Moonlighting Functions of Heat Shock Protein 90

  • Chang Chen
  • Constance JefferyEmail author
Part of the Heat Shock Proteins book series (HESP, volume 19)


Hsp90 is a highly expressed and ubiquitous chaperone in eukaryotes and bacteria. It works with hundreds of client proteins and is regulated by dozens of co-chaperones. Its functions in folding, stabilizing, assembling and disassembling proteins and complexes that are involved in many key processes in the cell, including antigen cross-presentation, stabilization of the cytoskeleton, signaling pathways, stabilization of steroid receptors and other transcription factors, assembly and disassembly of transcription machinery, DNA repair, and the cell cycle. This ubiquitous and versatile intracellular protein is found to have even more functions outside the cell. In this review we discuss the idea that Hsp90 is a moonlighting protein with roles as a secreted cytokine and as a cell surface apoptotic signal and receptor for bacterial cells and lipopolysaccharide.


Chaperone Cytokine HSP90 Moonlighting protein Receptor Secretion 



Alpha 2 macroglobulin receptor


Bone marrow derived dendritic cells


Integrin subunit


Integrin subunit


Chemokine receptor 4


Endoplasmic reticulum


Growth differentiation factor 5


Human epithelial type 2


Heat shock cognate 71 kDa protein


Heat shock protein 75 kDa mitochondrial


Heat shock protein Hsp 90


High temperature protein G/C62.5


Lipopolysaccharide-binding protein


Lectin-like oxidized LDL receptor-1




LDL receptor-related protein 1/ CD91


Moonlighting proteins database


Post-translational modifications


Toll-like receptor 4


Heat shock protein 75 kDa mitochondrial



Research on this project in the Jeffery lab is supported by an award from the University of Illinois Cancer Center.


  1. Amblee V, Jeffery CJ (2015) Physical features of intracellular proteins that moonlight on the cell surface. PLoS One 10:e0130575PubMedPubMedCentralCrossRefGoogle Scholar
  2. Banerjee S, Nandyala AK, Raviprasad P, Ahmed N, Hasnain SE (2007) Iron-dependent RNA-binding activity of Mycobacterium tuberculosis aconitase. J Bacteriol 189:4046–4052PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bardwell JC, Craig EA (1987) Eukaryotic Mr 83,000 heat shock protein has a homologue in Escherichia coli. Proc Natl Acad Sci USA 84:5177–5181PubMedCrossRefPubMedCentralGoogle Scholar
  4. Basu S, Binder RJ, Ramalingam T, Srivastava PK (2001) CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14:303–313PubMedCrossRefPubMedCentralGoogle Scholar
  5. Cecchini P, Tavano R, de Laureto PP, Franzoso S, Mazzon C, Montanari P, Papini E (2011) The soluble recombinant Neisseria meningitidis adhesin NadAΔ351–405 stimulates human monocytes by binding to extracellular Hsp90. PLoS One 6:e25089PubMedPubMedCentralCrossRefGoogle Scholar
  6. Chaput M, Claes V, Portetelle D, Cludts I, Cravador A, Burny A, Gras H, Tartar A (1988) The neurotrophic factor neuroleukin is 90% homologous with phosphohexose isomerase. Nature 332:454–455PubMedCrossRefPubMedCentralGoogle Scholar
  7. Chen B, Zhong D, Monteiro A (2006) Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. BMC Genomics 7:156PubMedPubMedCentralCrossRefGoogle Scholar
  8. Chen C, Zabad S, Liu H, Wang W, Jeffery C (2017) MoonProt 2.0: an expansion and update of the moonlighting proteins database. Nucleic Acids Res 46:D640–D644PubMedCentralCrossRefGoogle Scholar
  9. Cheng CF, Fan J, Fedesco M, Guan S, Li Y, Bandyopadhyay B, Bright AM, Yerushalmi D, Liang M, Chen M, Han YP, Woodley DT, Li W (2008) Transforming growth factor α (TGFα)-stimulated secretion of HSP90α: using the receptor LRP-1/CD91 to promote human skin cell migration against a TGFβ-rich environment during wound healing. Mol Cell Biol 28:3344–3358PubMedPubMedCentralCrossRefGoogle Scholar
  10. Cheng CF, Sahu D, Tsen F, Zhao Z, Fan J, Kim R, Wang X, O’Brien K, Li Y, Kuang Y, Chen M, Woodley DT, Li W (2011) A fragment of secreted Hsp90α carries properties that enable it to accelerate effectively both acute and diabetic wound healing in mice. J Clin Invest 121:4348–4361PubMedPubMedCentralCrossRefGoogle Scholar
  11. Clayton A, Turkes A, Navabi H, Mason MD, Tabi Z (2005) Induction of heat shock proteins in B-cell exosomes. J Cell Sci 118:3631–3638PubMedCrossRefPubMedCentralGoogle Scholar
  12. Csermely P, Kahn CR (1991) The 90-kDa heat shock protein (hsp-90) possesses an ATP binding site and autophosphorylating activity. J Biol Chem 266:4943–4950PubMedPubMedCentralGoogle Scholar
  13. Faik P, Walker JI, Redmill AA, Morgan MJ (1988) Mouse glucose-6-phosphate isomerase and neuroleukin have identical 3′ sequences. Nature 332:455–457PubMedCrossRefPubMedCentralGoogle Scholar
  14. Garduño RA, Garduño E, Hoffman PS (1998) Surface-associated hsp60 chaperonin of Legionella pneumophila mediates invasion in a HeLa cell model. Infect Immun 66:4602–4610PubMedPubMedCentralGoogle Scholar
  15. Gurney ME, Heinrich SP, Lee MR, Yin HS (1986) Molecular cloning and expression of neuroleukin, a neurotrophic factor for spinal and sensory neurons. Science 234:566–574PubMedCrossRefPubMedCentralGoogle Scholar
  16. Hance M, Nolan K, Isaacs J (2014) The double-edged sword: conserved functions of extracellular hsp90 in wound healing and cancer. Cancers 6:1065–1097PubMedPubMedCentralCrossRefGoogle Scholar
  17. Henderson B, Pockley AG (eds) (2005) Molecular chaperones and cell signaling. Cambridge University Press, CambridgeGoogle Scholar
  18. Henderson B, Pockley AG (2010) Molecular chaperones and protein-folding catalysts as intercellular signaling regulators in immunity and inflammation. J Leukoc Biol 88:445–462PubMedCrossRefPubMedCentralGoogle Scholar
  19. Ishikura S, Usami N, Araki M, Hara A (2005) Structural and functional characterization of rabbit and human L-gulonate 3-dehydrogenase. J Biochem 137:303–314PubMedCrossRefPubMedCentralGoogle Scholar
  20. Jayaprakash P, Dong H, Zou M, Bhatia A, O’Brien K, Chen M, Woodley DT, Li W (2015) HSP90α and HSP90β co-operate a stress-response mechanism to cope with hypoxia and nutrient paucity during wound healing. J Cell Sci 128:1475–1480PubMedPubMedCentralCrossRefGoogle Scholar
  21. Jeffery CJ (1999) Moonlighting proteins. Trends Biochem 24:8–11CrossRefGoogle Scholar
  22. Jeffery CJ (2004) Molecular mechanisms for multitasking: recent crystal structures of moonlighting proteins. Curr Opin Struct Biol 14:663–668PubMedCrossRefPubMedCentralGoogle Scholar
  23. Jeffery CJ (2009) Moonlighting proteins—an update. Mol BioSyst 5:345–350PubMedCrossRefPubMedCentralGoogle Scholar
  24. Jeffery CJ (2016) Protein species and moonlighting proteins: very small changes in a protein’s covalent structure can change its biochemical function. J Proteome 134:19–24CrossRefGoogle Scholar
  25. Jeffery C (2018) Intracellular proteins moonlighting as bacterial adhesion factors. AIMS Microbiol 4:362–376PubMedPubMedCentralCrossRefGoogle Scholar
  26. Jin S, Song YC, Emili A, Sherman PM, Chan VL (2003) JlpA of campylobacter jejuni interacts with surface-exposed heat shock protein 90α and triggers signalling pathways leading to the activation of NF-κB and p38 MAP kinase in epithelial cells. Cell Microbiol 5:165–174PubMedCrossRefPubMedCentralGoogle Scholar
  27. Kainulainen V, Korhonen T (2014) Dancing to another tune—adhesive moonlighting proteins in bacteria. Biology 3:178–204PubMedPubMedCentralCrossRefGoogle Scholar
  28. Kennaway CK, Benesch JL, Gohlke U, Wang L, Robinson CV, Orlova EV, Saibil HR, Keep NH (2005) Dodecameric structure of the small heat shock protein Acr1 from Mycobacterium tuberculosis. J Biol Chem 280:33419–33425PubMedCrossRefPubMedCentralGoogle Scholar
  29. Kennedy MC, Mende-Mueller L, Blondin GA, Beinert H (1992) Purification and characterization of cytosolic aconitase from beef liver and its relationship to the iron-responsive element binding protein. Proc Natl Acad Sci USA 89:11730–11734PubMedCrossRefPubMedCentralGoogle Scholar
  30. Kim KP, Jagadeesan B, Burkholder KM, Jaradat ZW, Wampler JL, Lathrop AA, Morgan MT, Bhunia AK (2006) Adhesion characteristics of Listeria adhesion protein (LAP)-expressing Escherichia coli to Caco-2 cells and of recombinant LAP to eukaryotic receptor Hsp60 as examined in a surface plasmon resonance sensor. FEMS Microbiol Lett 256:324–332PubMedCrossRefPubMedCentralGoogle Scholar
  31. Langer T, Schlatter H, Fasold H (2002) Evidence that the novobiocin-sensitive ATP-binding site of the heat shock protein 90 (hsp90) is necessary for its autophosphorylation. Cell Biol Int 26:653–657PubMedCrossRefPubMedCentralGoogle Scholar
  32. Li W, Li Y, Guan S, Fan J, Cheng CF, Bright AM, Chinn C, Chen M, Woodley DT (2007) Extracellular heat shock protein-90α: linking hypoxia to skin cell motility and wound healing. EMBO J 26:1221–1233PubMedPubMedCentralCrossRefGoogle Scholar
  33. Mani M, Chen C, Amblee V, Liu H, Mathur T, Zwicke G, Zabad S, Patel B, Thakkar J, Jeffery CJ (2014) MoonProt: a database for proteins that are known to moonlight. Nucleic Acids Res 43:D277–D282PubMedPubMedCentralCrossRefGoogle Scholar
  34. Mollapour M, Neckers L (2012) Post-translational modifications of Hsp90 and their contributions to chaperone regulation. Biochim Biophys Acta 1823:648–655PubMedCrossRefPubMedCentralGoogle Scholar
  35. Nadeau K, Das A, Walsh CT (1993) Hsp90 chaperonins possess ATPase activity and bind heat shock transcription factors and peptidyl prolyl isomerases. J Biol Chem 268:1479–1487PubMedPubMedCentralGoogle Scholar
  36. Neckers L, Workman P (2012) Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res 18:64–76PubMedPubMedCentralCrossRefGoogle Scholar
  37. Obermann WM, Sondermann H, Russo AA, Pavletich NP, Hartl FU (1998) In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. J Cell Biol 143:901–910PubMedPubMedCentralCrossRefGoogle Scholar
  38. Panaretou B, Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1998) ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. EMBO J 17:4829–4836PubMedPubMedCentralCrossRefGoogle Scholar
  39. Park M, Kang CY, Krishna P (1998) Brassica napus hsp90 can autophosphorylate and phosphorylate other protein substrates. Mol Cell Biochem 185:33–38PubMedCrossRefPubMedCentralGoogle Scholar
  40. Pearl LH (2016) The HSP90 molecular chaperone—an enigmatic ATPase. Biopolymers 105:594–607PubMedPubMedCentralCrossRefGoogle Scholar
  41. Philpott CC, Klausner RD, Rouault TA (1994) The bifunctional iron-responsive element binding protein/cytosolic aconitase: the role of active-site residues in ligand binding and regulation. Proc Natl Acad Sci USA 91:7321–7325PubMedCrossRefPubMedCentralGoogle Scholar
  42. Pockley AG, Henderson B (2017) Extracellular cell stress (heat shock) proteins—immune responses and disease: an overview. Philos Trans R Soc B Biol Sci 373:20160522CrossRefGoogle Scholar
  43. Rao PV, Krishna CM, Zigler JS (1992) Identification and characterization of the enzymatic activity of zeta-crystallin from Guinea pig lens. A novel NADPH: quinone oxidoreductase. J Biol Chem 267:96–102PubMedPubMedCentralGoogle Scholar
  44. Rebbe NF, Ware J, Bertina RM, Modrich P, Stafford DW (1987) Nucleotide sequence of a cDNA for a member of the human 90-kDa heat-shock protein family. Gene 53:235–245PubMedCrossRefPubMedCentralGoogle Scholar
  45. Ruiz L, Ruas-Madiedo P, Gueimonde M, Clara GDLR, Margolles A, Sánchez B (2011) How do bifidobacteria counteract environmental challenges? Mechanisms involved and physiological consequences. Genes Nutr 6:307–318PubMedPubMedCentralCrossRefGoogle Scholar
  46. Saito Y, Ihara Y, Leach MR, Cohen-Doyle MF, Williams DB (1999) Calreticulin functions in vitro as a molecular chaperone for both glycosylated and non-glycosylated proteins. EMBO J 18:6718–6729PubMedPubMedCentralCrossRefGoogle Scholar
  47. Schopf FH, Biebl MM, Buchner J (2017) The HSP90 chaperone machinery. Nat Rev Mol Cell Biol 18:345–360PubMedCrossRefGoogle Scholar
  48. Song X, Luo Y (2010) The regulatory mechanism of Hsp90α secretion from endothelial cells and its role in angiogenesis during wound healing. Biochem Biophys Res Commun 398:111–117PubMedCrossRefPubMedCentralGoogle Scholar
  49. Song HY, Dunbar JD, Zhang YX, Guo D, Donner DB (1995) Identification of a protein with homology to hsp90 that binds the type 1 tumor necrosis factor receptor. J Biol Chem 270:3574–3581PubMedCrossRefPubMedCentralGoogle Scholar
  50. Thein M, Sauer G, Paramasivam N, Grin I, Linke D (2010) Efficient subfractionation of gram-negative bacteria for proteomics studies. J Proteome Res 9:6135–6147PubMedCrossRefPubMedCentralGoogle Scholar
  51. Triantafilou M, Triantafilou K (2002) Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol 23:301–304PubMedCrossRefPubMedCentralGoogle Scholar
  52. Triantafilou K, Triantafilou M, Dedrick RL (2001a) A CD14-independent LPS receptor cluster. Nat Immunol 2:338 345CrossRefGoogle Scholar
  53. Triantafilou K, Triantafilou M, Ladha S, Mackie A, Dedrick RL, Fernandez N, Cherry R (2001b) Fluorescence recovery after photobleaching reveals that LPS rapidly transfers from CD14 to hsp70 and hsp90 on the cell membrane. J Cell Sci 114:2535–2545PubMedPubMedCentralGoogle Scholar
  54. Tzeng YL, Kahler CM, Zhang X, Stephens DS (2008) MisR/MisS two-component regulon in Neisseria meningitidis. Infect Immun 76:704–716PubMedCrossRefPubMedCentralGoogle Scholar
  55. Verma S, Goyal S, Jamal S, Singh A, Grover A (2016) Hsp90: friends, clients and natural foes. Biochimie 127:227–240PubMedCrossRefPubMedCentralGoogle Scholar
  56. Wang W, Jeffery CJ (2016) An analysis of surface proteomics results reveals novel candidates for intracellular/surface moonlighting proteins in bacteria. Mol BioSyst 12:1420–1431PubMedCrossRefPubMedCentralGoogle Scholar
  57. Watanabe H, Takehana K, Date M, Shinozaki T, Raz A (1996) Tumor cell autocrine motility factor is the neuroleukin/phosphohexose isomerase polypeptide. Cancer Res 56:2960–2963PubMedPubMedCentralGoogle Scholar
  58. Wistow GJ, Piatigorsky J (1990) Gene conversion and splice-site slippage in the argininosuccinate lyases/δ-crystallins of the duck lens: members of an enzyme superfamily. Gene 96:263–270PubMedCrossRefPubMedCentralGoogle Scholar
  59. Woodley DT, Fan J, Cheng CF, Li Y, Chen M, Bu G, Li W (2009) Participation of the lipoprotein receptor LRP1 in hypoxia-HSP90α autocrine signaling to promote keratinocyte migration. J Cell Sci 122:1495–1498PubMedPubMedCentralCrossRefGoogle Scholar
  60. Xu W, Seiter K, Feldman E, Ahmed T, Chiao JW (1996) The differentiation and maturation mediator for human myeloid leukemia cells shares homology with neuroleukin or phosphoglucose isomerase. Blood 87:4502–4506PubMedCrossRefPubMedCentralGoogle Scholar
  61. Yuan G, Wong SL (1995) Isolation and characterization of Bacillus subtilis groE regulatory mutants: evidence for orf39 in the dnaK operon as a repressor gene in regulating the expression of both groE and dnaK. J Bacteriol 177:6462–6468PubMedPubMedCentralCrossRefGoogle Scholar
  62. Zhu H, Fang X, Zhang D, Wu W, Shao M, Wang L, Gu J (2016) Membrane-bound heat shock proteins facilitate the uptake of dying cells and cross-presentation of cellular antigen. Apoptosis 21:96–109PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of BioengineeringUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of Biological SciencesUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations