop rotations under no-tillage rotations under Mediterranean rainfed conditions: I. Biomass, grain yield and water-use efficiency. Agron J 101:1227–1234

    Article  Google Scholar 

  • Álvaro-Fuentes J, Plaza-Bonilla D, Arrúe JL, Lampurlanés J, Cantero-Martínez C (2014) Soil organic carbon storage in a no-tillage chronosequence under Mediterranean conditions. Plant Soil 376:31–41

    Article  CAS  Google Scholar 

  • Angás P, Lampurlanés J, Cantero-Martínez C (2006) Tillage and N fertilization effects on N dynamics and barley yield under semiarid Mediterranean conditions. Soil Tillage Res 87:59–71

    Article  Google Scholar 

  • Angus FE, Peoples MB, van Herwaarden AF (1998) Water and nitrogen in crop and pasture systems in southern Australia. In: Management of nutrients and water in rainfed arid and semi-arid areas, Proceedings of a consultants meeting organized by the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, 26–29 May 1997, IAEA-TECDOC No.1026, Vienna

    Google Scholar 

  • Araus JL, Villegas D, Aparicio N, García del Moral LF, El Hani S, Rharrabti Y, Ferrio JP, Royo C (2003) Environmental factors determining carbon isotope discrimination and yield in durum wheat under Mediterranean conditions. Crop Sci 43:170–180

    Article  Google Scholar 

  • Barton L, Butterbach-Bahl K, Kiese R, Murphy DV (2011) Nitrous oxide fluxes from a grain-legume crop (narrow-leafed lupin) grown in a semiarid climate. Glob Change Biol 17:1153–1166

    Article  Google Scholar 

  • Batjes NH (1996) Total C and N in the soils of the world. Eur J Soil Sci 47:151–163

    Article  CAS  Google Scholar 

  • Blanco H, Lal R (2008) Principles of soil conservation and management. Springer, Heidelberg

    Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential – are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56:1159–1168

    Article  Google Scholar 

  • Blum A (2009) Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res 112:119–123

    Article  Google Scholar 

  • Bouwman AF, Boumans LJM, Batjes NH (2002) Emissions of N2O and NO from fertilized fields: summary of available measurement data. Glob Biogeochem Cycles 16(4):1058

    Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22

    Article  CAS  Google Scholar 

  • Cambardella CA, Elliott ET (1993) Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils. Soil Sci Soc Am J 57:1071–1076

    Article  CAS  Google Scholar 

  • Cantero-Martínez C, Gabiña D (2004) Evaluation of agricultural practices to improve efficiency and environment conservation in Mediterranean arid and semi-arid production systems: MEDRATE project. In: Cantero-Martínez C, Gabiña D (eds) Mediterranean rainfed agriculture: Strategies for sustainability, Options Méditerranéennes: Série A. Séminaires Méditerranéennes no. 60. CIHEAM, Zaragoza

    Google Scholar 

  • Cantero-Martínez C, O’Leary G, Connor DJ (1995a) Stubble retention and nitrogen fertilization in a fallow-wheat rainfed cropping system. I. Soil water conservation, growth and yield. Soil Tillage Res 34:79–94

    Article  Google Scholar 

  • Cantero-Martínez C, Villar JM, Romagosa I, Fereres E (1995b) Nitrogen fertilization of barley under semi-arid conditions. Eur J Agron 4:309–316

    Article  Google Scholar 

  • Cantero-Martínez C, Angás P, Lampurlanés J (2007) Long-term yield and water use efficiency under various tillage systems in Mediterranean rainfed conditions. Ann Appl Biol 150:293–305

    Article  Google Scholar 

  • Cantero-Martínez C, Plaza-Bonilla D, Angás P, Álvaro-Fuentes J (2016) Best management practices and nitrogen fertilization in Mediterranean rainfed conditions: combining field and modelling approaches. Eur J Agron 79:119–130

    Article  Google Scholar 

  • CGIAR (2013) New research approaches to improve dryland agriculture to deliver more prosperous future. CGIAR Research Program on Dryland Agricultural Production Systems. Available at: http://www.icarda.org/publications-resources/drylans-systems

  • CGIAR (2017) The world’s dry areas. CGIAR Research Program on Dryland Systems. Available at: http://drylandsystems.cgiar.org/content/worlds-dry-areas

  • Chien SH, Prochnow LI, Cantarella H (2009) Recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts. Adv Agron 102:267–322

    Article  CAS  Google Scholar 

  • Connor DJ, Loomis RS, Cassman KG (2011) Crop ecology: productivity and management in agricultural systems. Cambridge University Press, New York

    Book  Google Scholar 

  • Cooper PJM, Keatinge J, Hughes G (1983) Crop evapotranspiration—A technique for calculation of its components by field measurements. Field Crops Res 7:299–312

    Article  Google Scholar 

  • Cooper PJM, Gregory PJ, Tully D, Harris HC (1987) Improving water use efficiency of annual crops in rainfed farming systems of west Asia and North Africa. Exp Agric 23:113–158

    Article  Google Scholar 

  • Denef K, Stewart CE, Brenner J, Paustian K (2008) Does long-term center-pivot irrigation increase soil carbon stocks in semi-arid agro-ecosystems? Geoderma 145:121–129

    Article  CAS  Google Scholar 

  • Dı́az-Ambrona CH, Mı́nguez MI (2001) Cereal-legume rotations in a Mediterranean environment: biomass and yield production. Field Crops Res 70:139–151

    Article  Google Scholar 

  • FAO (2016) Trees, forests and land use in drylands. The first global assessment. Food and Agriculture Organization of the United Nations, Rome. Available at: http://www.fao.org/3/a-i5905e.pdf

    Google Scholar 

  • FAO (2017) Soil organic carbon: the hidden potential. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Farooq M, Siddique KHM (2016) Research and developmental issues in dryland agriculture. In: Farooq M, Siddique KHM (eds) Innovations in dryland agriculture. Springer International Publishing AG, Cham, pp 31–46

    Chapter  Google Scholar 

  • Fereres E, Orgaz F, Villalobos F (1993) Water use efficiency in sustainable agricultural systems. In: Buxton DR, Shibles R, Forsferg RA, Blad BL, Asay KH, Paulsen GM, Wilson RF (eds) International crop science I. CSSA, Madison, pp 83–94

    Google Scholar 

  • Flexas J, Niinemets Ü, Gallé A, Barbour MM, Centritto M, Díaz-Espejo A, Douthe C, Galmés J, Ribas-Carbo M, Rodriguez PL, Rosselló F, Soolanayakanahally R, Tomas M, Wright IJ, Farquhar GD, Medrano H (2013) Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. Photosynth Res 117:45–59

    Article  CAS  PubMed  Google Scholar 

  • French RJ (1978) The effect of fallowing on the yield of wheat. II The effect on grain yield. Aust J Agric Res 29:669–684

    Article  Google Scholar 

  • Friedrich T, Derpsch R, Kassam A (2012) Overview of the global spread of conservation agriculture. Field Actions Science Reports. Special Issue 6, Reconciling poverty eradication and protection of the environment. Available at: http://factsreports.revues.org/1941

  • Galbally IE, Kirstine WV, Meyer CP, Wang YP (2008) Soil-atmosphere trace gas exchange in semiarid and arid zones. J Environ Qual 37:599–607

    Article  CAS  PubMed  Google Scholar 

  • García AL, Royo-Esnal A, Torra J, Cantero-Martínez C, Recasens J (2014) Integrated management of Bromus Diandrus in dryland cereal fields under no-till. Weed Res 54:408–417

    Article  Google Scholar 

  • Gomes L, Arrúe JL, López MV, Sterk G, Richard D, Gracia R, Sabre M, Gaudichet A, Frangi JP (2003) Wind erosion in a semi-arid agricultural area of Spain: the WELSONS project. Catena 52:235–256

    Article  Google Scholar 

  • Gómez JA, Giráldez JV, Fereres E (2009) The influence of cover crops and tillage on water and sediment yield, and on nutrient, and organic matter losses in an olive orchard on a sandy loam soil. Soil Tillage Res 106:137–144

    Article  Google Scholar 

  • Gómez JA, Llewellyn C, Basch G, Sutton PB, Dyson JS, Jones CA (2011) The effects of cover crops and conventional tillage on soil and runoff loss in vineyards and olive groves in several Mediterranean countries. Soil Use Manage 27:502–514

    Article  Google Scholar 

  • Grant CA, Peterson GA, Campbell CA (2002) Nutrient considerations for diversified cropping systems in the Northern Great Plains. Agron J 94:186–198

    Article  Google Scholar 

  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta-analysis. Glob Change Biol 8:345–360

    Article  Google Scholar 

  • Hagin J, Tucker B (1982) Fertilization of dryland and irrigated soils. Springer, Berlin

    Book  Google Scholar 

  • Halvorson AD, Black AL, Krupinsky JM, Merrill SD, Wienhold BJ, Tanaka DL (2000) Spring wheat response to tillage and nitrogen fertilization in rotation with sunflower and winter wheat. Agron J 92:136–144

    Article  Google Scholar 

  • Hütsch BW (2001) Methane oxidation in non-flooded soils as affected by crop production-invited paper. Eur J Agron 14:237–260

    Article  Google Scholar 

  • IFA (2009) The global “4R” nutrient stewardship framework for developing and delivering fertilizer best management practices. IFA task force on fertilizer best management practices, AgCom/09/32, A/09/68. International Fertilizer Industry Association, Paris

    Google Scholar 

  • Jenkinson DS, Harris HC, Ryan J, McNeill AM (1999) Organic matter turnover in a calcareous clay soil from Syria under a two-course cereal rotation. Soil Biol Biochem 31:687–693

    Article  CAS  Google Scholar 

  • Jensen ES, Peoples MB, Boddey RM, Gresshoff PM, Hauggaard-Nielsen H, Alves BJR, Morrison MJ (2012) Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Agron Sustain Dev 32:329–364

    Article  CAS  Google Scholar 

  • Ju XT, Xing GX, Chen XP, Zhang SL, Zhang LJ, Liu XJ, Cui ZL, Yin B, Christie P, Zhu ZL, Zhang FS (2009) Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc Natl Acad Sci USA 106:3041–3046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Kessel C, Venterea R, Six J, Adviento-Borbe MA, Linquist B, Van Groenigen KJ (2013) Climate, duration, and N placement determine N2O emissions in reduced tillage systems: a meta-analysis. Glob Change Biol 19:33–44

    Article  Google Scholar 

  • Kirkegaard JA, Robertson MJ (2013) Agronomic principles of water- and nutrient-use efficiency: case studies in dryland grain production in Australia. In: Rengel Z (ed) Improving water and nitrogen-use efficiency in food production systems. Wiley, Hoboken, pp 211–233

    Chapter  Google Scholar 

  • Koohafkan P, Stewart BA (2008) Water and cereals in drylands. The Food and Agriculture Organization of the United Nations and Earthscan, London

    Google Scholar 

  • Lahmar R, Bationo BA, Lamso ND, Guéro Y, Tittonell P (2012) Tailoring conservation agriculture technologies to West Africa semi-arid zones: building on traditional local practices for soil restoration. Field Crops Res 132:158–167

    Article  Google Scholar 

  • Lal R (2002) Carbon sequestration in dryland ecosystems of West Asia and North Africa. Land Degrad Dev 13:45–59

    Article  Google Scholar 

  • Lal R (2004) Carbon sequestration in dryland ecosystems. Environ Manag 33:528–544

    Article  Google Scholar 

  • Lal R, Kimble JM (2000) Pedogenic carbonates and the global carbon cycle. In: Lal R, Kimble JM, Eswaran H, Stewart BA (eds) Global climate change and pedogenic carbonates. CRC Press, Boca Raton, pp 1–14

    Google Scholar 

  • Lammel J (2005) Cost of the different options available to the farmers: current status and prospects. In: IFA International workshop on enhanced-efficiency fertilizers, Frankfurt. International Fertilizer Industry Association, Paris

    Google Scholar 

  • Lampurlanés J, Angás P, Cantero-Martínez C (2001) Root growth, soil water content and yield of barley under different tillage systems on two soils in semiarid conditions. Field Crops Res 69:27–40

    Article  Google Scholar 

  • Lampurlanés J, Angás P, Cantero-Martínez C (2002) Tillage effect on water storage efficiency during fallow, and soil water content, root growth and yield of the following barley crop on two different soils in semiarid conditions. Soil Tillage Res 65:207–220

    Article  Google Scholar 

  • Lampurlanés J, Plaza-Bonilla D, Álvaro-Fuentes J, Cantero-Martínez C (2016) Long-term analysis of soil water conservation and crop yield under different tillage systems in Mediterranean conditions. Field Crops Res 189:59–67

    Article  Google Scholar 

  • Lee C, Schaaf T (eds) (2008) Sustainable management of marginal drylands. UNESCO-MAB, Division of Ecological and Earth Sciences, Paris

    Google Scholar 

  • Lenssen AW, Sainju UM, Jabro JD, Iversen WM, Allen BL, Evans RG (2014) Crop diversification, tillage and management system influence spring wheat yield and water use. Agron J 106:1445–1454

    Article  CAS  Google Scholar 

  • Li SX, Wang ZH, Hu TT, Gao YJ, Stewart BA (2009) Nitrogen in dryland soils of China and its management. Adv Agron 101:123–181

    Article  Google Scholar 

  • Linn DM, Doran JW (1984) Effect of water-filled pore-space on carbon-dioxide and nitrous-oxide production in tilled and nontilled soils. Soil Sci Soc Am J 48:1267–1272

    Article  CAS  Google Scholar 

  • López MV, Sabre M, Gracia R, Arrúe JL, Gomes L (1998) Tillage effects on soil surface conditions and dust emission by wind erosion in semiarid Aragón (NE Spain). Soil Tillage Res 45:91–105

    Article  Google Scholar 

  • López MV, Gracia R, Arrúe JL (2000) Effects of reduced tillage on soil surface properties affecting wind erosion in semiarid fallow lands of Central Aragón. Eur J Agron 12:191–199

    Article  Google Scholar 

  • López MV, Gracia R, Arrúe JL (2001) An evaluation of wind erosion hazard in fallow lands of semi-arid Aragón (NE Spain). J Soil Water Conserv 56:212–219

    Google Scholar 

  • López MV, Moret D, Gracia R, Arrúe JL (2003) Tillage effects on barley residue cover during fallow in semiarid Aragon. Soil Tillage Res 72:53–64

    Article  Google Scholar 

  • López MV, Arrúe JL, Álvaro-Fuentes J, Moret D (2005) Dynamics of surface barley residues during fallow as affected by tillage and decomposition in semiarid Aragon (NE Spain). Eur J Agron 23:26–36

    Article  Google Scholar 

  • López-Bellido RJ, Fontán JM, López-Bellido FJ, López-Bellido L (2010) Carbon sequestration by tillage, rotation, and nitrogen fertilization in a Mediterranean vertisol. Agron J 102:310–318

    Article  CAS  Google Scholar 

  • López-Garrido R, Madejón E, Murillo JM, Moreno F (2011) Short and long-term distribution with depth of soil organic carbon and nutrients under traditional and conservation tillage in a Mediterranean environment (southwest Spain). Soil Use Manage 27:177–185

    Article  Google Scholar 

  • Mallarino AP, Borges R (2006) Phosphorus and potassium distribution in soil following long-term deep-band fertilization in different tillage systems. Soil Sci Soc Am J 70:702–707

    Article  CAS  Google Scholar 

  • McNeill AM, Penfold CM (2009) Agronomic management options for phosphorus in Australian dryland organic and low-input cropping systems. Crop Pasture Sci 60:163–182

    Article  CAS  Google Scholar 

  • Middleton N, Thomas D (1997) World atlas of desertification, 2nd edn. Arnold, London

    Google Scholar 

  • Morell FJ, Cantero-Martínez C, Álvaro-Fuentes J, Lampurlanés J (2011a) Root growth of barley as affected by tillage systems and N fertilization in a semiarid Mediterranean agroecosystem. Agron J 103:1270–1275

    Article  Google Scholar 

  • Morell FJ, Lampurlanés J, Álvaro-Fuentes J, Cantero-Martínez C (2011b) Yield and water use efficiency of barley in a semiarid Mediterranean agroecosystem: long-term effects of tillage and N fertilization. Soil Tillage Res 117:76–84

    Article  Google Scholar 

  • Moreno F, Arrúe JL, Cantero-Martínez C, López MV, Murillo JM, Sombrero A, López-Garrido R, Madejón E, Moret D, Álvaro-Fuentes J (2011) Conservation agriculture under mediterranean conditions in Spain. In: Lichtfouse E (ed) Biodiversity, biofuels, agroforestry and conservation agriculture. Sustainable Agriculture Reviews No. 5, Springer, Dordrecht, pp 175–192

    Google Scholar 

  • Nawaz A, Farooq M (2016) Nutrient management in dryland agriculture systems. In: Farooq M, Siddique KHM (eds) Innovations in dryland agriculture. Springer International Publishing AG, Cham, pp 115–142

    Chapter  Google Scholar 

  • Oldeman LR (1994) The global extent of soil degradation. In: Greenland DJ, Szabolcs I (eds) Soil resilience and sustainable land use. CAB International, Wallingford

    Google Scholar 

  • Omanya GO, Pasternak D (eds) (2005) Sustainable agriculture systems for the drylands. Proceedings of the International Symposium for Sustainable Dryland Agriculture Systems, 2–5 December 2003, Niamey, Niger. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)

    Google Scholar 

  • Oweis T (1997) Supplemental irrigation: a highly water-efficient practice. ICARDA, Aleppo

    Google Scholar 

  • Palm C, Blanco-Canqui H, De Clerck F, Gatere L, Grace P (2014) Conservation agriculture and ecosystem services: an overview. Agric Ecosyst Environ 187:87–105

    Article  Google Scholar 

  • Passioura JB, Angus JF (2010) Improving productivity of crops in water-limited environments. Adv Agron 106:38–67

    Google Scholar 

  • Paustian K, Lehmann J, Ogle S, Reay D, Robertson GP, Smith P (2016) Climate-smart soils. Nature 532:49–57

    Article  CAS  PubMed  Google Scholar 

  • Peterson GA, Westfall DG (2004) Managing precipitation use in sustainable dryland agroecosystems. Ann Appl Biol 144:127–138

    Article  Google Scholar 

  • Pittelkow CM, Linquist BA, Lundy ME, Liang X, van Groenigen KJ, Lee J, van Gestel N, Six J, Venterea RT, van Kessel C (2015) When does no-till yield more? A global meta-analysis. Field Crops Res 183:156–168

    Article  Google Scholar 

  • Plaza-Bonilla D, Álvaro-Fuentes J, Cantero-Martínez C (2013a) Soil aggregate stability as affected by fertilization type under semiarid no-tillage conditions. Soil Sci Soc Am J 77:284–292

    Article  CAS  Google Scholar 

  • Plaza-Bonilla D, Cantero-Martínez C, Viñas P, Álvaro-Fuentes J (2013b) Soil aggregation and organic carbon protection in a no-tillage chronosequence under Mediterranean conditions. Geoderma 193:76–82

    Article  CAS  Google Scholar 

  • Plaza-Bonilla D, Álvaro-Fuentes J, Arrúe JL, Cantero-Martínez C (2014a) Tillage and nitrogen fertilization effects on nitrous oxide yield-scaled emissions in a rainfed Mediterranean area. Agric Ecosyst Environ 189:43–52

    Article  CAS  Google Scholar 

  • Plaza-Bonilla D, Cantero-Martínez C, Bareche J, Arrúe JL, Álvaro-Fuentes J (2014b) Soil carbon dioxide and methane fluxes as affected by tillage and N fertilization in dryland conditions. Plant Soil 381:111–130

    Article  CAS  Google Scholar 

  • Plaza-Bonilla D, Arrúe JL, Cantero-Martínez C, Fanlo R, Iglesias A, Álvaro-Fuentes J (2015) Carbon management in dryland agricultural systems. A review. Agron Sustain Dev 35:1319–1334

    Article  Google Scholar 

  • Plaza-Bonilla D, Álvaro-Fuentes J, Bareche J, Masgoret A, Cantero-Martínez C (2017a) Delayed sowing improved barley yield in a no-till rainfed Mediterranean agroecosystem. Agron J 109:1249–1260

    Article  CAS  Google Scholar 

  • Plaza-Bonilla D, Cantero-Martínez C, Bareche J, Arrúe JL, Lampurlanés J, Álvaro-Fuentes J (2017b) Do no-till and pig slurry application improve barley yield and water and nitrogen use efficiencies in rainfed Mediterranean conditions? Field Crops Res 203:74–85

    Article  Google Scholar 

  • Quemada M, Gabriel JL (2016) Approaches for increasing nitrogen and water use efficiency simultaneously. Glob Food Sec 9:29–35

    Article  Google Scholar 

  • Ramos MC, Martínez-Casasnovas JA (2004) Nutrient losses from a vineyard soil in Northeastern Spain caused by an extraordinary rainfall event. Catena 55:79–90

    Article  CAS  Google Scholar 

  • Rebetzke GJ, Condon AG, Richards RA, Farquhar GD (2002) Selection for reduced carbon isotope discrimination increases aerial biomass and grain yield of rainfed bread wheat. Crop Sci 42:739–745

    Article  Google Scholar 

  • Robertson M, Carberry P, Brennan L (2009) Economic benefits of variable rate technology: case studies from Australian grain farms. Crop Pasture Sci 60:799–807

    Article  Google Scholar 

  • Rose T, Bowden B (2013) Matching soil nutrient supply and crop demand in the growing season. In: Rengel Z (ed) Improving water and nitrogen-use efficiency in food production systems. Wiley, Hoboken, pp 93–103

    Chapter  Google Scholar 

  • Roy RN, Finck A, Blair GJ, Tandon HS (2006) Plant nutrition for food security: a guide to integrated nutrient management, FAO fertilizer and plant nutrition Bull. No. 16. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Ryan J, Sommer R, Ibrikci H (2012) Fertilizer best management practices: a perspective from the dryland West Asia-North Africa region. J Agron Crop Sci 198:57–67

    Article  Google Scholar 

  • Sadras VO (2004) Yield and water-use efficiency of water-and nitrogen-stressed wheat crops increase with degree of co-limitation. Eur J Agron 21:455–464

    Article  Google Scholar 

  • Safriel U, Adeel Z (2005) Dryland systems. Chapter 22. In: Hassan R, Scholes R, Ash N (eds) Ecosystems and human well-being: current state and trends, vol 1. Island Press, Washington, DC

    Google Scholar 

  • Salekdeh GH, Reynolds M, Bennett J, Boyer J (2009) Conceptual framework for drought phenotyping during molecular breeding. Trends Plant Sci 14:488–496

    Article  CAS  PubMed  Google Scholar 

  • Salinas-Garcia JR, Matocha JE, Hons FM (1997) Long-term tillage and nitrogen fertilization effects on soil properties of an Alfisol under dryland corn/cotton production. Soil Tillage Res 42:79–93

    Article  Google Scholar 

  • Sanz-Cobena A, Misselbrook T, Camp V, Vallejo A (2011) Effect of water addition and the urease inhibitor NBPT on the abatement of ammonia emission from surface applied urea. Atmos Environ 45:1517–1524

    Article  CAS  Google Scholar 

  • Schlaepfer DR, Bradford JB, Lauenroth WK, Munson SM, Tietjen B, Hall SA, Wilson SD, Duniway MC, Jia G, Pyke DA, Lkhagva A, Jamiyansharav K (2017) Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nat Commun 8:14196. https://doi.org/10.1038/ncomms14196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwilch G, Hessel R, Verzandvoort S (2012) Desire for greener land. Options for sustainable land management in drylands. University of Bern-CDE, Alterra-Wageningen UR, ISRIC-World Soil Information and CTA-Technical Centre for Agricultural and Rural Cooperation, Bern

    Google Scholar 

  • Scotford IM, Cumby TR, White RP, Carton OT, Lorenz F, Hatterman U, Provolo G (1998) Estimation of the nutrient value of agricultural slurries by measurement of physical and chemical properties. J Agric Eng Res 71:291–305

    Article  Google Scholar 

  • Serraj R, Sinclair TR, Purcell LC (1999) Symbiotic N2 fixation response to drought. J Exp Bot 50:143–155

    CAS  Google Scholar 

  • Shangyou S, Tinglu F, Yong W (1997) Comprehensive sustainable development of dryland agriculture in Northwest China. J Sustain Agr 9:67–84

    Article  Google Scholar 

  • Simpson RJ, Obserson A, Culvenor RA, Ryan MH, Veneklaas EJ, Lambers H, Lynch JP, Ryan PR, Delhaize E, Smith FA, Smith SE, Harvey PR, Richardson AE (2011) Strategies and agronomic interventions to improve phosphorus-use efficiency of farming systems. Plant Soil 349:89–120

    Article  CAS  Google Scholar 

  • Six J, Elliott ET, Paustian K (1999) Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Sci Soc Am J 63:1350–1358

    Article  CAS  Google Scholar 

  • Six J, Elliott ET, Paustian K (2000) Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem 32:2099–2103

    Article  CAS  Google Scholar 

  • Six J, Ogle SM, Breidt FJ, Conant RT, Mosier AR, Paustian K (2004) The potential to mitigate global warming no-tillage management is only realized when practiced in the long run. Glob Change Biol 10:155–160

    Article  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc Lond B Biol Sci 363:789–813

    Article  CAS  PubMed  Google Scholar 

  • Smith P, Bustamante M, Ahammad H, Clark H, Dong H, Elsiddig EA, Haberl H, Harper R, House J, Jafari M, Masera O, Mbow C, Ravindranath NH, Rice CW, Robledo Abad C, Romanovskaya A, Sperling F, Tubiello F (2014) Agriculture, Forestry and Other Land Use (AFOLU). In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC (eds) Climate change 2014: mitigation of climate change, Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Stanhill G (1986) Water use efficiency. Adv Agron 39:53–85

    Article  Google Scholar 

  • Sterk G (2003) Causes, consequences and control of wind erosion in Sahelian Africa: a review. Land Degrad Dev 14:95–108

    Article  Google Scholar 

  • Sterk G, Herrmann L, Bationo A (1996) Wind-blown nutrient transport and soil productivity changes in southwest Niger. Land Degrad Dev 7:325–335

    Article  Google Scholar 

  • Sterk G, López MV, Arrúe JL (1999) Saltation transport on a silt loam soil in north-east Spain. Land Degrad Dev 10:545–554

    Article  Google Scholar 

  • Sterk G, Riksen M, Goossens D (2001) Dryland degradation by wind erosion and its control. Ann Arid Zone 40:351–367

    Google Scholar 

  • Stewart BA, Thapa S (2016) Dryland farming: concept, origin and brief history. In: Farooq M, Siddique KHM (eds) Innovations in dryland agriculture. Springer International Publishing AG, Cham, pp 3–29

    Chapter  Google Scholar 

  • Tanner CB, Sinclair TR (1983) Efficient water use in crop production: research or research? In: Taylor HM, Jordan WR, Sinclair TR (eds) Limitations to efficient water use in crop production, Am. Soc. Agron, Madison, pp 1–27

    Google Scholar 

  • Tardieu F (2012) Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario. J Exper Bot 63:25–31

    Article  CAS  Google Scholar 

  • Thomas RJ (2008) Opportunities to reduce the vulnerability of dryland farmers in Central and West Asia and North Africa to climate change. Agric Ecosyst Environ 126:36–45

    Article  Google Scholar 

  • Thorup-Kristensen K (2006) Effect of deep and shallow root systems on the dynamics of soil inorganic N during 3-year crop rotations. Plant Soil 288:233–248

    Article  CAS  Google Scholar 

  • Trost B, Prochnow A, Drasting K, Meyer-Aurich A, Ellmer F, Baumecker M (2013) Irrigation, soil organic carbon and N2O emissions. A review. Agron Sustain Dev 33:733–749

    Article  CAS  Google Scholar 

  • Tubiello FN, Salvatore M, Ferrara AF, House J, Federici S, Rossi S, Biancalani R, Condor Golec RD, Jacobs H, Flammini A, Prosperi P, Cardenas-Galindo P, Schmidhuber J, Sanz Sanchez MJ, Srivastava N, Smith P (2015) The contribution of agriculture, forestry and other land use activities to global warming, 1990–2012. Glob Change Biol 21:2655–2660

    Article  Google Scholar 

  • UN (2011) Global drylands: a UN system-wide response. United Nations Environment Management Group. Available at: http://www.unccd.int/Lists/SiteDocumentLibrary/Publications/Global_Drylands_Full_Report.pdf

  • UNCCD (2000) An introduction to the United Nations Convention to Combat Desertification. Available at http://www.unccd.int

  • Unger PW, Fryrear DW, Lindstrom MJ (2006) Soil conservation. In: Peterson GA, Unger PW, Payne WA (eds) Dryland agriculture, Agron. Monogr. 23, 2nd edn. ASA, CSSA, and SSSA, Madison, pp 87–112

    Google Scholar 

  • Venterea RT, Halvorson AD, Kitchen N, Liebig MA, Cavigelli MA, Del Grosso SJ, Motavalli PP, Nelson KA, Spokas KA, Singh BP, Stewart CE, Ranaivoson A, Strock J, Collins H (2012) Challenges and opportunities for mitigating nitrous oxide emissions from fertilized cropping systems. Front Ecol Environ 10:562–570

    Article  Google Scholar 

  • Virto I, Gartzia-Bengoetxea N, Fernández-Ugalde O (2011) Role of organic matter and carbonates in soil aggregation estimated using laser diffractometry. Pedosphere 21:566–572

    Article  CAS  Google Scholar 

  • West TO, Marland G, King AW, Post WM, Jain AK, Andrasko K (2004) Carbon management response curves: estimates of temporal soil carbon dynamics. Environ Manage 33:507–518

    Article  PubMed  Google Scholar 

  • Westfall DG, Havlin JL, Hergert GW, Raun WR (1996) Nitrogen management in dryland cropping systems. J Prod Agric 9:192–199

    Article  Google Scholar 

  • Wienhold BJ, Luchiari A, Zhang R (2000) Challenges confronting soil management for dryland agriculture. Ann Arid Zone 39:333–346

    Google Scholar 

  • Wilson TM, McGowen B, Mullock J, Arnall DB, Warren JG (2015) Nitrous oxide emissions from continuous winter wheat in the Southern Great Plains. Agron J 107:1878–1884

    Article  CAS  Google Scholar 

  • Yagüe MR, Quílez D (2012) On-farm measurement of electrical conductivity for the estimation of ammonium nitrogen concentration in pig slurry. J Environ Qual 41:893–900

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Arrúe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arrúe, J.L., Álvaro-Fuentes, J., Plaza-Bonilla, D., Villegas, D., Cantero-Martínez, C. (2019). Managing Drylands for Sustainable Agriculture. In: Farooq, M., Pisante, M. (eds) Innovations in Sustainable Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-030-23169-9_17

Download citation

Publish with us

Policies and ethics