Advertisement

Heat Shock Protein 90 and Reproduction in Female Animals: Ovary, Oocyte and Early Embryo

  • Yu-Wei Yang
  • Lu Chen
  • Cai-Xia YangEmail author
Chapter
Part of the Heat Shock Proteins book series (HESP, volume 19)

Abstract

The mammalian heat shock protein 90 (HSP90) is the most conserved member of heat shock protein family (HSP), participating in the regulation of various cellular and physiological processes, and stress adaptation and oncogenic transformation as well. In addition, in different animal reproduction system, HSP90 plays a vital function in the folliculogenesis, oogenesis and embryo development, and also contributes to the development and progress of female reproductive diseases. This chapter focuses on the general structure, transcriptional regulation (expression and isoforms) and inhibitors of HSP90 family, and their particular roles in animal female reproductive events.

Keywords

Early embryos Female reproduction HSP90 Oocyte Ovary 

Abbreviations

AKT

Protein kinase B

AP1

Activator protein 1

ATP/ADP

Adenosine triphosphate/adenosine diphosphate

CDK1

Cyclin dependent kinase 1

CDK4

Cyclin dependent kinase 4

COCs

Cumulus-oocyte complexes

c-Src

Proto-oncogene tyrosine-protein kinase Src

CTD

C-terminal domain

dpc

Day post-coital

ERBB2

Erb-B2 receptor tyrosine kinase 2

ERK

Extracellular regulated protein kinases

FLT3

FMS-Like tyrosine kinase-3

GA

Geldanamycin

GC

Glucocorticoids

GR

Glucocorticoid receptor

GRP94

94-kDa glucose-regulated protein

GV

Germinal vesicle

GVBD

Germinal vesicle breakdown

HNF4A

Hepatocyte nuclear factor 4 alpha

HOP

HSP70-HSP90 organizing protein

HSE

Heat shock element

HSF

Heat shock factor

HSP

Heat shock proteins

HSP90

Heat shock protein 90

HSP90α

Heat shock protein 90 alpha family class A member 1

HSP90β

Heat shock protein 90 alpha family class B member 1

IVM

In vitro maturation

JAK/STAT

Janus kinase-signal transducer and activator of transcription

MAPK

Mitogen-activated protein kinases

MD

Middle domain

MII

Metaphase II

Mos

MOS proto-oncogene, serine/threonine kinase

MPF

Maturation-promoting factor

NF-κB

Nuclear factor kappa-light-chain-enhancer of activated B cells

NTD

N-terminal domain

NV

Novobiocin

OGT

Beta-O-linked N-acetylglucosamine transferase

PB1

First polar body

PGCs

Primordial germ cells

PI3K/PTEN/AKT/mTOR

Phosphoinositide 3-kinase/phosphatase and tensin homologue/protein kinase B/mammalian target of rapamycin

PPARγ

Proliferator-activated receptor-γ

RAD

Radicicol

San A

Sansalvamide A

San A-amide

Sansalvamide A-amide

STAT5

Signal transducer and activator of transcription 5

TRAP-1

Tumor necrosis factor receptor-associated protein 1

VEGFR2

VEGF receptor 2

YTHDF2

YTH N6-methyladenosine RNA binding protein 2

Notes

Acknowledgements

Our original work cited herein was supported by the National Natural Science Foundation of China (grant number 31472098) and the Start-up grant from Northeast Agricultural University (C.X.Y.).

References

  1. Adhikari D, Liu K (2014) The regulation of maturation promoting factor during prophase I arrest and meiotic entry in mammalian oocytes. Mol Cell Endocrinol 382:480–487CrossRefPubMedPubMedCentralGoogle Scholar
  2. Akner G, Mossberg K, Sundqvist KG, Gustafsson JA, Wikström AC (1992) Evidence for reversible, non-microtubule and non-microfilament-dependent nuclear translocation of hsp90 after heat shock in human fibroblasts. Eur J Cell Biol 58:356–364PubMedPubMedCentralGoogle Scholar
  3. Al Shaer L, Walsby E, Gilkes A, Tonks A, Walsh V, Mills K, Burnett A, Rowntree C (2008) Heat shock protein 90 inhibition is cytotoxic to primary AML cells expressing mutant FLT3 and results in altered downstream signalling. Br J Haematol 141:483–493CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ali A, Krone PH, Pearson DS, Heikkila JJ (1996) Evaluation of stress-inducible hsp90 gene expression as a potential molecular biomarker in Xenopus laevis. Cell Stress Chaperones 1:62–69CrossRefPubMedPubMedCentralGoogle Scholar
  5. Aligue R, Akhavan-Niak H, Russell P (1994) A role for Hsp90 in cell cycle control: Wee1 tyrosine kinase activity requires interaction with Hsp90. EMBO J 13:6099–6106CrossRefPubMedPubMedCentralGoogle Scholar
  6. Allworth AE, Albertini DF (1993) Meiotic maturation in cultured bovine oocytes is accompanied by remodeling of the cumulus cell cytoskeleton. Dev Biol 158:101–112CrossRefPubMedPubMedCentralGoogle Scholar
  7. Almeida FRCL, Costermans NGJ, Soede NM, Bunschoten A, Keijer J, Kemp B, Teerds KJ (2018) Presence of anti-müllerian hormone (AMH) during follicular development in theporcine ovary. PLoS One 13:e0197894CrossRefPubMedPubMedCentralGoogle Scholar
  8. Audisio D, Methy-Gonnot D, Radanyi C, Renoir JM, Denis S, Sauvage F, Vergnaud-Gauduchon J, Brion JD, Messaoudi S, Alami M (2014) Synthesis and antiproliferative activity of novobiocin analogues as potential hsp90 inhibitors. Eur J Med Chem 83:498–507CrossRefPubMedPubMedCentralGoogle Scholar
  9. Audouard C, Le Masson F, Charry C, Li Z, Christians ES (2011) Oocyte-targeted deletion reveals that hsp90b1 is needed for the completion of first mitosis in mouse zygotes. PLoS One 6:e17109CrossRefPubMedPubMedCentralGoogle Scholar
  10. Banu SK, Stanley JA, Lee J, Stephen SD, Arosh JA, Hoyer PB, Burghardt RC (2011) Hexavalent chromium-induced apoptosis of granulosa cells involves selective sub-cellular translocation of Bcl-2 members, ERK1/2 and p53. Toxicol Appl Pharmacol 251:253–266CrossRefPubMedPubMedCentralGoogle Scholar
  11. Ben-Ze’ev A, Amsterdam A (1989) Regulation of heat shock protein synthesis by gonadotropins in cultured granulosa cells. Endocrinology 124:2584–2594CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bharati J, Dangi SS, Bag S, Maurya VP, Singh G, Kumar P, Sarkar M (2017) Expression dynamics of HSP90 and nitric oxide synthase (NOS) isoforms during heat stress acclimation in Tharparkar cattle. Int J Biometeorol 61:1461–1469CrossRefPubMedPubMedCentralGoogle Scholar
  13. Boczek EE, Reefschläger LG, Dehling M, Struller TJ, Häusler E, Seidl A, Kaila VR, Buchner J (2015) Conformational processing of oncogenic v-Src kinase by the molecular chaperone Hsp90. Proc Natl Acad Sci USA 112:E3189–E3198CrossRefPubMedPubMedCentralGoogle Scholar
  14. Brugge JS, Erikson E, Erikson RL (1981) The specific interaction of the Rous sarcoma virus transforming protein, pp60src, with two cellular proteins. Cell 25:363–372CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bruns AF, Yuldasheva N, Latham AM, Bao L, Pellet-Many C, Frankel P, Stephen SL, Howell GJ, Wheatcroft SB, Kearney MT, Zachary IC, Ponnambalam S (2012) A heat-shock protein axis regulates VEGFR2 proteolysis, blood vessel development and repair. PLoS One 7:e48539CrossRefPubMedPubMedCentralGoogle Scholar
  16. Buchner J (1996) Supervising the fold: functional principles of molecularchaperones. FASEB J 10:10–19CrossRefPubMedPubMedCentralGoogle Scholar
  17. Budina-Kolomets A, Balaburski GM, Bondar A, Beeharry N, Yen T, Murphy ME (2014) Comparison of the activity of three different HSP70 inhibitors on apoptosis, cellcycle arrest, autophagy inhibition, and HSP90 inhibition. Cancer Biol Ther 15:194–199CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bunney TD, Inglis AJ, Sanfelice D, Farrell B, Kerr CJ, Thompson GS, Masson GR, Thiyagarajan N, Svergun DI, Williams RL, Breeze AL, Katan M (2018) Disease variants of FGFR3 reveal molecular basis for the recognition and additional roles for Cdc37 in Hsp90 chaperone system. Structure 26:446–458CrossRefPubMedPubMedCentralGoogle Scholar
  19. Calvert ME, Digilio LC, Herr JC, Coonrod SA (2003) Oolemmal proteomics–identification of highly abundant heat shock proteins and molecular chaperones in the mature mouse egg and their localization on the plasma membrane. Reprod Biol Endocrinol 1:27CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chatterjee S, Burns TF (2017) Targeting heat shock proteins in cancer: a promising therapeutic approach. Int J Mol Sci 18:1978.  https://doi.org/10.3390/ijms18091978CrossRefGoogle Scholar
  21. Chen J, Terada N, Saitoh Y, Huang Z, Ohno N, Ohno S (2013) Detection of MAPK signal transduction proteins in an ischemia/reperfusion model of mouse intestine using in vivo cryotechnique. Histochem Cell Biol 140:491–505CrossRefPubMedPubMedCentralGoogle Scholar
  22. Chen F, Jiao XF, Zhang JY, Wu D, Ding ZM, Wang YS, Miao YL, Huo LJ (2018a) Nucleoporin35 is a novel microtubule associated protein functioning in oocyte meiotic spindle architecture. Exp Cell Res 371:435–443CrossRefPubMedPubMedCentralGoogle Scholar
  23. Chen X, Liu P, Wang Q, Li Y, Fu L, Fu H, Zhu J, Chen Z, Zhu W, Xie C, Lou L (2018b) DCZ3112, a novel Hsp90 inhibitor, exerts potent antitumor activity against HER2-positive breast cancer through disruption of Hsp90-Cdc37 interaction. Cancer Lett 434:70–80CrossRefPubMedPubMedCentralGoogle Scholar
  24. Choudhury A, Khole VV (2013) HSP90 antibodies: a detrimental factor responsible for ovarian dysfunction. Am J Reprod Immunol 70:372–385PubMedPubMedCentralGoogle Scholar
  25. Choudhury A, Khole VV (2015) Immune-mediated destruction of ovarian follicles associated with the presence of HSP90 antibodies. Mol Reprod Dev 82:81–89CrossRefPubMedPubMedCentralGoogle Scholar
  26. Conde R, Xavier J, McLoughlin C, Chinkers M, Ovsenek N (2005) Protein phosphatase 5 is a negative modulator of heat shock factor 1. J Biol Chem 280:28989–28996CrossRefPubMedPubMedCentralGoogle Scholar
  27. Conde R, Belak ZR, Nair M, O’Carroll RF, Ovsenek N (2009) Modulation of Hsf1 activity by novobiocin and geldanamycin. Biochem Cell Biol 87:845–851CrossRefPubMedPubMedCentralGoogle Scholar
  28. Conway-Campbell BL, George CL, Pooley JR, Knight DM, Norman MR, Hager GL, Lightman SL (2011) The HSP90 molecular chaperone cycle regulates cyclical transcriptional dynamics of the glucocorticoid receptor and its coregulatory molecules CBP/p300 during ultradian ligand treatment. Mol Endocrinol 25:944–954CrossRefPubMedPubMedCentralGoogle Scholar
  29. Csermely P, Schnaider T, Soti C, Prohászka Z, Nardai G (1998) The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 79:129–168CrossRefPubMedPubMedCentralGoogle Scholar
  30. Curci A, Bevilacqua A, Fiorenza MT, Mangia F (1991) Developmental regulation of heat-shock response in mouse oogenesis: identification of differentially responsive oocyte classes during Graafian follicle development. Dev Biol 144:362–368CrossRefPubMedPubMedCentralGoogle Scholar
  31. De Bosscher K, Vanden Berghe W, Haegeman G (2000) Mechanisms of anti-inflammatoryaction and of immunosuppression by glucocorticoids: negative interference of activated glucocorticoid receptor with transcription factors. J Neuroimmunol 109:16–22CrossRefPubMedPubMedCentralGoogle Scholar
  32. De Sousa PA, Watson AJ, Schultz GA, Bilodeau-Goeseels S (1998) Oogenetic and zygotic gene expression directing early bovine embryogenesis: a review. Mol Reprod Dev 51:112–121CrossRefPubMedPubMedCentralGoogle Scholar
  33. de Souza DK, Salles LP, Camargo R, Gulart LVM, Costa E, Silva S, de Lima BD, Torres FAG, Rosa E, Silva AAM (2018) Effects of PI3K and FSH on steroidogenesis, viability and embryo development of the cumulus-oocyte complex after in vitroculture. Zygote 26:50–61CrossRefPubMedPubMedCentralGoogle Scholar
  34. Dhamad AE, Zhou Z, Zhou J, Du Y (2016) Systematic proteomic identification of the heat shock proteins (Hsp) that interact with Estrogen Receptor Alpha (ERα) and biochemical characterization of the ERα-Hsp70 interaction. PLoS One 11:e0160312CrossRefPubMedPubMedCentralGoogle Scholar
  35. Dlugosz A, Janecka A (2017) Novobiocin analogs as potential anticancer agents. Mini Rev Med Chem 17:728–733CrossRefPubMedPubMedCentralGoogle Scholar
  36. Driancourt MA, Guet P, Reynaud K, Chadli A, Catelli MG (1999) Presence of an aromatase inhibitor, possibly heat shock protein 90 in dominant follicles of cattle. J Reprod Fertil 115:45–58CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ebong IO, Beilsten-Edmands V, Patel NA, Morgner N, Robinson CV (2016) The interchange of immunophilins leads to parallel pathways and different intermediates in the assembly of Hsp90 glucocorticoid receptor complexes. Cell Discov 2:16002CrossRefPubMedPubMedCentralGoogle Scholar
  38. Echeverría PC, Briand PA, Picard D (2016) A remodeled Hsp90 molecular chaperone ensemble with the novel cochaperone Aarsd1 is required for muscle differentiation. Mol Cell Biol 36:1310–1321CrossRefPubMedPubMedCentralGoogle Scholar
  39. Eckl JM, Scherr MJ, Freiburger L, Daake MA, Sattler M, Richter K (2015) Hsp90·Cdc37 complexes with protein kinases form cooperatively with multiple distinct interaction sites. J Biol Chem 290:30843–30854CrossRefPubMedPubMedCentralGoogle Scholar
  40. Elis S, Oseikria M, Vitorino Carvalho A, Bertevello PS, Corbin E, Teixeira-Gomes AP, Lecardonnel J, Archilla C, Duranthon V, Labas V, Uzbekova S (2017) Docosahexaenoic acid mechanisms of action on the bovine oocyte-cumulus complex. J Ovarian Res 10:74CrossRefPubMedPubMedCentralGoogle Scholar
  41. Eppig JJ (1996) Coordination of nuclear and cytoplasmic oocyte maturation in eutherian mammals. Reprod Fertil Dev 8:485–489CrossRefPubMedPubMedCentralGoogle Scholar
  42. Eppig JJ (2001) Oocyte control of ovarian follicular development and function in mammals. Reproduction 122:829–838CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ernst EH, Franks S, Hardy K, Villesen P, Lykke-Hartmann K (2018) Granulosa cells from human primordial and primary follicles show differential global gene expression profiles. Hum Reprod 33:666–679CrossRefPubMedPubMedCentralGoogle Scholar
  44. Etard C, Roostalu U, Strähle U (2008) Shuttling of the chaperones Unc45b and Hsp90a between the A band and the Z line of the myofibril. J Cell Biol 180:1163–1175CrossRefPubMedPubMedCentralGoogle Scholar
  45. Fair T, Hulshof SC, Hyttel P, Greve T, Boland M (1997) Nucleus ultrastructure and transcriptional activity of bovine oocytes in preantral and early antral follicles. Mol Reprod Dev 46:208–215CrossRefPubMedPubMedCentralGoogle Scholar
  46. Ferraro M, D’Annessa I, Moroni E, Morra G, Paladino A, Rinaldi S, Compostella F, Colombo G (2018) Allosteric modulators of HSP90 and HSP70: dynamics meets function through structure-based drug design. J Med Chem 62:60–87Google Scholar
  47. Fisher DL, Mandart E, Dorée M (2000) Hsp90 is required for c-Mos activation and biphasic MAP kinase activation in Xenopus oocytes. EMBO J 19:1516–1524CrossRefPubMedPubMedCentralGoogle Scholar
  48. Fostinis Y, Theodoropoulos PA, Gravanis A, Stournaras C (1992) Heat shock protein HSP90 and its association with the cytoskeleton: a morphological study. Biochem Cell Biol 70:779–786CrossRefPubMedPubMedCentralGoogle Scholar
  49. Frank LA, Sutton-McDowall ML, Brown HM, Russell DL, Gilchrist RB, Thompson JG (2014) Hyperglycaemic conditions perturb mouse oocyte in vitro developmental competence via beta-O-linked glycosylation of heat shock protein 90. Hum Reprod 29:1292–1303CrossRefPubMedPubMedCentralGoogle Scholar
  50. Fujita K, Otsuka T, Kawabata T, Kainuma S, Sakai G, Matsushima-Nishiwaki R, Kozawa O, Tokuda H (2018) HSP90 limits thrombin-stimulated IL-6 synthesis in osteoblast-like MC3T3-E1 cells: regulation of p38 MAPK. Int J Mol Med 42:2185–2192PubMedPubMedCentralGoogle Scholar
  51. Fukuyo Y, Hunt CR, Horikoshi N (2010) Geldanamycin and its anti-cancer activities. Cancer Lett 290:24–35CrossRefPubMedPubMedCentralGoogle Scholar
  52. Gao Y, Yechikov S, Vazquez AE, Chen D, Nie L (2013) Distinct roles of molecular chaperones HSP90α and HSP90β in the biogenesis of KCNQ4 channels. PLoS One 8:e57282CrossRefPubMedPubMedCentralGoogle Scholar
  53. Garbuz DG (2017) Regulation of heat shock gene expression in response to stress. Mol Biol (Mosk) 51:400–417CrossRefGoogle Scholar
  54. Gillis JL, Selth LA, Centenera MM, Townley SL, Sun S, Plymate SR, Tilley WD, Butler LM (2013) Constitutively-active androgen receptor variants function independently of the HSP90 chaperone but do not confer resistance to HSP90 inhibitors. Oncotarget 4:691–704CrossRefPubMedPubMedCentralGoogle Scholar
  55. Godini R, Fallahi H (2019) Dynamics changes in the transcription factors during early human embryonic development. J Cell Physiol 234:6489–6502CrossRefPubMedPubMedCentralGoogle Scholar
  56. Gordo AC, He CL, Smith S, Fissore RA (2001) Mitogen activated protein kinase plays a significant role in metaphase II arrest, spindle morphology, and maintenance of maturation promoting factor activity in bovine oocytes. Mol Reprod Dev 59:106–114CrossRefPubMedPubMedCentralGoogle Scholar
  57. Gorska M, Marino Gammazza A, Zmijewski MA, Campanella C, Cappello F, Wasiewicz T, Kuban-Jankowska A, Daca A, Sielicka A, Popowska U, Knap N, Antoniewicz J, Wakabayashi T, Wozniak M (2013) Geldanamycin-induced osteosarcoma cell death is associated with hyperacetylation and loss of mitochondrial pool of heat shock protein 60 (hsp60). PLoS One 8:e71135CrossRefPubMedPubMedCentralGoogle Scholar
  58. Gupta S, Lee CM, Wang JF, Parodo J, Jia SH, Hu J, Marshall JC (2018) Heat-shock protein-90 prolongs septic neutrophil survival by protecting c-Src kinase and caspase-8 from proteasomal degradation. J Leukoc Biol 103:933–944CrossRefPubMedPubMedCentralGoogle Scholar
  59. Han SJ, Chen R, Paronetto MP, Conti M (2005) Wee1B is an oocyte-specific kinase involved in the control of meiotic arrest in the mouse. Curr Biol 15:1670–1676CrossRefPubMedPubMedCentralGoogle Scholar
  60. Hapgood JP, Avenant C, Moliki JM (2016) Glucocorticoid-independent modulation of GR activity: implications for immunotherapy. Pharmacol Ther 165:93–113CrossRefPubMedPubMedCentralGoogle Scholar
  61. Harris SF, Shiau AK, Agard DA (2004) The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site. Structure 12:1087–1097CrossRefPubMedPubMedCentralGoogle Scholar
  62. He W, Hu H (2018) BIIB021, an Hsp90 inhibitor: a promising therapeutic strategy for blood malignancies (review). Oncol Rep 40:3–15PubMedPubMedCentralGoogle Scholar
  63. Holley SJ, Yamamoto KR (1995) A role for Hsp90 in retinoid receptor signal transduction. Mol Biol Cell 6:1833–1842CrossRefPubMedPubMedCentralGoogle Scholar
  64. Hong YS, Jang WJ, Chun KS, Jeong CH (2014) Hsp90 inhibition by WK88-1 potently suppresses the growth of gefitinib-resistant H1975 cells harboring the T790M mutation in EGFR. Oncol Rep 31:2619–2624CrossRefPubMedPubMedCentralGoogle Scholar
  65. Hoter A, El-Sabban ME, Naim HY (2018) The HSP90 family: structure, regulation, function, and implications in health and disease. Int J Mol Sci 19:2560.  https://doi.org/10.3390/ijms19092560CrossRefPubMedCentralGoogle Scholar
  66. Howe K, FitzHarris G (2013) Recent insights into spindle function in mammalian oocytes and early embryos. Biol Reprod 89:71CrossRefPubMedPubMedCentralGoogle Scholar
  67. Huang T, Chen S, Han H, Li H, Huang Z, Zhang J, Yin Q, Wang X, Ma X, Dai P, Duan D, Zou F, Chen X (2014) Expression of Hsp90α and cyclin B1 were related to prognosis of esophageal squamous cell carcinoma and keratin pearl formation. Int J Clin Exp Pathol 7:1544–1552PubMedPubMedCentralGoogle Scholar
  68. Inoue M, Naito K, Nakayama T, Sato E (1998) Mitogen-activated protein kinase translocates into the germinal vesicle and induces germinal vesicle breakdown in porcine oocytes. Biol Reprod 58:130–136CrossRefPubMedPubMedCentralGoogle Scholar
  69. Inoue T, Hirata K, Kuwana Y, Fujita M, Miwa J, Roy R, Yamaguchi Y (2006) Cell cycle control by daf-21/Hsp90 at the first meiotic prophase/metaphase boundary during oogenesis in Caenorhabditis elegans. Develop Growth Differ 48:25–32CrossRefGoogle Scholar
  70. Islam A, Rehana B, Zhang M, Liu ZJ, Tang S, Hartung J, Bao ED (2014) Expression of heat shock protein 90 alpha (Hsp90α) in primary neonatal rat myocardial cells exposed to various periods of heat stress in vitro. Genet Mol Res 13:2806–2816CrossRefPubMedPubMedCentralGoogle Scholar
  71. Jang WJ, Jung SK, Kang JS, Jeong JW, Bae MK, Joo SH, Park GH, Kundu JK, Hong YS, Jeong CH (2014) Anti-tumor activity of WK88-1, a novel geldanamycin derivative, in gefitinib-resistant non-small cell lung cancers with Met amplification. Cancer Sci 105:1245–1253CrossRefPubMedPubMedCentralGoogle Scholar
  72. Jérôme V, Vourc’h C, Baulieu EE, Catelli MG (1993) Cell cycle regulation of the chicken hsp90 alpha expression. Exp Cell Res 205:44–51CrossRefPubMedPubMedCentralGoogle Scholar
  73. Jiang X, Zhai H, Wang L, Luo L, Sappington TW, Zhang L (2012) Cloning of the heat shock protein 90 and 70 genes from the beet armyworm, Spodoptera exigua, and expression characteristics in relation to thermal stress and development. Cell Stress Chaperones 17:67–80CrossRefPubMedPubMedCentralGoogle Scholar
  74. Jing R, Duncan CB, Duncan SA (2017) A small-molecule screen reveals that HSP90β promotes the conversion of induced pluripotent stem cell-derived endoderm to a hepatic fate and regulates HNF4A turnover. Development 144:1764–1774CrossRefPubMedPubMedCentralGoogle Scholar
  75. Johnson JL (2012) Evolution and function of diverse Hsp90 homologs and cochaperone proteins. Biochim Biophys Acta 1823:607–613CrossRefPubMedPubMedCentralGoogle Scholar
  76. Johnson BD, Schumacher RJ, Ross ED, Toft DO (1998) Hop modulates Hsp70/Hsp90 interactions in protein folding. J Biol Chem 273:3679–3686CrossRefPubMedPubMedCentralGoogle Scholar
  77. Jolly C, Morimoto RI (2000) Role of the heat shock response and molecular chaperonesin oncogenesis and cell death. J Natl Cancer Inst 92:1564–1572CrossRefPubMedPubMedCentralGoogle Scholar
  78. Juliani CC, Silva-Zacarin EC, Santos DC, Boer PA (2008) Effects of atrazine on female Wistar rats: morphological alterations in ovarian follicles and immunocytochemical labeling of 90 kDa heat shock protein. Micron 39:607–616CrossRefPubMedPubMedCentralGoogle Scholar
  79. Kamanga-Sollo E, Pampusch MS, White ME, Hathaway MR, Dayton WR (2011) Effects of heat stress on proliferation, protein turnover, and abundance of heat shock protein messenger ribonucleic acid in cultured porcine muscle satellite cells. J Anim Sci 89:3473–3480CrossRefPubMedPubMedCentralGoogle Scholar
  80. Kancha RK, Bartosch N, Duyster J (2013) Analysis of conformational determinants underlying HSP90-kinase interaction. PLoS One 8:e68394CrossRefPubMedPubMedCentralGoogle Scholar
  81. Kanelakis KC, Pratt WB (2003) Regulation of glucocorticoid receptor ligand-bindingactivity by the hsp90/hsp70-based chaperone machinery. Methods Enzymol 364:159–173CrossRefPubMedPubMedCentralGoogle Scholar
  82. Kazlauskas A, Sundström S, Poellinger L, Pongratz I (2001) The hsp90 chaperone complex regulates intracellular localization of the dioxin receptor. Mol Cell Biol 21:2594–2607CrossRefPubMedPubMedCentralGoogle Scholar
  83. Khalid S, Paul S (2014) Identifying a C-terminal ATP binding sites-based novel Hsp90-inhibitor in silico: a plausible therapeutic approach in Alzheimer’s disease. Med Hypotheses 83:39–46CrossRefPubMedPubMedCentralGoogle Scholar
  84. Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG, Yoo HJ, Lee SJ (2016) Synergistic cytotoxicity of BIIB021 with triptolide through suppression of PI3K/Akt/mTOR and NF-κB signal pathways in thyroid carcinoma cells. Biomed Pharmacother 83:22–32CrossRefPubMedPubMedCentralGoogle Scholar
  85. King WA, Bousquet D, Greve T, Goff AK (1986) Meiosis in bovine oocytes matured invitro and in vivo. Acta Vet Scand 27:267–279PubMedPubMedCentralGoogle Scholar
  86. Kitson RR, Moody CJ (2013) Learning from nature: advances in geldanamycin- and radicicol-based inhibitors of Hsp90. J Org Chem 78:5117–5141CrossRefPubMedPubMedCentralGoogle Scholar
  87. Kitson RR, Chang CH, Xiong R, Williams HE, Davis AL, Lewis W, Dehn DL, Siegel D, Roe SM, Prodromou C, Ross D, Moody CJ (2013) Synthesis of 19-substituted geldanamycins with altered conformations and their binding to heat shock protein Hsp90. Nat Chem 5:307–314CrossRefPubMedPubMedCentralGoogle Scholar
  88. Kohda T, Kondo K, Oishi M (1991) Cellular HSP90 (HSP86) mRNA level and in vitro differentiation of mouse embryonal carcinoma (F9) cells. FEBS Lett 290:107–110CrossRefPubMedPubMedCentralGoogle Scholar
  89. Kolosenko I, Grander D, Tamm KP (2014) IL-6 activated JAK/STAT3 pathway and sensitivity to Hsp90 inhibitors in multiple myeloma. Curr Med Chem 21:3042–3047CrossRefPubMedPubMedCentralGoogle Scholar
  90. Koyasu S, Nishida E, Kadowaki T, Matsuzaki F, Iida K, Harada F, Kasuga M, Sakai H, Yahara I (1986) Two mammalian heat shock proteins, HSP90 and HSP100, are actin-binding proteins. Proc Natl Acad Sci USA 83:8054–8058CrossRefPubMedPubMedCentralGoogle Scholar
  91. Kunicki JB, Petersen MN, Alexander LD, Ardi VC, McConnell JR, McAlpine SR (2011) Synthesis and evaluation of biotinylated sansalvamide A analogs and their modulation of Hsp90. Bioorg Med Chem Lett 21:4716–4719CrossRefPubMedPubMedCentralGoogle Scholar
  92. Kusuma BR, Khandelwal A, Gu W, Brown D, Liu W, Vielhauer G, Holzbeierlein J, Blagg BS (2014) Synthesis and biological evaluation of coumarin replacements of novobiocin as Hsp90 inhibitors. Bioorg Med Chem 22:1441–1449CrossRefPubMedPubMedCentralGoogle Scholar
  93. Lee MG, Liu YC, Lee, YL, El-Shazly M, Lai KH, Shih SP, Ke SC, Hong MC, Du YC, Yang JC, Sung PJ, Wen ZH Lu MC (2018) Heteronemin, a marine sesterterpenoid-type metabolite, induces apoptosis in prostate LNcap cells via oxidative and ER stress combined with the inhibition of topoisomerase II and Hsp90. Mar Drugs 16, doi:  https://doi.org/10.3390/md16060204
  94. Lejong M, Choa-Duterre M, Vanmuylder N, Louryan S (2018) Geldanamycin administration reduces the amount of primordial germ cells in the mouse embryo. Morphologie 102:219–224CrossRefPubMedPubMedCentralGoogle Scholar
  95. Li RF, Wang GF (2018) JAK/STAT5 signaling pathway inhibitor ruxolitinibreducesairway inflammation of neutrophilic asthma in mice model. Eur Rev Med Pharmacol Sci 22:835–843PubMedPubMedCentralGoogle Scholar
  96. Li M, Ai JS, Xu BZ, Xiong B, Yin S, Lin SL, Hou Y, Chen DY, Schatten H, Sun QY (2008) Testosterone potentially triggers meiotic resumption by activation of intra-oocyte SRC and MAPK in porcine oocytes. Biol Reprod 79:897–905CrossRefPubMedPubMedCentralGoogle Scholar
  97. Li HL, Huang XP, Zhou XH, Ji TH, Wu ZQ, Wang ZQ, Jiang HY, Liu FR, Zhao T (2011) Correlation of seven biological factors (Hsp90a, p53, MDM2, Bcl-2, Bax, Cytochrome C, and Cleaved caspase3) with clinical outcomes of ALK+ anaplastic large-cell lymphoma. Biomed Environ Sci 24:630–641PubMedPubMedCentralGoogle Scholar
  98. Lin H, Kolosenko I, Björklund AC, Protsyu KD, Österborg A, Grandér D, Tamm KP (2013) An activated JAK/STAT3 pathway and CD45 expression are associated with sensitivity to Hsp90 inhibitors in multiple myeloma. Exp Cell Res 319:600–611CrossRefPubMedPubMedCentralGoogle Scholar
  99. Liu L, Kong N, Xia G, Zhang M (2013a) Molecular control of oocyte meiotic arrest and resumption. Reprod Fertil Dev 25:463–471CrossRefPubMedPubMedCentralGoogle Scholar
  100. Liu C, Liu Y, Liu Y, Wu D, Luan Z, Wang E, Yu B (2013b) Ser 15 of WEE1B is a potential PKA phosphorylation target in G2/M transition in one-cell stage mouse embryos. Mol Med Rep 7:1929–1937CrossRefPubMedPubMedCentralGoogle Scholar
  101. Liu YH, Liu XM, Wang PC, Yu XX, Miao JK, Liu S, Wang YK, Du ZQ, Yang CX (2018) Heat shock protein 90α couples with the MAPK-signaling pathway to determine meiotic maturation of porcine oocytes. J Anim Sci 96:3358–3369CrossRefPubMedPubMedCentralGoogle Scholar
  102. Luo W, Sun W, Taldone T, Rodina A, Chiosis G (2010) Heat shock protein 90 in neurodegenerative diseases. Mol Neurodegener 5:24CrossRefPubMedPubMedCentralGoogle Scholar
  103. Massimini M, Palmieri C, De Maria R, Romanucci M, Malatesta D, De Martinis M, Maniscalco L, Ciccarelli A, Ginaldi L, Buracco P, Bongiovanni L, Della Salda L (2017) 17-AAG and apoptosis, autophagy, and mitophagy in Canine osteosarcoma cell lines. Vet Pathol 54:405–412CrossRefPubMedPubMedCentralGoogle Scholar
  104. Metchat A, Akerfelt M, Bierkamp C, Delsinne V, Sistonen L, Alexandre H, Christians ES (2009) Mammalian heat shock factor 1 is essential for oocyte meiosis and directly regulates Hsp90 alpha expression. J Biol Chem 284:9521–9528CrossRefPubMedPubMedCentralGoogle Scholar
  105. Metz K, Ezernieks J, Sebald W, Duschl A (1996) Interleukin-4 upregulates the heatshock protein Hsp90 alpha and enhances transcription of a reporter gene coupled toa single heat shock element. FEBS Lett 385:25–28CrossRefPubMedPubMedCentralGoogle Scholar
  106. Meyer SC, Levine RL (2014) Molecular pathways: molecular basis for sensitivity andresistance to JAK kinase inhibitors. Clin Cancer Res 20:2051–2059CrossRefPubMedPubMedCentralGoogle Scholar
  107. Miao W, Li L, Wang Y (2018) Identification of helicase proteins as clients for HSP90. Anal Chem 90:11751–11755CrossRefPubMedPubMedCentralGoogle Scholar
  108. Mikolajczyk M, Nelson MA (2004) Regulation of stability of cyclin-dependent kinase CDK11p110 and a caspase-processed form, CDK11p46, by Hsp90. Biochem J 384:461–467CrossRefPubMedPubMedCentralGoogle Scholar
  109. Millson SH, Truman AW, Rácz A, Hu B, Panaretou B, Nuttall J, Mollapour M, Söti C, Piper PW (2007) Expressed as the sole Hsp90 of yeast, the alpha and beta isoforms of human Hsp90 differ with regard to their capacities for activation of certain client proteins, whereas only Hsp90beta generates sensitivity to the Hsp90 inhibitor radicicol. FEBS J 274:4453–4463CrossRefPubMedPubMedCentralGoogle Scholar
  110. Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12:3788–3796CrossRefPubMedPubMedCentralGoogle Scholar
  111. Nakanishi M, Ando H, Watanabe N, Kitamura K, Ito K, Okayama H, Miyamoto T, Agui T, Sasaki M (2000) Identification and characterization of human Wee1B, a new member of the Wee1 family of Cdk-inhibitory kinases. Genes Cells 5:839–847CrossRefPubMedPubMedCentralGoogle Scholar
  112. Neckers L (2007) Heat shock protein 90: the cancer chaperone. J Biosci 32:517–530CrossRefPubMedPubMedCentralGoogle Scholar
  113. Nguyen MT, Csermely P, Sőti C (2013) Hsp90 chaperones PPARγ and regulates differentiation and survival of 3T3-L1 adipocytes. Cell Death Differ 20:1654–1663CrossRefPubMedPubMedCentralGoogle Scholar
  114. Obermann WMJ (2018) A motif in HSP90 and P23 that links molecular chaperones toefficient estrogen receptorα methylation by the lysine methyltransferase SMYD2. J Biol Chem 293:16479–16487CrossRefPubMedPubMedCentralGoogle Scholar
  115. Oh JS, Susor A, Schindler K, Schultz RM, Conti M (2013) Cdc25A activity is required for the metaphase II arrest in mouse oocytes. J Cell Sci 126:1081–1085CrossRefPubMedPubMedCentralGoogle Scholar
  116. Ohsako S, Bunick D, Hayashi Y (1995) Immunocytochemical observation of the 90 KD heat shock protein (HSP90): high expression in primordial and pre-meiotic germ cells of male and female rat gonads. J Histochem Cytochem 43:67–76CrossRefPubMedPubMedCentralGoogle Scholar
  117. Ou JR, Tan MS, Xie AM, Yu JT, Tan L (2014) Heat shock protein 90 in Alzheimer’s disease. Biomed Res Int 2014:796869.  https://doi.org/10.1155/2014/796869CrossRefPubMedPubMedCentralGoogle Scholar
  118. Pack CG, Ahn SG (2015) Heat shock-induced interactions among nuclear HSFs detected by fluorescence cross-correlation spectroscopy. Biochem Biophys Res Commun 463:303–308CrossRefPubMedPubMedCentralGoogle Scholar
  119. Pan Y, Cui Y, Baloch AR, Fan J, He J, Zhang Y, Zheng H, Li G, Yu S (2015) Association of heat shock protein 90 with the developmental competence of immature oocytes following cryotop and solid surface vitrification in yaks (Bos grunniens). Cryobiology 71:33–39CrossRefPubMedPubMedCentralGoogle Scholar
  120. Park SJ, Suetsugu S, Sagara H, Takenawa T (2007) HSP90 cross-links branched actin filaments induced by N-WASP and the Arp2/3 complex. Genes Cells 12:611–622CrossRefPubMedPubMedCentralGoogle Scholar
  121. Park E, Cockrem JF, Han KH, Kim DH, Jung MH, Chu JP (2012) Stress-induced activation of ovarian heat shock protein 90 in a rat model of polycystic ovary syndrome. J Obstet Gynaecol Res 38:396–407CrossRefPubMedPubMedCentralGoogle Scholar
  122. Park E, Choi CW, Kim SJ, Kim YI, Sin S, Chu JP Heo JY (2017) Hochu-ekki-to treatment improves reproductive and immune modulation in the stress-induced rat model of polycystic ovarian syndrome. Molecules 22  https://doi.org/10.3390/molecules22060978
  123. Parker LL, Piwnica-Worms H (1992) Inactivation of the p34cdc2-cyclin B complex by the human WEE1 tyrosine kinase. Science 257:1955–1957CrossRefPubMedPubMedCentralGoogle Scholar
  124. Patwardhan CA, Alfa E, Lu S, Chadli A (2015) Progesterone receptor chaperone complex-based high-throughput screening assay: identification of capsaicin as an inhibitor of the Hsp90 machine. J Biomol Screen 20:223–229CrossRefPubMedPubMedCentralGoogle Scholar
  125. Pennarossa G, Maffei S, Rahman MM, Berruti G, Brevini TA, Gandolfi F (2012) Characterization of the constitutive pig ovary heat shock chaperone machinery and its response to acute thermal stress or to seasonal variations. Biol Reprod 87:119CrossRefPubMedPubMedCentralGoogle Scholar
  126. Petrunewich MA, Trimarchi JR, Hanlan AK, Hammer MA, Baltz JM (2009) Second meiotic spindle integrity requires MEK/MAP kinase activity in mouse eggs. J Reprod Dev 55:30–38CrossRefPubMedPubMedCentralGoogle Scholar
  127. Pires ES (2017) The unmysterious roles of HSP90: ovarian pathology and autoantibodies. Adv Anat Embryol Cell Biol 222:29–44CrossRefPubMedPubMedCentralGoogle Scholar
  128. Pires ES, Khole VV (2009) A block in the road to fertility: autoantibodies to heat-shock protein 90-beta in human ovarian autoimmunity. FertilSteril 92:1395–1409Google Scholar
  129. Pirkkala L, Nykänen P, Sistonen L (2001) Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 15:1118–1131CrossRefPubMedPubMedCentralGoogle Scholar
  130. Pisa V, Cozzolino M, Gargiulo S, Ottone C, Piccioni F, Monti M, Gigliotti S, Talamo F, Graziani F, Pucci P, Verrotti AC (2009) The molecular chaperone Hsp90 is a component of the cap-binding complex and interacts with the translational repressor Cup during Drosophila oogenesis. Gene 432:67–74CrossRefPubMedPubMedCentralGoogle Scholar
  131. Pratt WB, Toft DO (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 18:306–360PubMedPubMedCentralGoogle Scholar
  132. Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 228:111–133CrossRefGoogle Scholar
  133. Rappa F, Sciume C, Lo Bello M, Bavisotto CC, Marino Gammazza A, Barone R, Campanella C, David S, Carini F, Zarcone F, Rizzuto S, Lena A, Tomasello G, Uzzo ML, Spatola GF, Bonaventura G, Leone A, Gerbino A, Cappello F, Bucchieri F, Zummo G, Farina F (2014) Comparative analysis of Hsp10 and Hsp90 expression in healthy mucosa and adenocarcinoma of the large bowel. Anticancer Res 34:4153–4159PubMedPubMedCentralGoogle Scholar
  134. Roy SS, Kapoor M (2018) In silico identification and analysis of the binding site for aminocmarin type inhibitors in the C-terminal domain of Hsp90. J Mol Graph Model 84:215–235CrossRefPubMedPubMedCentralGoogle Scholar
  135. Saadeldin IM, Swelum AA, Elsafadi M, Mahmood A, Alfayez M, Alowaimer AN (2018) Differences between the tolerance of camel oocytes and cumulus cells to acute and chronic hyperthermia. J Therm Biol 74:47–54CrossRefPubMedPubMedCentralGoogle Scholar
  136. Sagare-Patil V, Bhilawadikar R, Galvankar M, Zaveri K, Hinduja I, Modi D (2017) Progesterone requires heat shock protein 90 (HSP90) in human sperm to regulate motility and acrosome reaction. J Assist Reprod Genet 34:495–503CrossRefPubMedPubMedCentralGoogle Scholar
  137. Saif MW, Takimoto C, Mita M, Banerji U, Lamanna N, Castro J, O'Brien S, Stogard C, Von Hoff D (2014) A phase 1, dose-escalation, pharmacokinetic and pharmacodynamic study of BIIB021 administered orally in patients with advanced solid tumors. Clin Cancer Res 20:445–455CrossRefPubMedPubMedCentralGoogle Scholar
  138. Sareh H, Tulapurkar ME, Shah NG, Singh IS, Hasday JD (2011) Response of mice to continuous 5-day passive hyperthermia resembles human heat acclimation. Cell Stress Chaperones 16:297–307CrossRefPubMedPubMedCentralGoogle Scholar
  139. Sausville EA, Tomaszewski JE, Ivy P (2003) Clinical development of 17-allylamino, 17-demethoxygeldanamycin. Curr Cancer Drug Targets 3:377–383CrossRefPubMedPubMedCentralGoogle Scholar
  140. Schlatter H, Langer T, Rosmus S, Onneken ML, Fasold H (2002) A novel function for the 90 kDa heat-shock protein (Hsp90): facilitating nuclear export of 60 S ribosomal subunits. Biochem J 362:675–684CrossRefPubMedPubMedCentralGoogle Scholar
  141. Schulte TW, Blagosklonny MV, Ingui C, Neckers L (1995) Disruption of the Raf-1-Hsp90 molecular complex results in destabilization of Raf-1 and loss of Raf-1-Ras association. J Biol Chem 270:24585–24588CrossRefPubMedPubMedCentralGoogle Scholar
  142. Sen A, Caiazza F (2013) Oocyte maturation: a story of arrest and release. Front Biosci (Schol Ed) 5:451–477CrossRefGoogle Scholar
  143. Sha QQ, Dai XX, Dang Y, Tang F, Liu J, Zhang YL, Fan HY (2017) A MAPK cascade couples maternal mRNA translation and degradation to meiotic cell cycle progression in mouse oocytes. Development 144:452–463CrossRefPubMedPubMedCentralGoogle Scholar
  144. Shakoori AR, Oberdorf AM, Owen TA, Weber LA, Hickey E, Stein JL, Lian JB, Stein GS (1992) Expression of heat shock genes during differentiation of mammalian osteoblasts and promyelocytic leukemia cells. J Cell Biochem 48:277–287CrossRefPubMedPubMedCentralGoogle Scholar
  145. Shen HY, Zhao Y, Chen XY, Xiong RP, Lu JL, Chen JF, Chen LY, Zhou YG (2010) Differential alteration of heat shock protein 90 in mice modifies glucocorticoid receptor function and susceptibility to trauma. J Neurotrauma 27:373–381CrossRefPubMedPubMedCentralGoogle Scholar
  146. Shimamura T, Perera SA, Foley KP, Sang J, Rodig SJ, Inoue T, Chen L, Li D, Carretero J, Li YC, Sinha P, Carey CD, Borgman CL, Jimenez JP, Meyerson M, Ying W, Barsoum J, Wong KK, Shapiro GI (2012) Ganetespib (STA-9090), a nongeldanamycin HSP90 inhibitor, has potent antitumor activity in in vitro and in vivo models of non-small cell lung cancer. Clin Cancer Res 18:4973–4985CrossRefPubMedPubMedCentralGoogle Scholar
  147. Shimaoka T, Nishimura T, Kano K, Naito K (2011) Analyses of the regulatory mechanism of porcine WEE1B: the phosphorylation sites of porcine WEE1B and mouse WEE1B are different. J Reprod Dev 57:223–228CrossRefPubMedPubMedCentralGoogle Scholar
  148. Sima S, Richter K (2018) Regulation of the Hsp90 system. Biochim Biophys Acta Mol Cell Res 1865:889–897CrossRefPubMedPubMedCentralGoogle Scholar
  149. Singh A, Singh A, Sand JM, Bauer SJ, Hafeez BB, Meske L, Verma AK (2015) Topically applied Hsp90 inhibitor 17AAG inhibits UVR-induced cutaneous squamous cell carcinomas. J Invest J Invest Dermatol 135:1098–1107CrossRefGoogle Scholar
  150. Smith DF, Whitesell L, Katsanis E (1998) Molecular chaperones: biology and prospects for pharmacological intervention. Pharmacol Rev 50:493–514PubMedPubMedCentralGoogle Scholar
  151. Soga S, Akinaga S, Shiotsu Y (2013) Hsp90 inhibitors as anti-cancer agents, from basic discoveries to clinical development. Curr Pharm Des 19:366–376CrossRefPubMedPubMedCentralGoogle Scholar
  152. Somasundaram T, Bhat SP (2004) Developmentally dictated expression of heat shock factors: exclusive expression of HSF4 in the postnatal lens and its specific interaction with alphaB-crystallin heat shock promoter. J Biol Chem 279:44497–44503CrossRefPubMedPubMedCentralGoogle Scholar
  153. Soo ET, Yip GW, Lwin ZM, Kumar SD, Bay BH (2008) Heat shock proteins as novel therapeutic targets in cancer. In Vivo 22:311–315PubMedPubMedCentralGoogle Scholar
  154. Suzuki M, Takeda T, Nakagawa H, Iwata S, Watanabe T, Siddiquey MN, Goshima F, Murata T, Kawada J, Ito Y, Kojima S, Kimura H (2015) The heat shock protein 90 inhibitor BIIB021 suppresses the growth of T and natural killer cell lymphomas. Front Microbiol 6:280PubMedPubMedCentralGoogle Scholar
  155. Szent-Gyorgyi C (1995) A bipartite operator interacts with a heat shock element to mediate early meiotic induction of Saccharomyces cerevisiae HSP82. Mol Cell Biol 15:6754–6769CrossRefPubMedPubMedCentralGoogle Scholar
  156. Tago K, Tsukahara F, Naruse M, Yoshioka T, Takano K (2004) Hsp90 inhibitors attenuate effect of dexamethasone on activated NF-kappaB and AP-1. Life Sci 74:1981–1992CrossRefPubMedPubMedCentralGoogle Scholar
  157. Taherian A, Krone PH, Ovsenek N (2008) A comparison of Hsp90 alpha and Hsp90 beta interactions with cochaperones and substrates. Biochem Cell Biol 86:37–45CrossRefPubMedPubMedCentralGoogle Scholar
  158. Taherian A, Ovsenek N, Krone PH (2010) Expression of hsp90 alpha and hsp90 beta during Xenopus laevis embryonic development. Iran Biomed J 14:127–135PubMedPubMedCentralGoogle Scholar
  159. Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11:515–528CrossRefGoogle Scholar
  160. Taldone T, Gozman A, Maharaj R, Chiosis G (2008) Targeting Hsp90: small-molecule inhibitors and their clinical development. Curr Opin Pharmacol 8:370–374CrossRefPubMedPubMedCentralGoogle Scholar
  161. Tassone G, Mangani S, Botta M, Pozzi C (2018) Probing the role of Arg97 in heat shock protein 90 N-terminal domain from the parasite Leishmania braziliensis through site-directed mutagenesis on the human counterpart. Biochim Biophys Acta Proteins Proteomics 1866:1190–1198CrossRefPubMedPubMedCentralGoogle Scholar
  162. Trotman JB, Agana BA, Giltmier AJ, Wysocki VH, Schoenberg DR (2018) RNA-binding proteins and heat-shock protein 90 are constituents of the cytoplasmic capping enzyme interactome. J Biol Chem 293:16596–16607CrossRefPubMedPubMedCentralGoogle Scholar
  163. Uzawa M, Grams J, Madden B, Toft D, Salisbury JL (1995) Identification of a complex between centrin and heat shock proteins in CSF-arrested Xenopus oocytes and dissociation of the complex following oocyte activation. Dev Biol 171:51–59CrossRefPubMedPubMedCentralGoogle Scholar
  164. Vasko RC, Rodriguez RA, Cunningham CN, Ardi VC, Agard DA, McAlpine SR (2010) Mechanistic studies of Sansalvamide A-amide: an allosteric modulator of Hsp90. ACS Med Chem Lett 1:4–8CrossRefPubMedPubMedCentralGoogle Scholar
  165. Velazquez MM, Alfaro NS, Dupuy CR, Salvetti NR, Rey F, Ortega HH (2010) Heat shock protein patterns in the bovine ovary and relation with cystic ovarian disease. Anim Reprod Sci 118:201–209CrossRefPubMedPubMedCentralGoogle Scholar
  166. Velázquez MM, Salvetti NR, Amweg AN, Díaz PU, Matiller V, Ortega HH (2013) Changes in the expression of heat shock proteins in ovaries from bovines with cystic ovarian disease induced by ACTH. Res Vet Sci 95:1059–1067CrossRefPubMedPubMedCentralGoogle Scholar
  167. Voellmy R, Boellmann F (2007) Chaperone regulation of the heat shock protein response. Adv Exp Med Biol 594:89–99CrossRefPubMedPubMedCentralGoogle Scholar
  168. Wagatsuma A, Takayama Y, Hoshino T, Shiozuka M, Yamada S, Matsuda R, Mabuchi K (2017) Pharmacological targeting of HSP90 with 17-AAG induces apoptosis of myogenic cells through activation of the intrinsic pathway. Mol Cell Biochem 445:45–58CrossRefPubMedPubMedCentralGoogle Scholar
  169. Wanderling S, Simen BB, Ostrovsky O, Ahmed NT, Vogen SM, Gidalevitz T, Argon Y (2007) GRP94 is essential for mesoderm induction and muscle development because it regulates insulin-like growth factor secretion. Mol Biol Cell 18:3764–3775CrossRefPubMedPubMedCentralGoogle Scholar
  170. Wang QC, Liu J, Duan X, Cui XS, Kim NH, Xiong B, Sun SC (2015a) The dynamin 2 inhibitor Dynasore affects the actin filament distribution during mouse early embryo development. J Reprod Dev 61:49–53CrossRefPubMedPubMedCentralGoogle Scholar
  171. Wang F, Zhang L, Duan X, Zhang GL, Wang ZB, Wang Q, Xiong B, Sun SC (2015b) RhoA-mediated FMNL1 regulates GM130 for actin assembly and phosphorylates MAPK for spindle formation in mouse oocyte meiosis. Cell Cycle 14:2835–2843CrossRefPubMedPubMedCentralGoogle Scholar
  172. Weber H, Valbuena JR, Barbhuiya MA, Stein S, Kunkel H, García P, Bizama C, Riquelme I, Espinoza JA, Kurtz SE, Tyner JW, Calderon JF, Corvalán AH, Grez M, Pandey A, Leal-Rojas P, Roa JC (2017) Small molecule inhibitor screening identifified HSP90 inhibitor 17-AAG as potential therapeutic agent for gallbladder cancer. Oncotarget 8:26169–26184PubMedPubMedCentralGoogle Scholar
  173. Weis F, Moullintraffort L, Heichette C, Chrétien D, Garnier C (2010) The 90-kDa heat shock protein Hsp90 protects tubulin against thermal denaturation. J Biol Chem 285:9525–9534CrossRefPubMedPubMedCentralGoogle Scholar
  174. Weisberg E, Barrett R, Liu Q, Stone R, Gray N, Griffin JD (2009) FLT3 inhibition and mechanisms of drug resistance in mutant FLT3-positive AML. Drug Resist Updat 12:81–89CrossRefPubMedPubMedCentralGoogle Scholar
  175. Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772CrossRefGoogle Scholar
  176. Whitesell L, Shifrin SD, Schwab G, Neckers LM (1992) Benzoquinonoid ansamycins possess selective tumoricidal activity unrelated to src kinase inhibition. Cancer Res 52:1721–1728PubMedPubMedCentralGoogle Scholar
  177. Wu L, Chen X, Huang L, Tian J, Ke F, Xu J, Chen Y, Zheng M (2015) A Novobiocin derivative, XN4, inhibits the proliferation of chronic myeloid leukemia cells by inducing oxidative DNA damage. PLoS One 10:e0123314CrossRefPubMedPubMedCentralGoogle Scholar
  178. Xu Y, Zhu Q, Chen D, Shen Z, Wang W, Ning G, Zhu Y (2015) The HSP90 inhibitor 17-AAG exhibits potent antitumor activity for pheochromocytoma in a xenograft model. Tumour Biol 36:5103–5108CrossRefPubMedPubMedCentralGoogle Scholar
  179. Yamada O, Ozaki K, Akiyama M, Kawauchi K (2012) JAK-STAT and JAK-PI3K-mTORC1 pathways regulate telomerase transcriptionally and posttranslationally in ATL cells. Mol Cancer Ther 11:1112–1121CrossRefPubMedPubMedCentralGoogle Scholar
  180. Yamamoto TM, Wang L, Fisher LA, Eckerdt FD, Peng A (2014) Regulation of greatwall kinase by protein stabilization and nuclear localization. Cell Cycle 13:3565–3575CrossRefPubMedPubMedCentralGoogle Scholar
  181. Yang X, Cui Y, Yue J, He H, Yu C, Liu P, Liu J, Ren X, Meng Y (2017) The histological characteristics, age-related thickness change of skin, and expression of the HSPs in the skin during hair cycle in yak (Bos grunniens). PLoS One 12:e0176451CrossRefPubMedPubMedCentralGoogle Scholar
  182. Yu J, Li Y, Wang T, Zhong X (2018) Modification of N6-methyladenosine RNA methylation on heat shock protein expression. PLoS One 13:e0198604CrossRefPubMedPubMedCentralGoogle Scholar
  183. Zhang DX, Park WJ, Sun SC, Xu YN, Li YH, Cui XS, Kim NH (2011) Regulation of maternal gene expression by MEK/MAPK and MPF signaling in porcine oocytes during in vitro meiotic maturation. J Reprod Dev 57:49–56CrossRefPubMedPubMedCentralGoogle Scholar
  184. Zhang Y, Gu S, Li C, Sang M, Wu W, Yun X, Hu X, Li B (2014) Identification and characterization of novel ER-based hsp90 gene in the red flour beetle, Tribolium castaneum. Cell Stress Chaperones 19:623–633CrossRefPubMedPubMedCentralGoogle Scholar
  185. Zhao X, Wang J, Xiao L, Xu Q, Zhao E, Zheng X, Zheng H, Zhao S, Ding S (2016) Effects of 17-AAG on the cell cycle and apoptosis of H446 cells and the associated mechanisms. Mol Med Rep 14:1067–1074CrossRefPubMedPubMedCentralGoogle Scholar
  186. Zhao X, Wang J, Xiao L, Xu Q, Zhao E, Zheng X, Zheng H, Zhao S, Ding S (2017) Effects of 17-allylamino-17-demethoxygeldanamycin on the induction of apoptosis and cell cycle arrest in HCT-116 cells. Oncol Lett 14:2177–2185CrossRefPubMedPubMedCentralGoogle Scholar
  187. Zhao YR, Li HM, Zhu M, Li J, Ma T, Huo Q, Hong YS, Wu CZ (2018) Non-benzoquinone geldanamycin analog, WK-88-1, induces apoptosis in human breast cancer cell lines. J Microbiol Biotechnol 28:542–550PubMedPubMedCentralGoogle Scholar
  188. Zhuandi G, Tuanjie C, Luju L, Abdiryim A, Yingying D, Haoqin L, Suocheng W, Li D (2018) FSH receptor binding inhibitor restrains follicular development and possibly attenuates carcinogenesis of ovarian cancer through down-regulating expressionlevels of FSHR and ERβ in normal ovarian tissues. Gene 668:174–181CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.College of Animal ScienceYangtze UniversityJingzhouChina
  2. 2.College of Animal Science and TechnologyNortheast Agricultural UniversityHarbinChina

Personalised recommendations