Advertisement

HSP90-Based Heterocomplex as Essential Regulator for Cancer Disease

  • Mario D. GalignianaEmail author
Chapter
Part of the Heat Shock Proteins book series (HESP, volume 19)

Abstract

Heat-shock protein 90 (HSP90) is a molecular chaperone that represents the most abundant soluble protein of the cell. This chaperone shows intrinsic ATPase activity and associates to a great number of client factors such as steroid receptors, tyrosine-kinases, transcription factors, enzymes, cytoskeletal proteins, channels, histones, etc. Because of these interactions, HSP90 is implicated in diverse biological processes that require critical and coordinated regulatory mechanisms to modulate its activity. HSP90 forms heterocomplexes with other chaperones and co-chaperones such as TPR-domain immunophilins that modulate HSP90 properties and are themselves subject of regulation. In malignancy, HSP90 is essential to preserve the metastable forms of oncoproteins that are usually mutated, overamplified, and sometimes translocated from their normal subcellular compartments. Thus, HSP90 helps to buffer the proteostasis of the cell that is assaulted by the onset of the stress generated by the malignant condition. Consequently, HSP90 is an attractive pharmacologic target, and the pharmaceutical industry has generated over the last years several advances in both the basic biology and the translational drug development around HSP90. This chapter is focused on the multiple aspects by which the HSP90 activity and that related to HSP90-binding proteins, particularly immunophilins, are regulated in malignancy.

Keywords

Cancer HSP90 inhibitors Immunophilins Steroid receptors Stress response TPR domain proteins 

Abbreviations

CyP

Cyclophilin

FKBP

FK506-Binding Protein

GA

Geldanamycin

HSP

Heat-shock protein

hTERT

Reverse transcriptase subunit of human telomerase

TPR

Tetratricopeptide repeats

Notes

Acknowledgements

The author acknowledges the financial support of the National Research Council of Argentina (CONICET), The University of Buenos Aires (UBACyT programme), and the National Agency for Scientific & Technological Programming (ANPCyT).

References

  1. Ali MM, Roe SM, Vaughan CK, Meyer P, Panaretou B, Piper PW, Prodromou C, Pearl LH (2006) Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440:1013–1017CrossRefGoogle Scholar
  2. Ansa-Addo EA, Thaxton J, Hong F et al (2016) Clients and oncogenic roles of molecular chaperone gp96/grp94. Curr Top Med Chem 16:2765–2778CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ashida T, Kikuchi T (2013) Estimation of relative binding free energy based on a free energy variational principle for the FKBP-ligand system. J Comput Aided Mol Des 27:479–490CrossRefPubMedPubMedCentralGoogle Scholar
  4. Aziz F (2016) The emerging role of miR-223 as novel potential diagnostic and therapeutic target for inflammatory disorders. Cell Immunol 303:1–6CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bakthisaran R, Tangirala R, Rao Ch M (2015) Small heat shock proteins: role in cellular functions and pathology. Biochim Biophys Acta 1854:291–319CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barik S (2006) Immunophilins: for the love of proteins. Cell Mol Life Sci 63:2889–2900CrossRefPubMedPubMedCentralGoogle Scholar
  7. Becker B, Multhoff G, Farkas B, Wild PJ, Landthaler M, Stolz W, Vogt T (2004) Induction of Hsp90 protein expression in malignant melanomas and melanoma metastases. Exp Dermatol 13:27–32CrossRefPubMedPubMedCentralGoogle Scholar
  8. Binder EB, Salyakina D, Lichtner P, Wochnik GM, Ising M, Pütz B, Papiol S, Seaman S, Lucae S, Kohli MA, Nickel T, Künzel HE, Fuchs B, Majer M, Pfennig A, Kern N, Brunner J, Modell S, Baghai T, Deiml T, Zill P, Bondy B, Rupprecht R, Messer T, Köhnlein O, Dabitz H, Brückl T, Müller N, Pfister H, Lieb R, Mueller JC, Lõhmussaar E, Strom TM, Bettecken T, Meitinger T, Uhr M, Rein T, Holsboer F, Muller-Myhsok B (2004) Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet 36:1319–1325CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bohne AV, Schwenkert S, Grimm B, Nickelsen J (2016) Roles of tetratricopeptide repeat proteins in biogenesis of the photosynthetic apparatus. Int Rev Cell Mol Biol 324:187–227CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bonner JM, Boulianne GL (2017) Diverse structures, functions and uses of FK506 binding proteins. Cell Signal 38:97–105CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bracken CP, Scott HS, Goodall GJ (2016) A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet 17:719–732CrossRefPubMedPubMedCentralGoogle Scholar
  12. Brady CA, Attardi LD (2010) p53 at a glance. J Cell Sci 123:2527–2532CrossRefPubMedPubMedCentralGoogle Scholar
  13. Brough PA, Aherne W, Barril X et al (2008) 4,5-diarylisoxazole Hsp90 chaperone inhibitors: potential therapeutic agents for the treatment of cancer. J Med Chem 51:196–218CrossRefPubMedPubMedCentralGoogle Scholar
  14. Calado RT, Young NS (2009) Telomere diseases. N Engl J Med 361:2353–2365CrossRefPubMedPubMedCentralGoogle Scholar
  15. Calderwood SK (2018) Heat shock proteins and cancer: intracellular chaperones or extracellular signalling ligands? Philos Trans R Soc Lond B Biol Sci 373(1738). pii: 20160524.  https://doi.org/10.1098/rstb.2016.0524
  16. Calderwood SK, Khaleque MA, Sawyer DB, Ciocca DR (2006) Heat shock proteins in cancer: chaperones of tumourigenesis. Trends Biochem Sci 31:164–172CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chatterjee S, Burns TF (2017) Targeting heat shock proteins in cancer: a promising therapeutic approach. Int J Mol Sci 18, 18(9). pii: E1978.  https://doi.org/10.3390/ijms18091978
  18. Chen WY, Chang FR, Huang ZY, Chen JH, Wu YC, Wu CC (2008) Tubocapsenolide-A, a novel withanolide, inhibits proliferation and induces apoptosis in MDA-MB-231 cells by thiol oxidation of heat shock proteins. J Biol Chem 283:17184–17193CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chiosis G, Timaul MN, Lucas B, Munster PN, Zheng FF, Sepp-Lorenzino L, Rosen N (2001) A small molecule designed to bind to the adenine nucleotide pocket of Hsp90 causes Her2 degradation and the growth arrest and differentiation of breast cancer cells. Chem Biol 8:289–299CrossRefPubMedPubMedCentralGoogle Scholar
  20. Clarke PA, Hostein I, Banerji U, Stefano FD, Maloney A, Walton M, Judson I, Workman P (2000) Gene expression profiling of human colon cancer cells following inhibition of signal transduction by 17-allylamino-17-demethoxygeldanamycin, an inhibitor of the hsp90 molecular chaperone. Oncogene 19:4125–4133CrossRefPubMedPubMedCentralGoogle Scholar
  21. Clevenger RC, Blagg BS (2004) Design, synthesis, and evaluation of a radicicol and geldanamycin chimera, radamide. Org Lett 6:4459–4462CrossRefPubMedPubMedCentralGoogle Scholar
  22. Clevers H (2011) The cancer stem cell: premises, promises and challenges. Nat Med 17:313–319CrossRefPubMedPubMedCentralGoogle Scholar
  23. Colo GP, Rubio MF, Nojek IM, Werbajh SE, Echeverria PC, Alvarado CV, Nahmod VE, Galigniana MD, Costas MA (2008) The p160 nuclear receptor co-activator RAC3 exerts an anti-apoptotic role through a cytoplasmatic action. Oncogene 27:2430–2444CrossRefPubMedPubMedCentralGoogle Scholar
  24. Cowen LE, Lindquist S (2005) Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science 309:2185–2189CrossRefPubMedPubMedCentralGoogle Scholar
  25. da Silva VC, Ramos CH (2012) The network interaction of the human cytosolic 90 kDa heat shock protein Hsp90: a target for cancer therapeutics. J Proteome 75:2790–2802CrossRefGoogle Scholar
  26. Dimas DT, Perlepe CD, Sergentanis TN, Misitzis I, Kontzoglou K, Patsouris E, Kouraklis G, Psaltopoulou T, Nonni A (2018) The prognostic significance of Hsp70/Hsp90 expression in breast cancer: a systematic review and meta-analysis. Anticancer Res 38:1551–1562PubMedPubMedCentralGoogle Scholar
  27. Dumont FJ (2000) FK506, an immunosuppressant targeting calcineurin function. Curr Med Chem 7:731–748CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ebong IO, Beilsten-Edmands V, Patel NA, Morgner N, Robinson CV (2016) The interchange of immunophilins leads to parallel pathways and different intermediates in the assembly of Hsp90 glucocorticoid receptor complexes. Cell Discov 2:16002CrossRefPubMedPubMedCentralGoogle Scholar
  29. Echeverria PC, Picard D (2010) Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility. Biochim Biophys Acta 1803:641–649CrossRefPubMedPubMedCentralGoogle Scholar
  30. Ehrenfried JA, Herron BE, Townsend CM Jr, Evers BM (1995) Heat shock proteins are differentially expressed in human gastrointestinal cancers. Surg Oncol 4:197–203CrossRefPubMedPubMedCentralGoogle Scholar
  31. Eisenstein M (2011) Telomeres: all’s well that ends well. Nature 478:S13–S15CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ellis RJ (1993) The general concept of molecular chaperones. Philos Trans R Soc Lond Ser B Biol Sci 339:257–261CrossRefGoogle Scholar
  33. Ellis RJ (1996) Discovery of molecular chaperones. Cell Stress Chaperones 111:155–160CrossRefGoogle Scholar
  34. Erlejman AG, Lagadari M, Galigniana MD (2013) Hsp90-binding immunophilins as a potential new platform for drug treatment. Future Med Chem 5:591–607CrossRefPubMedPubMedCentralGoogle Scholar
  35. Erlejman AG, De Leo SA, Mazaira GI, Molinari AM, Camisay MF, Fontana V, Cox MB, Piwien-Pilipuk G, Galigniana MD (2014a) NF-kappaB transcriptional activity is modulated by FK506-binding proteins FKBP51 and FKBP52: a role for peptidyl-prolyl isomerase activity. J Biol Chem 289:26263–26276CrossRefPubMedPubMedCentralGoogle Scholar
  36. Erlejman AG, Lagadari M, Toneatto J, Piwien-Pilipuk G, Galigniana MD (2014b) Regulatory role of the 90-kDa-heat-shock protein (Hsp90) and associated factors on gene expression. Biochim Biophys Acta 1839:71–87CrossRefPubMedPubMedCentralGoogle Scholar
  37. Eustace BK, Jay DG (2004) Extracellular roles for the molecular chaperone, hsp90. Cell Cycle 3:1098–1100CrossRefGoogle Scholar
  38. Eustace BK, Sakurai T, Stewart JK et al (2004) Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nat Cell Biol 6:507–514CrossRefGoogle Scholar
  39. Fan AC, Young JC (2011) Function of cytosolic chaperones in Tom70-mediated mitochondrial import. Protein Pept Lett 18:122–131CrossRefPubMedPubMedCentralGoogle Scholar
  40. Feng X, Pomplun S, Hausch F (2015) Recent progress in FKBP ligand development. Curr Mol Pharmacol 9:27–36CrossRefPubMedPubMedCentralGoogle Scholar
  41. Ferrarini M, Heltai S, Zocchi MR, Rugarli C (1992) Unusual expression and localization of heat-shock proteins in human tumour cells. Int J Cancer 51:613–619CrossRefPubMedPubMedCentralGoogle Scholar
  42. Gaali S, Kirschner A, Cuboni S et al (2015) Selective inhibitors of the FK506-binding protein 51 by induced fit. Nat Chem Biol 11:33–37CrossRefPubMedPubMedCentralGoogle Scholar
  43. Galigniana MD (2012) Steroid receptor coupling becomes nuclear. Chem Biol 19:662–663CrossRefPubMedPubMedCentralGoogle Scholar
  44. Galigniana MD, Radanyi C, Renoir JM, Housley PR, Pratt WB (2001) Evidence that the peptidylprolyl isomerase domain of the hsp90-binding immunophilin FKBP52 is involved in both dynein interaction and glucocorticoid receptor movement to the nucleus. J Biol Chem 276:14884–14889CrossRefPubMedPubMedCentralGoogle Scholar
  45. Galigniana MD, Harrell JM, O’Hagen HM, Ljungman M, Pratt WB (2004) Hsp90-binding immunophilins link p53 to dynein during p53 transport to the nucleus. J Biol Chem 279:22483–22489CrossRefPubMedPubMedCentralGoogle Scholar
  46. Galigniana MD, Echeverria PC, Erlejman AG, Piwien-Pilipuk G (2010a) Role of molecular chaperones and TPR-domain proteins in the cytoplasmic transport of steroid receptors and their passage through the nuclear pore. Nucleus 1:299–308CrossRefPubMedPubMedCentralGoogle Scholar
  47. Galigniana MD, Erlejman AG, Monte M, Gomez-Sanchez C, Piwien-Pilipuk G (2010b) The hsp90-FKBP52 complex links the mineralocorticoid receptor to motor proteins and persists bound to the receptor in early nuclear events. Mol Cell Biol 30:1285–1298CrossRefPubMedPubMedCentralGoogle Scholar
  48. Galigniana NM, Ballmer LT, Toneatto J, Erlejman AG, Lagadari M, Galigniana MD (2012) Regulation of the glucocorticoid response to stress-related disorders by the Hsp90-binding immunophilin FKBP51. J Neurochem 122:4–18CrossRefPubMedPubMedCentralGoogle Scholar
  49. Gallo LI, Ghini AA, Piwien Pilipuk G, Galigniana MD (2007) Differential recruitment of tetratricorpeptide repeat domain immunophilins to the mineralocorticoid receptor influences both heat-shock protein 90-dependent retrotransport and hormone-dependent transcriptional activity. Biochemistry 46:14044–14057CrossRefPubMedPubMedCentralGoogle Scholar
  50. Gallo LI, Lagadari M, Piwien-Pilipuk G, Galigniana MD (2011) The 90-kDa heat-shock protein (Hsp90)-binding immunophilin FKBP51 is a mitochondrial protein that translocates to the nucleus to protect cells against oxidative stress. J Biol Chem 286:30152–30160CrossRefPubMedPubMedCentralGoogle Scholar
  51. Giordano A, Avellino R, Ferraro P, Romano S, Corcione N, Romano MF (2006) Rapamycin antagonizes NF-kappaB nuclear translocation activated by TNF-alpha in primary vascular smooth muscle cells and enhances apoptosis. Am J Physiol Heart Circ Physiol 290:H2459–H2465CrossRefPubMedPubMedCentralGoogle Scholar
  52. Gomes NM, Shay JW, Wright WE (2010) Telomere biology in Metazoa. FEBS Lett 584:3741–3751CrossRefPubMedPubMedCentralGoogle Scholar
  53. Gougelet A, Bouclier C, Marsaud V, Maillard S, Mueller SO, Korach KS, Renoir JM (2005) Estrogen receptor alpha and beta subtype expression and transactivation capacity are differentially affected by receptor-, hsp90- and immunophilin-ligands in human breast cancer cells. J Steroid Biochem Mol Biol 94:71–81CrossRefPubMedPubMedCentralGoogle Scholar
  54. Grossmann C, Ruhs S, Langenbruch L, Mildenberger S, Stratz N, Schumann K, Gekle M (2012) Nuclear shuttling precedes dimerization in mineralocorticoid receptor signaling. Chem Biol 19:742–751CrossRefPubMedPubMedCentralGoogle Scholar
  55. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70CrossRefPubMedPubMedCentralGoogle Scholar
  56. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefGoogle Scholar
  57. Hao H, Naomoto Y, Bao X et al (2010) HSP90 and its inhibitors. Oncol Rep 23:1483–1492PubMedPubMedCentralGoogle Scholar
  58. Haque A, Alam Q, Alam MZ, Azhar EI, Sait KH, Anfinan N, Mushtaq G, Kamal MA, Rasool M (2016) Current understanding of HSP90 as a novel therapeutic target: an emerging approach for the treatment of cancer. Curr Pharm Des 22:2947–2959CrossRefGoogle Scholar
  59. Harley CB (2008) Telomerase and cancer therapeutics. Nat Rev Cancer 8:167–179CrossRefPubMedPubMedCentralGoogle Scholar
  60. Harrell JM, Kurek I, Breiman A, Radanyi C, Renoir JM, Pratt WB, Galigniana MD (2002) All of the protein interactions that link steroid receptor-hsp90.immunophilin heterocomplexes to cytoplasmic dynein are common to plant and animal cells. Biochemistry 41:5581–5587CrossRefPubMedPubMedCentralGoogle Scholar
  61. Hoang AT, Huang J, Rudra-Ganguly N, Zheng J, Powell WC, Rabindran SK, Wu C, Roy-Burman P (2000) A novel association between the human heat shock transcription factor 1 (HSF1) and prostate adenocarcinoma. Am J Pathol 156:857–864CrossRefPubMedPubMedCentralGoogle Scholar
  62. Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253:49–53CrossRefPubMedPubMedCentralGoogle Scholar
  63. Holt SE, Aisner DL, Baur J et al (1999) Functional requirement of p23 and Hsp90 in telomerase complexes. Genes Dev 13:817–826CrossRefPubMedPubMedCentralGoogle Scholar
  64. Hoter A, El-Sabban ME, Naim HY (2018) The HSP90 family: structure, regulation, function, and implications in health and disease. Int J Mol Sci 19(9). pii: E2560. doi:  https://doi.org/10.3390/ijms19092560
  65. Huang SL, Chao CC (2015) Silencing of taxol-sensitizer genes in cancer cells: lack of sensitization effects. Cancer 7:1052–1071CrossRefGoogle Scholar
  66. Iwasaki S, Kobayashi M, Yoda M, Sakaguchi Y, Katsuma S, Suzuki T, Tomari Y (2010) Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol Cell 39:292–299CrossRefPubMedPubMedCentralGoogle Scholar
  67. Jeong YY, Her J, Oh SY, Chung IK (2016) Hsp90-binding immunophilin FKBP52 modulates telomerase 1069 activity by promoting the cytoplasmic retrotransport of hTERT. Biochem J 473:3517–3532CrossRefPubMedPubMedCentralGoogle Scholar
  68. Jeong JH, Oh YJ, Kwon TK, Seo YH (2017) Chalcone-templated Hsp90 inhibitors and their effects on gefitinib resistance in non-small cell lung cancer (NSCLC). Arch Pharm Res 40:96–105CrossRefPubMedPubMedCentralGoogle Scholar
  69. Jhaveri K, Ochiana SO, Dunphy MP et al (2014) Heat shock protein 90 inhibitors in the treatment of cancer: current status and future directions. Expert Opin Investig Drugs 23:611–628CrossRefPubMedPubMedCentralGoogle Scholar
  70. Jiang W, Cazacu S, Xiang C, Zenklusen JC, Fine HA, Berens M, Armstrong B, Brodie C, Mikkelsen T (2008) FK506 binding protein mediates glioma cell growth and sensitivity to rapamycin treatment by regulating NF-kappaB signaling pathway. Neoplasia 10:235–243CrossRefPubMedPubMedCentralGoogle Scholar
  71. Jorge S, Lucena-Araujo AR, Yasuda H et al (2018) EGFR exon 20 insertion mutations display sensitivity to Hsp90 inhibition in preclinical models and lung adenocarcinomas. Clin Cancer Res 24:6548–6555CrossRefPubMedPubMedCentralGoogle Scholar
  72. Kach J, Conzen SD, Szmulewitz RZ (2015) Targeting the glucocorticoid receptor in breast and prostate cancers. Sci Transl Med 7:305ps319.  https://doi.org/10.1126/scitranslmed.aac7531 CrossRefGoogle Scholar
  73. Kim HL, Cassone M, Otvos L Jr, Vogiatzi P (2008) HIF-1alpha and STAT3 client proteins interacting with the cancer chaperone Hsp90: therapeutic considerations. Cancer Biol Ther 7:10–14CrossRefPubMedPubMedCentralGoogle Scholar
  74. Kovacs JJ, Murphy PJ, Gaillard S et al (2005) HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell 18:601–607CrossRefPubMedPubMedCentralGoogle Scholar
  75. Kwon HJ, Yoshida M, Fukui Y, Horinouchi S, Beppu T (1992) Potent and specific inhibition of p60v-src protein kinase both in vivo and in vitro by radicicol. Cancer Res 52:6926–6930PubMedPubMedCentralGoogle Scholar
  76. Lagadari M, Zgajnar NR, Gallo LI, Galigniana MD (2016) Hsp90-binding immunophilin FKBP51 forms complexes with hTERT enhancing telomerase activity. Mol Oncol 10:1086–1098CrossRefPubMedPubMedCentralGoogle Scholar
  77. Lampis A, Carotenuto P, Vlachogiannis G et al (2018) MIR21 drives resistance to heat shock protein 90 inhibition in cholangiocarcinoma. Gastroenterology 154:1066–1079 e1065CrossRefPubMedPubMedCentralGoogle Scholar
  78. Langer T, Rosmus S, Fasold H (2003) Intracellular localization of the 90 kDA heat shock protein (HSP90alpha) determined by expression of a EGFP-HSP90alpha-fusion protein in unstressed and heat stressed 3T3 cells. Cell Biol Int 27:47–52CrossRefPubMedPubMedCentralGoogle Scholar
  79. Lebeau J, Le Chalony C, Prosperi MT, Goubin G (1991) Constitutive overexpression of a 89 kDa heat shock protein gene in the HBL100 human mammary cell line converted to a tumourigenic phenotype by the EJ/T24 Harvey-ras oncogene. Oncogene 6:1125–1132PubMedPubMedCentralGoogle Scholar
  80. Li J, Buchner J (2013) Structure, function and regulation of the hsp90 machinery. Biom J 36:106–117Google Scholar
  81. Li W, Li Y, Guan S, Fan J, Cheng CF, Bright AM, Chinn C, Chen M, Woodley DT (2007) Extracellular heat shock protein-90alpha: linking hypoxia to skin cell motility and wound healing. EMBO J 26:1221–1233CrossRefPubMedPubMedCentralGoogle Scholar
  82. Li Y, Zhang T, Jiang Y, Lee HF, Schwartz SJ, Sun D (2009) Epigallocatechin-3-gallate inhibits Hsp90 function by impairing Hsp90 association with cochaperones in pancreatic cancer cell line Mia Paca-2. Mol Pharm 6:1152–1159CrossRefPubMedPubMedCentralGoogle Scholar
  83. Li W, Tsen F, Sahu D, Bhatia A, Chen M, Multhoff G, Woodley DT (2013) Extracellular Hsp90 (eHsp90) as the actual target in clinical trials: intentionally or unintentionally. Int Rev Cell Mol Biol 303:203–235CrossRefPubMedPubMedCentralGoogle Scholar
  84. Lin JF, Xu J, Tian HY, Gao X, Chen QX, Gu Q, Xu GJ, Song JD, Zhao FK (2007) Identification of candidate prostate cancer biomarkers in prostate needle biopsy specimens using proteomic analysis. Int J Cancer 121:2596–2605CrossRefPubMedPubMedCentralGoogle Scholar
  85. Liu F, Wang YQ, Meng L, Gu M, Tan RY (2013a) FK506-binding protein 12 ligands: a patent review. Expert Opin Ther Pat 23:1435–1449CrossRefPubMedPubMedCentralGoogle Scholar
  86. Liu H, Xiao F, Serebriiskii IG et al (2013b) Network analysis identifies an HSP90-central hub susceptible in ovarian cancer. Clin Cancer Res 19:5053–5067CrossRefPubMedPubMedCentralGoogle Scholar
  87. Martinez-Ruiz A, Villanueva L, Gonzalez de Orduna C, Lopez-Ferrer D, Higueras MA, Tarin C, Rodriguez-Crespo I, Vazquez J, Lamas S (2005) S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities. Proc Natl Acad Sci U S A 102:8525–8530CrossRefPubMedPubMedCentralGoogle Scholar
  88. Matthews SB, Vielhauer GA, Manthe CA, Chaguturu VK, Szabla K, Matts RL, Donnelly AC, Blagg BS, Holzbeierlein JM (2010) Characterization of a novel novobiocin analogue as a putative C-terminal inhibitor of heat shock protein 90 in prostate cancer cells. Prostate 70:27–36CrossRefPubMedPubMedCentralGoogle Scholar
  89. Mayer MP (2010) Gymnastics of molecular chaperones. Mol Cell 39:321–331CrossRefPubMedPubMedCentralGoogle Scholar
  90. Mazaira GI, Lagadari M, Erlejman AG, Galigniana MD (2014) The emerging role of TPR-domain immunophilins in the mechanism of action of steroid receptors. Nucl Recept Res 1:1–17.  https://doi.org/10.11131/2014/101094. ID:101094CrossRefGoogle Scholar
  91. Mazaira GI, Zgajnar NR, Lotufo CM, Daneri-Becerra C, Sivils JC, Soto OB, Cox MB, Galigniana MD (2018) The nuclear receptor field: a historical overview and future challenges. Nucl Recept Res 5:101320.  https://doi.org/10.11131/2018/101320 CrossRefGoogle Scholar
  92. Mellatyar H, Talaei S, Pilehvar-Soltanahmadi Y, Barzegar A, Akbarzadeh A, Shahabi A, Barekati-Mowahed M, Zarghami N (2018) Targeted cancer therapy through 17-DMAG as an Hsp90 inhibitor: overview and current state of the art. Biomed Pharmacother = Biomedecine Pharmacotherapie 102:608–617CrossRefPubMedPubMedCentralGoogle Scholar
  93. Meyer P, Prodromou C, Liao C et al (2004) Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery. EMBO J 23:1402–1410CrossRefPubMedPubMedCentralGoogle Scholar
  94. Miyoshi T, Takeuchi A, Siomi H, Siomi MC (2010) A direct role for Hsp90 in pre-RISC formation in Drosophila. Nat Struct Mol Biol 17:1024–1026CrossRefPubMedPubMedCentralGoogle Scholar
  95. Mollapour M, Neckers L (2012) Post-translational modifications of Hsp90 and their contributions to chaperone regulation. Biochim Biophys Acta 1823:648–655CrossRefPubMedPubMedCentralGoogle Scholar
  96. Mostaghel EA, Page ST, Lin DW et al (2007) Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res 67:5033–5041CrossRefPubMedPubMedCentralGoogle Scholar
  97. Naruse K, Matsuura-Suzuki E, Watanabe M, Iwasaki S, Tomari Y (2018) In vitro reconstitution of chaperone-mediated human RISC assembly. RNA 24:6–11CrossRefPubMedPubMedCentralGoogle Scholar
  98. Neckers L, Ivy SP (2003) Heat shock protein 90. Curr Opin Oncol 15:419–424CrossRefPubMedPubMedCentralGoogle Scholar
  99. Ni L, Yang CS, Gioeli D, Frierson H, Toft DO, Paschal BM (2010) FKBP51 promotes assembly of the Hsp90 chaperone complex and regulates androgen receptor signaling in prostate cancer cells. Mol Cell Biol 30:1243–1253CrossRefPubMedPubMedCentralGoogle Scholar
  100. Palermo CM, Westlake CA, Gasiewicz TA (2005) Epigallocatechin gallate inhibits aryl hydrocarbon receptor gene transcription through an indirect mechanism involving binding to a 90 kDa heat shock protein. Biochemistry 44:5041–5052CrossRefPubMedPubMedCentralGoogle Scholar
  101. Pan J, Jiang F, Zhou J, Wu D, Sheng Z, Li M (2018) HSP90: a novel target gene of miRNA-628-3p in A549 cells. Biomed Res Int 2018:1–10. ID:4149707.  https://doi.org/10.1155/2018/4149707 CrossRefGoogle Scholar
  102. Pearl LH, Prodromou C (2006) Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem 75:271–294CrossRefGoogle Scholar
  103. Pei H, Li L, Fridley BL, Jenkins GD, Kalari KR, Lingle W, Petersen G, Lou Z, Wang L (2009) FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt. Cancer Cell 16:259–266CrossRefPubMedPubMedCentralGoogle Scholar
  104. Pennisi R, Ascenzi P, di Masi A (2015) Hsp90: a new player in DNA repair? Biomol Ther 5:2589–2618Google Scholar
  105. Periyasamy S, Warrier M, Tillekeratne MP, Shou W, Sanchez ER (2007) The immunophilin ligands cyclosporin A and FK506 suppress prostate cancer cell growth by androgen receptor-dependent and -independent mechanisms. Endocrinology 148:4716–4726CrossRefPubMedPubMedCentralGoogle Scholar
  106. Periyasamy S, Hinds T Jr, Shemshedini L, Shou W, Sanchez ER (2010) FKBP51 and Cyp40 are positive regulators of androgen-dependent prostate cancer cell growth and the targets of FK506 and cyclosporin A. Oncogene 29:1691–1701CrossRefPubMedPubMedCentralGoogle Scholar
  107. Pratt WB (1997) The role of the hsp90-based chaperone system in signal transduction by nuclear receptors and receptors signaling via MAP kinase. Annu Rev Pharmacol Toxicol 37:297–326CrossRefPubMedPubMedCentralGoogle Scholar
  108. Pratt WB, Toft DO (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 18:306–360PubMedPubMedCentralGoogle Scholar
  109. Pratt WB, Krishna P, Olsen LJ (2001) Hsp90-binding immunophilins in plants: the protein movers. Trends Plant Sci 6:54–58CrossRefPubMedPubMedCentralGoogle Scholar
  110. Prodromou C, Nuttall JM, Millson SH, Roe SM, Sim TS, Tan D, Workman P, Pearl LH, Piper PW (2009) Structural basis of the radicicol resistance displayed by a fungal hsp90. ACS Chem Biol 4:289–297CrossRefPubMedPubMedCentralGoogle Scholar
  111. Protti MP, Heltai S, Bellone M, Ferrarini M, Manfredi AA, Rugarli C (1994) Constitutive expression of the heat shock protein 72 kDa in human melanoma cells. Cancer Lett 85:211–216CrossRefPubMedPubMedCentralGoogle Scholar
  112. Queitsch C, Sangster TA, Lindquist S (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417:618–624CrossRefGoogle Scholar
  113. Quinta HR, Galigniana NM, Erlejman AG, Lagadari M, Piwien-Pilipuk G, Galigniana MD (2011) Management of cytoskeleton architecture by molecular chaperones and immunophilins. Cell Signal 23:1907–1920CrossRefPubMedPubMedCentralGoogle Scholar
  114. Ramsey AJ, Russell LC, Chinkers M (2009) C-terminal sequences of hsp70 and hsp90 as non-specific anchors for tetratricopeptide repeat (TPR) proteins. Biochem J 423:411–419CrossRefPubMedPubMedCentralGoogle Scholar
  115. Ratajczak T (2015) Steroid receptor-associated Immunophilins: candidates for diverse drug-targeting approaches in disease. Curr Mol Pharmacol 9:66–95CrossRefPubMedPubMedCentralGoogle Scholar
  116. Ratzke C, Mickler M, Hellenkamp B, Buchner J, Hugel T (2010) Dynamics of heat shock protein 90 C-terminal dimerization is an important part of its conformational cycle. Proc Natl Acad Sci U S A 107:16101–16106CrossRefPubMedPubMedCentralGoogle Scholar
  117. Reikvam H, Ersvaer E, Bruserud O (2009) Heat shock protein 90 – a potential target in the treatment of human acute myelogenous leukemia. Curr Cancer Drug Targets 9:761–776CrossRefPubMedPubMedCentralGoogle Scholar
  118. Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40:253–266CrossRefGoogle Scholar
  119. Romano S, D’Angelillo A, Pacelli R et al (2010) Role of FK506-binding protein 51 in the control of apoptosis of irradiated melanoma cells. Cell Death Differ 17:145–157CrossRefPubMedPubMedCentralGoogle Scholar
  120. Rotoli D, Morales M, Del Carmen Maeso M, Del Pino Garcia M, Morales A, Avila J, Martin-Vasallo P (2016) Expression and localization of the immunophilin FKBP51 in colorectal carcinomas and primary metastases, and alterations following oxaliplatin-based chemotherapy. Oncol Lett 12:1315–1322CrossRefPubMedPubMedCentralGoogle Scholar
  121. Rotoli D, Morales M, Avila J, Maeso M DC, Garcia MDP, Mobasheri A, Martin-Vasallo P (2017) Commitment of scaffold proteins in the onco-biology of human colorectal cancer and liver metastases after oxaliplatin-based chemotherapy. Int J Mol Sci 18, pii: E891. https://doi.org/10.3390/ijms18040891
  122. Russo D, Merolla F, Mascolo M et al. (2017) FKBP51 immunohistochemical expression: a new prognostic biomarker for OSCC? Int J Mol Sci 18, pii: E443.  https://doi.org/10.3390/ijms18020443
  123. Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396:336–342CrossRefGoogle Scholar
  124. Sahu B, Laakso M, Pihlajamaa P, Ovaska K, Sinielnikov I, Hautaniemi S, Janne OA (2013) FoxA1 specifies unique androgen and glucocorticoid receptor binding events in prostate cancer cells. Cancer Res 73:1570–1580CrossRefPubMedPubMedCentralGoogle Scholar
  125. Sangster TA, Salathia N, Lee HN et al (2008) HSP90-buffered genetic variation is common in Arabidopsis thaliana. Proc Natl Acad Sci U S A 105:2969–2974CrossRefPubMedPubMedCentralGoogle Scholar
  126. Sarkar AA, Zohn IE (2012) Hectd1 regulates intracellular localization and secretion of Hsp90 to control cellular behavior of the cranial mesenchyme. J Cell Biol 196:789–800CrossRefPubMedPubMedCentralGoogle Scholar
  127. Scammell JG, Denny WB, Valentine DL, Smith DF (2001) Overexpression of the FK506-binding immunophilin FKBP51 is the common cause of glucocorticoid resistance in three New World primates. Gen Comp Endocrinol 124:152–165CrossRefPubMedPubMedCentralGoogle Scholar
  128. Scheufler C, Brinker A, Bourenkov G, Pegoraro S, Moroder L, Bartunik H, Hartl FU, Moarefi I (2000) Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101:199–210CrossRefPubMedPubMedCentralGoogle Scholar
  129. Schulte TW, Neckers LM (1998) The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother Pharmacol 42:273–279CrossRefPubMedPubMedCentralGoogle Scholar
  130. Schulte TW, Akinaga S, Soga S, Sullivan W, Stensgard B, Toft D, Neckers LM (1998) Antibiotic radicicol binds to the N-terminal domain of Hsp90 and shares important biologic activities with geldanamycin. Cell Stress Chaperones 3:100–108CrossRefPubMedPubMedCentralGoogle Scholar
  131. Schuster M, Schnell L, Feigl P et al (2017) The Hsp90 machinery facilitates the transport of diphtheria toxin into human cells. Sci Rep 7:613CrossRefPubMedPubMedCentralGoogle Scholar
  132. Scroggins BT, Neckers L (2007) Post-translational modification of heat-shock protein 90: impact on chaperone. Expert Opin Drug Discovery 2:1403–1414CrossRefGoogle Scholar
  133. Shelton SN, Shawgo ME, Matthews SB et al (2009) KU135, a novel novobiocin-derived C-terminal inhibitor of the 90-kDa heat shock protein, exerts potent antiproliferative effects in human leukemic cells. Mol Pharmacol 76:1314–1322CrossRefPubMedPubMedCentralGoogle Scholar
  134. Shi Y, Liu X, Lou J, Han X, Zhang L, Wang Q, Li B, Dong M, Zhang Y (2014) Plasma levels of heat shock protein 90 alpha associated with lung cancer development and treatment responses. Clin Cancer Res 20:6016–6022CrossRefPubMedPubMedCentralGoogle Scholar
  135. Shimamura T, Lowell AM, Engelman JA, Shapiro GI (2005) Epidermal growth factor receptors harboring kinase domain mutations associate with the heat shock protein 90 chaperone and are destabilized following exposure to geldanamycins. Cancer Res 65:6401–6408CrossRefPubMedPubMedCentralGoogle Scholar
  136. Shore D, Bianchi A (2009) Telomere length regulation: coupling DNA end processing to feedback regulation of telomerase. EMBO J 28:2309–2322CrossRefPubMedPubMedCentralGoogle Scholar
  137. Sigal NH, Dumont FJ (1992) Cyclosporin A, FK-506, and rapamycin: pharmacologic probes of lymphocyte signal transduction. Annu Rev Immunol 10:519–560CrossRefPubMedPubMedCentralGoogle Scholar
  138. Solassol J, Mange A, Maudelonde T (2011) FKBP family proteins as promising new biomarkers for cancer. Curr Opin Pharmacol 11:320–325CrossRefPubMedPubMedCentralGoogle Scholar
  139. Solit DB, Chiosis G (2008) Development and application of Hsp90 inhibitors. Drug Discov Today 13:38–43CrossRefPubMedPubMedCentralGoogle Scholar
  140. Soti C, Racz A, Csermely P (2002) A nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90. N-terminal nucleotide binding unmasks a C-terminal binding pocket. J Biol Chem 277:7066–7075CrossRefPubMedPubMedCentralGoogle Scholar
  141. Sreedhar AS, Soti C, Csermely P (2004) Inhibition of Hsp90: a new strategy for inhibiting protein kinases. Biochim Biophys Acta 1697:233–242CrossRefPubMedPubMedCentralGoogle Scholar
  142. Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP (1997) Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumour agent. Cell 89:239–250CrossRefPubMedPubMedCentralGoogle Scholar
  143. Storer CL, Dickey CA, Galigniana MD, Rein T, Cox MB (2011) FKBP51 and FKBP52 in signaling and disease. Trends Endocrinol Metab 22:481–490CrossRefPubMedPubMedCentralGoogle Scholar
  144. Supko JG, Hickman RL, Grever MR Malspeis L (1995) Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol 36:305–315Google Scholar
  145. Taipale M, Krykbaeva I, Koeva M, Kayatekin C, Westover KD, Karras GI, Lindquist S (2012) Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell 150:987–1001CrossRefPubMedPubMedCentralGoogle Scholar
  146. Taipale M, Tucker G, Peng J et al (2014) A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways. Cell 158:434–448CrossRefPubMedPubMedCentralGoogle Scholar
  147. Taira T, Sawai M, Ikeda M, Tamai K, Iguchi-Ariga SM, Ariga H (1999) Cell cycle-dependent switch of up-and down-regulation of human hsp70 gene expression by interaction between c-Myc and CBF/NF-Y. J Biol Chem 274:24270–24279CrossRefPubMedPubMedCentralGoogle Scholar
  148. Tatro ET, Everall IP, Kaul M, Achim CL (2009) Modulation of glucocorticoid receptor nuclear translocation in neurons by immunophilins FKBP51 and FKBP52: implications for major depressive disorder. Brain Res 1286:1–12CrossRefPubMedPubMedCentralGoogle Scholar
  149. Teng SC, Chen YY, Su YN, Chou PC, Chiang YC, Tseng SF, Wu KJ (2004) Direct activation of HSP90A transcription by c-Myc contributes to c-Myc-induced transformation. J Biol Chem 279:14649–14655CrossRefPubMedPubMedCentralGoogle Scholar
  150. Trepel J, Mollapour M, Giaccone G, Neckers L (2010) Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10:537–549CrossRefPubMedPubMedCentralGoogle Scholar
  151. Tsutsumi S, Scroggins B, Koga F, Lee MJ, Trepel J, Felts S, Carreras C, Neckers L (2008) A small molecule cell-impermeant Hsp90 antagonist inhibits tumour cell motility and invasion. Oncogene 27:2478–2487CrossRefPubMedPubMedCentralGoogle Scholar
  152. Vafopoulou X, Steel CG (2012) Cytoplasmic travels of the ecdysteroid receptor in target cells: pathways for both genomic and non-genomic actions. Front Endocrinol 3:43.  https://doi.org/10.3389/fendo.2012.00043 CrossRefGoogle Scholar
  153. van Kouwenhove M, Kedde M, Agami R (2011) MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer 11:644–656CrossRefPubMedPubMedCentralGoogle Scholar
  154. Vandevyver S, Dejager L, Libert C (2012) On the trail of the glucocorticoid receptor: into the nucleus and back. Traffic 13:364–374CrossRefPubMedPubMedCentralGoogle Scholar
  155. Wang L (2011) FKBP51 regulation of AKT/protein kinase B phosphorylation. Curr Opin Pharmacol 11:360–364CrossRefPubMedPubMedCentralGoogle Scholar
  156. Wang Y, Kirschner A, Fabian AK et al (2013) Increasing the efficiency of ligands for FK506-binding protein 51 by conformational control. J Med Chem 56:3922–3935CrossRefPubMedPubMedCentralGoogle Scholar
  157. Ward BK, Mark PJ, Ingram DM, Minchin RF, Ratajczak T (1999) Expression of the estrogen receptor-associated immunophilins, cyclophilin 40 and FKBP52, in breast cancer. Breast Cancer Res Treat 58:267–280CrossRefPubMedPubMedCentralGoogle Scholar
  158. Wawrzynow B, Zylicz A, Zylicz M (2018) Chaperoning the guardian of the genome. The two-faced role of molecular chaperones in p53 tumour suppressor action. Biochim Biophys Acta Rev Cancer 1869:161–174CrossRefPubMedPubMedCentralGoogle Scholar
  159. Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM (1994) Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci U S A 91:8324–8328CrossRefPubMedPubMedCentralGoogle Scholar
  160. Wiederrecht GJ, Sabers CJ, Brunn GJ, Martin MM, Dumont FJ, Abraham RT (1995) Mechanism of action of rapamycin: new insights into the regulation of G1-phase progression in eukaryotic cells. Prog Cell Cycle Res 1:53–71CrossRefPubMedPubMedCentralGoogle Scholar
  161. Witkin SS (2001) Heat shock protein expression and immunity: relevance to gynecologic oncology. Eur J Gynaecol Oncol 22:249–256PubMedPubMedCentralGoogle Scholar
  162. Wochnik GM, Ruegg J, Abel GA, Schmidt U, Holsboer F, Rein T (2005) FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. J Biol Chem 280:4609–4616CrossRefPubMedPubMedCentralGoogle Scholar
  163. Wu J, Liu T, Rios Z, Mei Q, Lin X, Cao S (2017) Heat shock proteins and cancer. Trends Pharmacol Sci 38:226–256CrossRefPubMedPubMedCentralGoogle Scholar
  164. Yang Y, Rao R, Shen J, Tang Y, Fiskus W, Nechtman J, Atadja P, Bhalla K (2008) Role of acetylation and extracellular location of heat shock protein 90alpha in tumour cell invasion. Cancer Res 68:4833–4842CrossRefPubMedPubMedCentralGoogle Scholar
  165. Yano M, Naito Z, Tanaka S, Asano G (1996) Expression and roles of heat shock proteins in human breast cancer. Japan J Cancer Res: Gann 87:908–915CrossRefGoogle Scholar
  166. Yu X, Harris SL, Levine AJ (2006) The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res 66:4795–4801CrossRefPubMedPubMedCentralGoogle Scholar
  167. Yufu Y, Nishimura J, Nawata H (1992) High constitutive expression of heat shock protein 90 alpha in human acute leukemia cells. Leuk Res 16:597–605CrossRefPubMedPubMedCentralGoogle Scholar
  168. Zhou H, Huang S (2010) mTOR signaling in cancer cell motility and tumour metastasis. Crit Rev Eukaryot Gene Expr 20:1–16CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Instituto de Biología y Medicina Experimental (IBYME)-CONICET & Departamento de Química Biológica, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations