Theranostic Implications of Heat Shock Proteins in Idiopathic Pulmonary Fibrosis

  • Ganapasam SudhandiranEmail author
  • Divya Thomas
  • Vadivel Dineshbabu
  • Soumya Krishnan
Part of the Heat Shock Proteins book series (HESP, volume 19)


Heat shock proteins, also known as ‘stress proteins’ are large family of chaperones that are involved in the proper formation, maturation and maintenance of variety of proteins to promote cell survival under stress condition. Normal chaperone machinery is essential for the endogenous adaptation of several tissues in stress environment; however, altered chaperone function has been strongly associated with the molecular orchestration in the progression of several diseases. Therefore, inhibitors of molecular chaperones are emerging as attractive drug targets against various diseases. Idiopathic pulmonary fibrosis is a grave disease whose pathogenic factors remain unknown. Multiple mechanisms including TGFβ/Smad regulated epithelial mesenchymal transition and aberrant cell death pattern contribute to this disease. Recently, growing body of evidences demonstrate the involvement of large and small heat shock proteins contributing to this disease. The knowledge about the pathophysiological role of heat shock proteins has been well updated in cancers; however, its role in the initiation and progression of fibrosis is poorly addressed. Since the therapeutic options for pulmonary fibrosis are very much limited, it is noteworthy to discuss the important theranostic applications of heat shock proteins in pulmonary fibrosis which is becoming a blistering field in fibrosis research.


Apoptosis Heat shock proteins Idiopathic pulmonary fibrosis Molecular chaperones Transforming growth factor beta 



Alveolar epithelial cells


Extra cellular matrix


Epithelial to mesenchymal transition


Heat shock proteins


Idiopathic pulmonary fibrosis


Mitogen activated protein kinase


Matrix metalloproteases


Reactive oxygen species


Transforming growth factor beta



The authors thank Indian Council of Medical Research (ICMR), New Delhi, Govt. of India for a major research grant (52/21/08/BMS/) in Pulmonary fibrosis.


  1. Altieri DC, Stein GS, Lian JB, Languino LR (2012) TRAP-1, the mitochondrial Hsp90. Biochim Biophys Acta (BBA)-Mol Cell Res 1823:767–773CrossRefGoogle Scholar
  2. Barratt S, Creamer A, Hayton C, Chaudhuri N (2018) Idiopathic pulmonary fibrosis (IPF): an overview. J Clin Med 7:E201CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bartsch K, Hombach-Barrigah A, Clos J (2017) Hsp90 inhibitors radicicol and geldanamycin have opposing effects on Leishmania Aha1-dependent proliferation. Cell Stress Chaperones 22:729–742CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bellaye PS, Kolb M (2015) Why do patients get idiopathic pulmonary fibrosis? Current concepts in the pathogenesis of pulmonary fibrosis. BMC Med 13:176CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bellaye PS, Burgy O, Causse S, Garrido C, Bonniaud P (2014) Heat shock proteins in fibrosis and wound healing: good or evil? Pharmacol Ther 143:119–132CrossRefPubMedPubMedCentralGoogle Scholar
  6. Blackledge G, Averbuch S (2004) Gefitinib (‘Iressa’, ZD1839) and new epidermal growth factor receptor inhibitors. Br J Cancer 90:566–572CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bonniaud P, Burgy O, Garrido C (2018) Heat shock protein-90 toward theranostics: a breath of fresh air in idiopathic pulmonary fibrosis. Eur Respir J 51:pii: 1702612Google Scholar
  8. Boridy S, Le PU, Petrecca K, Maysinger D (2014) Celastrol targets proteostasis and acts synergistically with a heat-shock protein 90 inhibitor to kill human glioblastoma cells. Cell Death Dis 5:e1216CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR (2010) The BCL-2 family reunion. Mol Cell 37:299–310CrossRefPubMedPubMedCentralGoogle Scholar
  10. Csermely P, Schnaider T, So C, Prohászka Z, Nardai G (1998) The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 79:129–168CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dewson GKRM, Kluck RM (2010) Bcl-2 family-regulated apoptosis in health and disease. Cell Health Cytoskeleton 2:9–22Google Scholar
  12. Dimitropoulou C, Catravas J, Barabutis N, Thangjam G (2017) Heat shock protein 90 inhibitors block pulmonary fibrosis and dysfunction in HCl-exposed mice. PA1033Google Scholar
  13. Divya T, Dineshbabu V, Soumyakrishnan S, Sureshkumar A, Sudhandiran G (2016) Celastrol enhances Nrf2 mediated antioxidant enzymes and exhibits anti-fibrotic effect through regulation of collagen production against bleomycin-induced pulmonary fibrosis. Chem Biol Interact 246:52–62CrossRefPubMedPubMedCentralGoogle Scholar
  14. Divya T, Sureshkumar A, Sudhandiran G (2017) Autophagy induction by celastrol augments protection against bleomycin-induced experimental pulmonary fibrosis in rats: role of adaptor protein p62/SQSTM1. Pulm Pharmacol Ther 45:47–61CrossRefPubMedPubMedCentralGoogle Scholar
  15. Divya T, Velavan B, Sudhandiran G (2018) Regulation of transforming growth factor β/Smad-mediated epithelial–mesenchymal transition by celastrol provides protection against bleomycin-induced pulmonary fibrosis. Basic Clin Pharmacol Toxicol 123:122–129CrossRefGoogle Scholar
  16. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fan XX, Li N, Wu JL, Zhou YL, He JX, Liu L, Leung E (2014) Celastrol induces apoptosis in gefitinib-resistant non-small cell lung cancer cells via caspases-dependent pathways and Hsp90 client protein degradation. Molecules 19:3508–3522CrossRefPubMedPubMedCentralGoogle Scholar
  18. Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282CrossRefPubMedPubMedCentralGoogle Scholar
  19. Feldman DE, Frydman J (2000) Protein folding in vivo: the importance of molecular chaperones. Curr Opin Struct Biol 10:26–33CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fernandez IE, Eickelberg O (2012) The impact of TGF-β on lung fibrosis: from targeting to biomarkers. Proc Am Thorac Soc 9:111–116CrossRefGoogle Scholar
  21. Garrido C, Gurbuxani S, Ravagnan L, Kroemer G (2001) Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun 286:433–442CrossRefGoogle Scholar
  22. Haque A, Alam Q, ZubairAlam M, Azhar EI, HussainWaliSait K, Anfinan N, Mushtaq G, Amjad Kamal M, Rasool M (2016) Current understanding of HSP90 as a novel therapeutic target: an emerging approach for the treatment of cancer. Curr Pharm Des 22:2947–2959CrossRefGoogle Scholar
  23. Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hobbs GS, Somasundara AVH, Kleppe M, Litvin R, Arcila M, Ahn J, McKenney AS, Knapp K, Ptashkin R, Weinstein H, Heinemann MH (2018) Hsp90 inhibition disrupts JAK-STAT signaling and leads to reductions in splenomegaly in patients with myeloproliferative neoplasms. Haematologica 103:e5–e9CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jäättelä M (1999) Heat shock proteins as cellular lifeguards. Ann Med 31:261–271CrossRefGoogle Scholar
  26. Jego G, Hazoumé A, Seigneuric R, Garrido C (2013) Targeting heat shock proteins in cancer. Cancer Lett 332:275–285CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kahloon RA, Xue J, Bhargava A, Csizmadia E, Otterbein L, Kass DJ, Bon J, Soejima M, Levesque MC, Lindell KO, Gibson KF (2013) Patients with idiopathic pulmonary fibrosis with antibodies to heat shock protein 70 have poor prognoses. Am J Respir Crit Care Med 187:768–775CrossRefPubMedPubMedCentralGoogle Scholar
  28. Karagöz GE, Rüdiger SG (2015) Hsp90 interaction with clients. Trends Biochem Sci 40:117–125CrossRefPubMedPubMedCentralGoogle Scholar
  29. Katzenstein ALA, Myers JL (1998) Idiopathic pulmonary fibrosis: clinical relevance of pathologic classification. Am J Respir Crit Care Med 157:1301–1315CrossRefGoogle Scholar
  30. Kaushik S, Cuervo AM (2015) Proteostasis and aging. Nat Med 21:1406–1415CrossRefPubMedPubMedCentralGoogle Scholar
  31. King TE Jr, Pardo A, Selman M (2011) Idiopathic pulmonary fibrosis. Lancet 378:1949–1961CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ko JC, Chen HJ, Huang YC, Tseng SC, Weng SH, Wo TY, Huang YJ, Chiu HC, Tsai MS, Chiou RY, Lin YW (2012) HSP90 inhibition induces cytotoxicity via down-regulation of Rad51 expression and DNA repair capacity in non-small cell lung cancer cells. Regul Toxicol Pharmacol 64:415–424CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kumar Pandurangan A, Divya T, Kumar K, Dineshbabu V, Velavan B, Sudhandiran G (2018) Colorectal carcinogenesis: insights into the cell death and signal transduction pathways: a review. World J Gastrointest Oncol 10:244–259CrossRefGoogle Scholar
  34. Lee SB, Lim AR, Rah DK, Kim KS, Min HJ (2016) Modulation of heat shock protein 90 affects TGF-β-induced collagen synthesis in human dermal fibroblast cells. Tissue Cell 48:616–623CrossRefPubMedPubMedCentralGoogle Scholar
  35. Li J, Soroka J, Buchner J (2012) The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Biochim Biophys Acta 1823:624–635CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191CrossRefPubMedPubMedCentralGoogle Scholar
  37. Liu RM, Desai LP (2015) Reciprocal regulation of TGF-β and reactive oxygen species: a perverse cycle for fibrosis. Redox Biol 6:565–577CrossRefPubMedPubMedCentralGoogle Scholar
  38. Liu X, Yan Z, Huang L, Guo M, Zhang Z, Guo C (2011) Cell surface heat shock protein 90 modulates prostate cancer cell adhesion and invasion through the integrin-β1/focal adhesion kinase/c-Srcsignaling pathway. Oncol Rep 25:1343–1351PubMedPubMedCentralGoogle Scholar
  39. Liu YH, Liu XM, Wang PC, Yu XX, Miao JK, Liu S, Wang YK, Du ZQ, Yang CX (2018) Heat shock protein 90α couples with the MAPK-signaling pathway to determine meiotic maturation of porcine oocytes. J Anim Sci 96:3358–3369CrossRefPubMedPubMedCentralGoogle Scholar
  40. Massagué J (2008) TGFβ in cancer. Cell 134:215–230CrossRefPubMedPubMedCentralGoogle Scholar
  41. Massagué J, Chen YG (2000) Controlling TGF-β signaling. Genes Dev 14:627–644PubMedPubMedCentralGoogle Scholar
  42. Mayer MP (2010) Gymnastics of molecular chaperones. Mol Cell 39:321–331CrossRefPubMedPubMedCentralGoogle Scholar
  43. Mayer MP, Bukau B (1999) Molecular chaperones: the busy life of Hsp90. Curr Biol 9:R322–R325CrossRefPubMedPubMedCentralGoogle Scholar
  44. Mellatyar H, Talaei S, Pilehvar-Soltanahmadi Y, Barzegar A, Akbarzadeh A, Shahabi A, Barekati-Mowahed M, Zarghami N (2018) Targeted cancer therapy through 17-DMAG as an Hsp90 inhibitor: overview and current state of the art. Biomed Pharmacother 102:608–617CrossRefPubMedPubMedCentralGoogle Scholar
  45. Mollapour M, Neckers L (2012) Post-translational modifications of Hsp90 and their contributions to chaperone regulation. Biochim Biophys Acta (BBA)-Mol Cell Res 1823:648–655CrossRefGoogle Scholar
  46. Neckers L, Schulte TW, Mimnaugh E (1999) Geldanamycin as a potential anti-cancer agent: its molecular target and biochemical activity. Investig New Drugs 17:361–373CrossRefGoogle Scholar
  47. Nowrin K, Sohal SS, Peterson G, Patel R, Walters EH (2014) Epithelial-mesenchymal transition as a fundamental underlying pathogenic process in COPD airways: fibrosis, remodeling and cancer. Expert Rev Respir Med 8:547–559CrossRefPubMedPubMedCentralGoogle Scholar
  48. Park AM, Kanai K, Itoh T, Sato T, Tsukui T, Inagaki Y, Selman M, Matsushima K, Yoshie O (2016) Heat shock protein 27 plays a pivotal role in myofibroblast differentiation and in the development of bleomycin-induced pulmonary fibrosis. PLoS One 9:e0148998CrossRefGoogle Scholar
  49. Passinen S, Valkila J, Manninen T, Syvälä H, Ylikomi T (2001) The C-terminal half of Hsp90 is responsible for its cytoplasmic localization. Eur J Biochem 268:5337–5342CrossRefPubMedPubMedCentralGoogle Scholar
  50. Prodromou C (2012) The ‘active life’ of Hsp90 complexes. Biochim Biophys Acta 1823:614–623CrossRefPubMedPubMedCentralGoogle Scholar
  51. Raghu G, Weycker D, Edelsberg J, Bradford WZ, Oster G (2006) Incidence and prevalence of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 174:810–816CrossRefGoogle Scholar
  52. Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40:253–266CrossRefGoogle Scholar
  53. Ritossa F (1962) A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18:571–573CrossRefGoogle Scholar
  54. Ritossa F (1996) Discovery of the heat shock response. Cell Stress Chaperones 1:97–98CrossRefPubMedPubMedCentralGoogle Scholar
  55. Sakuma Y (2017) Epithelial to mesenchymal transition and its role in EGFR mutant lung adenocarcinoma and idiopathic pulmonary fibrosis. Pathol Int 67:379–388CrossRefGoogle Scholar
  56. Sausville EA, Tomaszewski JE, Ivy P (2003) Clinical development of 17-allylamino, 17-demethoxygeldanamycin. Curr Cancer Drug Targets 3:377–383CrossRefPubMedPubMedCentralGoogle Scholar
  57. Schopf FH, Biebl MM, Buchner J (2017) The HSP90 chaperone machinery. Nat Rev Mol Cell Biol 18:345–360CrossRefGoogle Scholar
  58. Seigneuric R, Mjahed H, Gobbo J, Joly AL, Berthenet K, Shirley S, Garrido C (2011) Heat shock proteins as danger signals for cancer detection. Front Oncol 10(1):37Google Scholar
  59. Sibinska Z, Tian X, Korfei M, Kojonazarov B, Kolb JS, Klepetko W, Kosanovic D, Wygrecka M, Ghofrani HA, Weissmann N, Grimminger F (2017) Amplified canonical transforming growth factor-β signalling via heat shock protein 90 in pulmonary fibrosis. Eur Respir J 49:1501941CrossRefGoogle Scholar
  60. Supko JG, Hickman RL, Grever MR, Malspeis L (1995) Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol 36:305–315CrossRefPubMedPubMedCentralGoogle Scholar
  61. Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11:515–528CrossRefGoogle Scholar
  62. Thannickal VJ, Horowitz JC (2006) Evolving concepts of apoptosis in idiopathic pulmonary fibrosis. Proc Am Thorac Soc 3:350–356CrossRefPubMedPubMedCentralGoogle Scholar
  63. Tissiéres A, Mitchell HK, Tracy UM (1974) Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol 84:389–398CrossRefGoogle Scholar
  64. Tomcik M, Zerr P, Pitkowski J, Palumbo-Zerr K, Avouac J, Distler O, Becvar R, Senolt L, Schett G, Distler JH (2014) Heat shock protein 90 (Hsp90) inhibition targets canonical TGF-β signalling to prevent fibrosis. Ann Rheum Dis 73:1215–1222CrossRefGoogle Scholar
  65. Walter S, Buchner J (2002) Molecular chaperones—cellular machines for protein folding. Angew Chem Int Ed 41:1098–1113CrossRefGoogle Scholar
  66. Wang YQ, Shen AJ, Sun JY, Wang X, Liu HC, Zhang MM, Chen DQ, Xiong B, Shen JK, Geng MY, Zheng M (2016) Targeting Hsp90 with FS-108 circumvents gefitinib resistance in EGFR mutant non-small cell lung cancer cells. Acta Pharmacol Sin 37:1587–1596CrossRefPubMedPubMedCentralGoogle Scholar
  67. Waza M, Adachi H, Katsuno M, Minamiyama M, Tanaka F, Sobue G (2006) Alleviating neurodegeneration by an anticancer agent: an Hsp90 inhibitor (17-AAG). Ann N Y Acad Sci 1086:21–34CrossRefGoogle Scholar
  68. Wei W, Wu S, Wang X, Sun CKW, Yang X, Yan X, Chua MS, So S (2014) Novel celastrol derivatives inhibit the growth of hepatocellular carcinoma patient-derived xenografts. Oncotarget 5:5819–5831PubMedPubMedCentralGoogle Scholar
  69. Wynn TA (2011) Integrating mechanisms of pulmonary fibrosis. J Exp Med 208:1339–1350CrossRefPubMedPubMedCentralGoogle Scholar
  70. Xaubet A, Marin-Arguedas A, Lario S, Ancochea J, Morell F, Ruiz-Manzano J, Rodriguez-Becerra E, Rodriguez-Arias JM, Inigo P, Sanz S, Campistol JM (2003) Transforming growth factor-β1 gene polymorphisms are associated with disease progression in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 168:431–435CrossRefPubMedPubMedCentralGoogle Scholar
  71. Yang ZQ, Geng X, Solit D, Pratilas CA, Rosen N, Danishefsky SJ (2004) New efficient synthesis of resorcinylic macrolides via ynolides: establishment of cycloproparadicicol as synthetically feasible preclinical anticancer agent based on Hsp90 as the target. J Am Chem Soc 126:7881–7889CrossRefPubMedPubMedCentralGoogle Scholar
  72. Yano A, Tsutsumi S, Soga S, Lee MJ, Trepel J, Osada H, Neckers L (2008) Inhibition of Hsp90 activates osteoclast c-Srcsignaling and promotes growth of prostate carcinoma cells in bone. Proc Natl Acad Sci 105:15541–15546CrossRefPubMedPubMedCentralGoogle Scholar
  73. Yoshida S, Tsutsumi S, Muhlebach G, Sourbier C, Lee MJ, Lee S, Vartholomaiou E, Tatokoro M, Beebe K, Miyajima N, Mohney RP (2013) Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis. Proc Natl Acad Sci 110:E1604–E1612CrossRefPubMedPubMedCentralGoogle Scholar
  74. Zamzami N, Kroemer G (2001) The mitochondrion in apoptosis: how Pandora’s box opens. Nat Rev Mol Cell Biol 2:67–71CrossRefPubMedPubMedCentralGoogle Scholar
  75. Zhang X, Beuron F, Freemont PS (2002) Machinery of protein folding and unfolding. Curr Opin Struct Biol 12:231–238CrossRefPubMedPubMedCentralGoogle Scholar
  76. Zhang J, Zhang W, Zhang T, Zhou Q, Liu J, Liu Y, Kong D, Yu W, Liu R, Hai C (2018) TGF-β1 induces epithelial-to-mesenchymal transition via inhibiting mitochondrial functions in A549 cells. Free Radic Res 52:1432–1444CrossRefPubMedPubMedCentralGoogle Scholar
  77. Zhao R, Houry WA (2005) Hsp90: a chaperone for protein folding and gene regulation. Biochem Cell Biol 83:703–710CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ganapasam Sudhandiran
    • 1
    Email author
  • Divya Thomas
    • 1
  • Vadivel Dineshbabu
    • 1
  • Soumya Krishnan
    • 1
  1. 1.Cell Biology Laboratory, Department of BiochemistryUniversity of MadrasChennaiIndia

Personalised recommendations