The ‘Complex World’ of the Hsp90 Co-chaperone R2TP

  • Chrisostomos ProdromouEmail author
Part of the Heat Shock Proteins book series (HESP, volume 19)


The Hsp90 co-chaperone R2TP consists of the AAA+ ATPases, RUVBL1 (Rvb1p in yeast) and RUVBL2 (Rvb2p in yeast), which together make up a heterohexameric ring, in complex with PIH1D1 (Pih1p in yeast) and RPAP3 (Tah1p in yeast). R2TP is involved in the activation of client proteins, such as phosphatidylinositol 3 kinase-related kinases, including mTORC1, ATM, DNA-PK, SMG and ATR/ATRIP, or in the assembly of protein complexes including those of RNA polymerase and snoRNPs, amongst others. In other cases, the role of the TP component (RPAP3-PIH1D1) of R2TP, and consequently Hsp90, is controversial. None-the-less, the extensive role of RUVBL1-RUVBL2 complex in cells, either with or without Hsp90, means that dysfunction of these AAA+ ATPases, Hsp90 or components of the complexes they assemble leads to diseases such as cancer, ciliary dyskinesia and in the case of defects in ATM to ataxia telangiectasia-like syndrome. Recent advances in determining the structure of the R2TP complex has led to an increased understanding of the assembly and function of the R2TP complex. In this review we discuss the current structural advances in determining the architecture of the R2TP complex and the advances made in understanding its active state.


Axonemal dynein Carcinogenesis Co-chaperone Hsp90 R2TP RUVBL1-RUVBL2 



Electron microscopy


Heat shock protein 90


RUVBL1-RUVBL2 complex


RUVBL1 RUVBL2-RPAP3-PIH1D1 or Rvb1p-Rvb2p-Pih1p-Tah1p complex


  1. Ammelburg M, Frickey T, Lupas AN (2006) Classification of AAA+ proteins. J Struct Biol 156:2–11PubMedCrossRefPubMedCentralGoogle Scholar
  2. Aramayo RJ, Willhoft O, Ayala R, Bythell-Douglas R, Wigley DB, Zhang X (2018) Cryo-EM structures of the human INO80 chromatin-remodeling complex. Nat Struct Mol Biol 25:37–44PubMedCrossRefPubMedCentralGoogle Scholar
  3. Bizarro J, Charron C, Boulon S et al (2014) Proteomic and 3D structure analyses highlight the C/D box snoRNP assembly mechanism and its control. J Cell Biol 207:463–480PubMedPubMedCentralCrossRefGoogle Scholar
  4. Botos I, Melnikov EE, Cherry S et al (2004) Crystal structure of the AAA+ alpha domain of E. coli Lon protease at 1.9A resolution. J Struct Biol 146:113–122PubMedCrossRefPubMedCentralGoogle Scholar
  5. Boulon S, Pradet-Balade B, Verheggen C et al (2010) HSP90 and its R2TP/Prefoldin-like cochaperone are involved in the cytoplasmic assembly of RNA polymerase II. Mol Cell 39:912–924PubMedPubMedCentralCrossRefGoogle Scholar
  6. Cloutier P, Coulombe B (2010) New insights into the biogenesis of nuclear RNA polymerases? Biochem Cell Biol 88:211–221PubMedPubMedCentralCrossRefGoogle Scholar
  7. Cloutier P, Al-Khoury R, Lavallee-Adam M et al (2009) High-resolution mapping of the protein interaction network for the human transcription machinery and affinity purification of RNA polymerase II-associated complexes. Methods 48:381–386PubMedPubMedCentralCrossRefGoogle Scholar
  8. Cloutier P, Poitras C, Durand M et al (2017) R2TP/Prefoldin-like component RUVBL1/RUVBL2 directly interacts with ZNHIT2 to regulate assembly of U5 small nuclear ribonucleoprotein. Nat Commun 8:15615PubMedPubMedCentralCrossRefGoogle Scholar
  9. Eckert K, Saliou JM, Monlezun L et al (2010) The Pih1-Tah1 cochaperone complex inhibits Hsp90 molecular chaperone ATPase activity. J Biol Chem 285:31304–31312PubMedPubMedCentralCrossRefGoogle Scholar
  10. Eustermann S, Schall K, Kostrewa D et al (2018) Structural basis for ATP-dependent chromatin remodelling by the INO80 complex. Nature 556:386–390PubMedPubMedCentralCrossRefGoogle Scholar
  11. Ewens CA, Su M, Zhao L, Nano N, Houry WA, Southworth DR (2016) Architecture and nucleotide-dependent conformational changes of the Rvb1-Rvb2 AAA+ complex revealed by cryoelectron microscopy. Structure 24:657–666PubMedCrossRefPubMedCentralGoogle Scholar
  12. Gorynia S, Bandeiras TM, Pinho FG et al (2011) Structural and functional insights into a dodecameric molecular machine – the RuvBL1/RuvBL2 complex. J Struct Biol 176:279–291PubMedCrossRefPubMedCentralGoogle Scholar
  13. Gribun A, Cheung KL, Huen J, Ortega J, Houry WA (2008) Yeast Rvb1 and Rvb2 are ATP-dependent DNA helicases that form a heterohexameric complex. J Mol Biol 376:1320–1333PubMedCrossRefPubMedCentralGoogle Scholar
  14. Grigoletto A, Lestienne P, Rosenbaum J (2011) The multifaceted proteins Reptin and Pontin as major players in cancer. Biochim Biophys Acta 1815:147–157PubMedPubMedCentralGoogle Scholar
  15. Gross M, Hessefort S (1996) Purification and characterisation of a 66-kDa protein from rabbit reticulocyte lysate which promotes the recycling of hsp70. J Biol Chem 271:16833–16841PubMedCrossRefPubMedCentralGoogle Scholar
  16. Hartill VL, van de Hoek G, Patel MP et al (2018) DNAAF1 links heart laterality with the AAA+ ATPase RUVBL1 and ciliary intraflagellar transport. Hum Mol Genet 27:529–545PubMedCrossRefPubMedCentralGoogle Scholar
  17. Horejsi Z, Takai H, Adelman CA et al (2010) CK2 phospho-dependent binding of R2TP complex to TEL2 is essential for mTOR and SMG1 stability. Mol Cell 39:839–850PubMedCrossRefPubMedCentralGoogle Scholar
  18. Horejsi Z, Stach L, Flower TG et al (2014) Phosphorylation-dependent PIH1D1 interactions define substrate specificity of the R2TP cochaperone complex. Cell Rep 7:19–26PubMedPubMedCentralCrossRefGoogle Scholar
  19. Huber O, Menard L, Haurie V, Nicou A, Taras D, Rosenbaum J (2008) Pontin and reptin, two related ATPases with multiple roles in cancer. Cancer Res 68:6873–6876PubMedCrossRefPubMedCentralGoogle Scholar
  20. Hurov KE, Cotta-Ramusino C, Elledge SJ (2010) A genetic screen identifies the triple T complex required for DNA damage signaling and ATM and ATR stability. Genes Dev 24:1939–1950PubMedPubMedCentralCrossRefGoogle Scholar
  21. Itsuki Y, Saeki M, Nakahara H et al (2008) Molecular cloning of novel Monad binding protein containing tetratricopeptide repeat domains. FEBS Lett 582:2365–2370PubMedCrossRefPubMedCentralGoogle Scholar
  22. Izumi N, Yamashita A, Hirano H, Ohno S (2012) Heat shock protein 90 regulates phosphatidylinositol 3-kinase-related protein kinase family proteins together with the RUVBL1/2 and Tel2-containing co-factor complex. Cancer Sci 103:50–57PubMedCrossRefPubMedCentralGoogle Scholar
  23. Jeganathan A, Leong V, Zhao L et al (2015) Yeast rvb1 and rvb2 proteins oligomerize as a conformationally variable dodecamer with low frequency. J Mol Biol 427:1875–1886PubMedCrossRefPubMedCentralGoogle Scholar
  24. Jha S, Dutta A (2009) RVB1/RVB2: running rings around molecular biology. Mol Cell 34:521–533PubMedPubMedCentralCrossRefGoogle Scholar
  25. Johnson BD, Schumacher RJ, Ross ED, Toft DO (1998) Hop modulates hsp70/hsp90 interactions in protein folding. J Biol Chem 273:3679–3686PubMedCrossRefPubMedCentralGoogle Scholar
  26. Jonsson ZO, Jha S, Wohlschlegel JA, Dutta A (2004) Rvb1p/Rvb2p recruit Arp5p and assemble a functional Ino80 chromatin remodeling complex. Mol Cell 16:465–477PubMedCrossRefPubMedCentralGoogle Scholar
  27. Kabani M, Beckerich JM, Brodsky JL (2002) Nucleotide exchange factor for the yeast Hsp70 molecular chaperone Ssa1p. Mol Cell Biol 22:4677–4689PubMedPubMedCentralCrossRefGoogle Scholar
  28. Kakihara Y, Houry WA (2012) The R2TP complex: discovery and functions. Biochim Biophys Acta 1823:101–107PubMedCrossRefPubMedCentralGoogle Scholar
  29. Kim SG, Hoffman GR, Poulogiannis G et al (2013) Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. Mol Cell 49:172–185PubMedCrossRefPubMedCentralGoogle Scholar
  30. Lakomek K, Stoehr G, Tosi A, Schmailzl M, Hopfner KP (2015) Structural basis for dodecameric assembly states and conformational plasticity of the full-length AAA+ ATPases Rvb1 . Rvb2. Structure 23:483–495PubMedCrossRefPubMedCentralGoogle Scholar
  31. Lakshminarasimhan M, Boanca G, Banks CA et al (2016) Proteomic and genomic analyses of the Rvb1 and Rvb2 interaction network upon deletion of R2TP complex components. Mol Cell Proteomics 15:960–974PubMedPubMedCentralCrossRefGoogle Scholar
  32. Lopez-Perrote A, Munoz-Hernandez H, Gil D, Llorca O (2012) Conformational transitions regulate the exposure of a DNA-binding domain in the RuvBL1-RuvBL2 complex. Nucleic Acids Res 40:11086–11099PubMedPubMedCentralCrossRefGoogle Scholar
  33. Malinova A, Cvackova Z, Mateju D et al (2017) Assembly of the U5 snRNP component PRPF8 is controlled by the HSP90/R2TP chaperones. J Cell Biol 216:1579–1596PubMedPubMedCentralCrossRefGoogle Scholar
  34. Mannoor K, Liao J, Jiang F (2012) Small nucleolar RNAs in cancer. Biochim Biophys Acta 1826:121–128PubMedPubMedCentralGoogle Scholar
  35. Mao YQ, Houry WA (2017) The role of Pontin and Reptin in cellular physiology and cancer etiology. Front Mol Biosci 4:58PubMedPubMedCentralCrossRefGoogle Scholar
  36. Martino F, Pal M, Munoz-Hernandez H et al (2018) RPAP3 provides a flexible scaffold for coupling HSP90 to the human R2TP co-chaperone complex. Nat Commun 9:1501PubMedPubMedCentralCrossRefGoogle Scholar
  37. Matias PM, Gorynia S, Donner P, Carrondo MA (2006) Crystal structure of the human AAA+ protein RuvBL1. J Biol Chem 281:38918–38929PubMedCrossRefPubMedCentralGoogle Scholar
  38. Maurizy C, Quinternet M, Abel Y et al (2018) The RPAP3-Cterminal domain identifies R2TP-like quaternary chaperones. Nat Commun 9:2093PubMedPubMedCentralCrossRefGoogle Scholar
  39. McKeegan KS, Debieux CM, Boulon S, Bertrand E, Watkins NJ (2007) A dynamic scaffold of pre-snoRNP factors facilitates human box C/D snoRNP assembly. Mol Cell Biol 27:6782–6793PubMedPubMedCentralCrossRefGoogle Scholar
  40. Miao C, Jiang Q, Li H et al (2016) Mutations in the motile cilia gene DNAAF1 are associated with neural tube defects in humans. G3 (Bethesda) 6:3307–3316CrossRefGoogle Scholar
  41. Mikesch JH, Hartmann W, Angenendt L et al (2018) AAA+ ATPases Reptin and Pontin as potential diagnostic and prognostic biomarkers in salivary gland cancer – a short report. Cell Oncol (Dordr) 41:455–462CrossRefGoogle Scholar
  42. Millson SH, Vaughan CK, Zhai C et al (2008) Chaperone ligand-discrimination by the TPR-domain protein Tah1. Biochem J 413:261–268PubMedPubMedCentralCrossRefGoogle Scholar
  43. Mita P, Savas JN, Ha S, Djouder N, Yates JR 3rd, Logan SK (2013) Analysis of URI nuclear interaction with RPB5 and components of the R2TP/prefoldin-like complex. PLoS One 8:e63879PubMedPubMedCentralCrossRefGoogle Scholar
  44. Morgan RM, Pal M, Roe SM, Pearl LH, Prodromou C (2015) Tah1 helix-swap dimerization prevents mixed Hsp90 co-chaperone complexes. Acta Crystallogr D Biol Crystallogr 71:1197–1206PubMedPubMedCentralCrossRefGoogle Scholar
  45. Nallar SC, Kalvakolanu DV (2013) Regulation of snoRNAs in cancer: close encounters with interferon. J Interf Cytokine Res 33:189–198CrossRefGoogle Scholar
  46. Nano N, Houry WA (2013) Chaperone-like activity of the AAA+ proteins Rvb1 and Rvb2 in the assembly of various complexes. Philos Trans R Soc Lond Ser B Biol Sci 368:20110399CrossRefGoogle Scholar
  47. Nguyen VQ, Ranjan A, Stengel F et al (2013) Molecular architecture of the ATP-dependent chromatin-remodeling complex SWR1. Cell 154:1220–1231PubMedPubMedCentralCrossRefGoogle Scholar
  48. Niewiarowski A, Bradley AS, Gor J, McKay AR, Perkins SJ, Tsaneva IR (2010) Oligomeric assembly and interactions within the human RuvB-like RuvBL1 and RuvBL2 complexes. Biochem J 429:113–125PubMedCrossRefPubMedCentralGoogle Scholar
  49. Olcese C, Patel MP, Shoemark A et al (2017) X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3. Nat Commun 8:14279PubMedPubMedCentralCrossRefGoogle Scholar
  50. Pal M, Morgan M, Phelps SE et al (2014) Structural basis for phosphorylation-dependent recruitment of Tel2 to Hsp90 by Pih1. Structure 22:805–818PubMedPubMedCentralCrossRefGoogle Scholar
  51. Polier S, Samant RS, Clarke PA, Workman P, Prodromou C, Pearl LH (2013) ATP-competitive inhibitors block protein kinase recruitment to the Hsp90-Cdc37 system. Nat Chem Biol 9:307–312PubMedPubMedCentralCrossRefGoogle Scholar
  52. Prodromou C (2012) The ‘active life’ of Hsp90 complexes. Biochim Biophys Acta 1823:614–623PubMedPubMedCentralCrossRefGoogle Scholar
  53. Prodromou C (2016) Mechanisms of Hsp90 regulation. Biochem J 473:2439–2452PubMedPubMedCentralCrossRefGoogle Scholar
  54. Prodromou C, Morgan RML (2016) “Tuning” the ATPase activity of Hsp90. Adv Biochem Health D 14:469–490Google Scholar
  55. Prodromou C, Siligardi G, O’Brien R et al (1999) Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones. EMBO J 18:754–762PubMedPubMedCentralCrossRefGoogle Scholar
  56. Puri T, Wendler P, Sigala B, Saibil H, Tsaneva IR (2007) Dodecameric structure and ATPase activity of the human TIP48/TIP49 complex. J Mol Biol 366:179–192PubMedCrossRefPubMedCentralGoogle Scholar
  57. Quinternet M, Rothe B, Barbier M et al (2015) Structure/function analysis of protein-protein interactions developed by the yeast Pih1 platform protein and its Partners in box C/D snoRNP assembly. J Mol Biol 427:2816–2839PubMedCrossRefPubMedCentralGoogle Scholar
  58. Rivera-Calzada A, Pal M, Munoz-Hernandez H et al (2017) The structure of the R2TP complex defines a platform for recruiting diverse client proteins to the HSP90 molecular chaperone system. Structure 25:1145–52 e4PubMedPubMedCentralCrossRefGoogle Scholar
  59. Roe SM, Ali MM, Meyer P et al (2004) The mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37). Cell 116:87–98PubMedCrossRefPubMedCentralGoogle Scholar
  60. Rothe B, Saliou JM, Quinternet M et al (2014) Protein Hit1, a novel box C/D snoRNP assembly factor, controls cellular concentration of the scaffolding protein Rsa1 by direct interaction. Nucleic Acids Res 42:10731–10747PubMedPubMedCentralCrossRefGoogle Scholar
  61. Sardiu ME, Cai Y, Jin J et al (2008) Probabilistic assembly of human protein interaction networks from label-free quantitative proteomics. Proc Natl Acad Sci U S A 105:1454–1459PubMedPubMedCentralCrossRefGoogle Scholar
  62. Siegers K, Waldmann T, Leroux MR et al (1999) Compartmentation of protein folding in vivo: sequestration of non-native polypeptide by the chaperonin-GimC system. EMBO J 18:75–84PubMedPubMedCentralCrossRefGoogle Scholar
  63. Siligardi G, Panaretou B, Meyer P et al (2002) Regulation of Hsp90 ATPase activity by the co-chaperone Cdc37p/p50cdc37. J Biol Chem 277:20151–20159PubMedCrossRefPubMedCentralGoogle Scholar
  64. Takai H, Xie Y, de Lange T, Pavletich NP (2010) Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes. Genes Dev 24:2019–2030PubMedPubMedCentralCrossRefGoogle Scholar
  65. Tarkar A, Loges NT, Slagle CE et al (2013) DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nat Genet 45:995–1003PubMedPubMedCentralCrossRefGoogle Scholar
  66. Taylor AM, Groom A, Byrd PJ (2004) Ataxia-telangiectasia-like disorder (ATLD)-its clinical presentation and molecular basis. DNA Repair (Amst) 3:1219–1225CrossRefGoogle Scholar
  67. Vainberg IE, Lewis SA, Rommelaere H et al (1998) Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell 93:863–873PubMedCrossRefPubMedCentralGoogle Scholar
  68. Venteicher AS, Meng Z, Mason PJ, Veenstra TD, Artandi SE (2008) Identification of ATPases pontin and reptin as telomerase components essential for holoenzyme assembly. Cell 132:945–957PubMedPubMedCentralCrossRefGoogle Scholar
  69. Verheggen C, Pradet-Balade B, Bertrand E (2015) SnoRNPs, ZNHIT proteins and the R2TP pathway. Oncotarget 6:41399–41400PubMedPubMedCentralCrossRefGoogle Scholar
  70. von Morgen P, Horejsi Z, Macurek L (2015) Substrate recognition and function of the R2TP complex in response to cellular stress. Front Genet 6:69Google Scholar
  71. Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha-subunits and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951PubMedPubMedCentralCrossRefGoogle Scholar
  72. Wegele H, Haslbeck M, Reinstein J, Buchner J (2003) Sti1 is a novel activator of the Ssa proteins. J Biol Chem 278:25970–25976PubMedCrossRefPubMedCentralGoogle Scholar
  73. Yoshida M, Saeki M, Egusa H et al (2013) RPAP3 splicing variant isoform 1 interacts with PIH1D1 to compose R2TP complex for cell survival. Biochem Biophys Res Commun 430:320–324PubMedCrossRefPubMedCentralGoogle Scholar
  74. Zaarur N, Xu X, Lestienne P et al (2015) RuvbL1 and RuvbL2 enhance aggresome formation and disaggregate amyloid fibrils. EMBO J 34:2363–2382PubMedPubMedCentralCrossRefGoogle Scholar
  75. Zhang X, Wigley DB (2008) The ‘glutamate switch’ provides a link between ATPase activity and ligand binding in AAA+ proteins. Nat Struct Mol Biol 15:1223–1227PubMedPubMedCentralCrossRefGoogle Scholar
  76. Zhang X, Ren J, Yan L et al (2015) Cytoplasmic expression of pontin in renal cell carcinoma correlates with tumor invasion, metastasis and patients’ survival. PLoS One 10:e0118659PubMedPubMedCentralCrossRefGoogle Scholar
  77. Zhao R, Davey M, Hsu YC et al (2005) Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120:715–727PubMedCrossRefGoogle Scholar
  78. Zur Lage P, Stefanopoulou P, Styczynska-Soczka K et al (2018) Ciliary dynein motor preassembly is regulated by Wdr92 in association with HSP90 co-chaperone, R2TP. J Cell Biol 217:2583–2598PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Biochemistry and BiomedicineUniversity of SussexFalmer, BrightonUK

Personalised recommendations