Hsp60 in Atherosclerosis: Past, Present and Future

  • Bojana JakicEmail author
  • Georg Wick
  • Giuseppe Cappellano
Part of the Heat Shock Proteins book series (HESP, volume 18)


Atherosclerosis is a multifactorial inflammatory disease of the arteries that manifests itself with calcified plaque formation within endothelial cells and the smooth muscle cell layer of vessels. T cells that recognize endogenous Hsp60 on endothelial cells initiate the disease. Here, we first describe the initial experiments that led to the discovery of Hsp60 as an autoantigenic driver of atherosclerosis. Then, we address numerous epidemiological and experimental studies performed by our lab and others that have firmly established Hsp60 as an autoantigen. In addition, we describe the pathogenic mechanisms mediated by Hsp60 and list known inducers of ectopic Hsp60 expression. Finally, we discuss the potential of Hsp60-based vaccination against atherosclerosis.


Atherosclerosis Autoimmunity Hsp60 Immunoregulation T cell Vaccination 



Adjuvant arthritis


Apolipoprotein E


Atherosclerosis risk factor in female youngsters


Atherosclerosis risk factor in male youngsters


Coronary artery disease


Complete Freund’s adjuvant


Chlamydia pneumoniae-derived Hsp60




C-reactive protein


Dendritic cell(s)


Endothelial cell(s)


Enzyme-linked immunosorbent assay


Endothelial nitric oxide synthase 3


Extracellular signal-regulated kinase


Human coronary artery endothelial cell(s)


Human Hsp60




Heat shock protein


Heat shock protein 60


Human umbilical vein endothelial cell(s)






Intercellular adhesion molecule 1


Incomplete Freund’s adjuvant


Interferon γ




Low-density lipoprotein


Lectin-like oxidized LDL receptor




Muscosa-associated lymphoid tissue


Mitogen-activated protein kinase


Mycobacterial Hsp60


Myeloid-derived suppressor cells


Major histocompatibility complex


Mesenteric lymph node


New Zealand white rabbits




Oxidized LDL


Rheumatoid arthritis




Soluble/circulating Hsp60


Transforming growth factor β


T-helper cells


Toll-like receptor


Tumor necrosis factor α


Regulatory T cell


Vascular-associated lymphoid tissue


Vascular cell adhesion molecule 1


Vascular smooth muscle cell(s)



We would like to thank past and present members of the Laboratory of Autoimmunity for their contributions to the work on Hsp60. We would also like to thank funding agencies that have supported our research; FP-7HEALTH EU funded TOLERAGE, Austrian Science Fund (FWF), Tyrolean Science Fund (Tiroler Wissenschaft Fonds, TWF), the Jubiläumsfonds of the Austrian National Bank (Österreichische National- bank, ÖNB) and the Lore and Udo Saldow Donation. Lastly, we would like to thank Rajam Csordas for critical evaluation of the English language.


  1. Almanzar G, Ollinger R, Leuenberger J et al (2012) Autoreactive Hsp60 epitope-specific T-cells in early human atherosclerotic lesions. J Autoimmun 39(4):441–450PubMedPubMedCentralCrossRefGoogle Scholar
  2. Amberger A, Maczek C, Jurgens G et al (1997) Co-expression of ICAM-1, VCAM-1, ELAM-1 and Hsp60 in human arterial and venous endothelial cells in response to cytokines and oxidized low-density lipoproteins. Cell Stress Chaperones 2(2):94–103PubMedPubMedCentralCrossRefGoogle Scholar
  3. Anderton SM, van der Zee R, Goodacre JA (1993) Inflammation activates self Hsp60-specific T cells. Eur J Immunol 23(1):33–38PubMedCrossRefGoogle Scholar
  4. Anderton SM, van der Zee R, Noordzij A, van Eden W (1994) Differential mycobacterial 65-kDa heat shock protein T cell epitope recognition after adjuvant arthritis-inducing or protective immunization protocols. J Immunol 152(7):3656–3664PubMedGoogle Scholar
  5. Andrie RP, Bauriedel G, Braun P et al (2011) Prevalence of intimal heat shock protein 60 homologues in unstable angina and correlation with anti-heat shock protein antibody titers. Basic Res Cardiol 106(4):657–665PubMedCrossRefGoogle Scholar
  6. Arcaro A, Daga M, Cetrangolo GP et al (2015) Generation of adducts of 4-Hydroxy-2-nonenal with heat shock 60 kDa protein 1 in human promyelocytic HL-60 and Monocytic THP-1 cell lines. Oxidative Med Cell Longev 2015:296146CrossRefGoogle Scholar
  7. Ayada K, Yokota K, Hirai K et al (2009) Regulation of cellular immunity prevents Helicobacter pylori-induced atherosclerosis. Lupus 18(13):1154–1168PubMedCrossRefGoogle Scholar
  8. Banecka-Majkutewicz Z, Grabowski M, Kadzinski L et al (2014) Increased levels of antibodies against heat shock proteins in stroke patients. Acta Biochim Pol 61(2):379–383PubMedCrossRefGoogle Scholar
  9. Bartz SR, Pauza CD, Ivanyi J et al (1994) An Hsp60 related protein is associated with purified HIV and SIV. J Med Primatol 23(2–3):151–154PubMedCrossRefGoogle Scholar
  10. Benagiano M, D'Elios MM, Amedei A et al (2005) Human 60-kDa heat shock protein is a target autoantigen of T cells derived from atherosclerotic plaques. J Immunol 174(10):6509–6517PubMedCrossRefGoogle Scholar
  11. Bernhard D, Rossmann A, Henderson B et al (2006) Increased serum cadmium and strontium levels in young smokers: effects on arterial endothelial cell gene transcription. Arterioscler Thromb Vasc Biol 26(4):833–838PubMedCrossRefGoogle Scholar
  12. Binder CJ, Shaw PX, Chang MK et al (2005) The role of natural antibodies in atherogenesis. J Lipid Res 46(7):1353–1363PubMedCrossRefGoogle Scholar
  13. Bittencourt MS, Cerci RJ (2015) Statin effects on atherosclerotic plaques: regression or healing? BMC Med 13:260PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bobryshev YV, Lord RS (2001) Vascular-associated lymphoid tissue (VALT) involvement in aortic aneurysm. Atherosclerosis 154(1):15–21PubMedCrossRefGoogle Scholar
  15. Böck G, Huber LA, Wick G, Traill KN (1989) Use of a FACS III for fluorescence depolarization with DPH. J Histochem Cytochem 37(11):1653–1658PubMedCrossRefGoogle Scholar
  16. Brea D, Blanco M, Ramos-Cabrer P et al (2011) Toll-like receptors 2 and 4 in ischemic stroke: outcome and therapeutic values. J Cereb Blood Flow Metab 31(6):1424–1431PubMedPubMedCentralCrossRefGoogle Scholar
  17. Campbell LA, Rosenfeld ME (2015) Infection and atherosclerosis development. Arch Med Res 46(5):339–350PubMedPubMedCentralCrossRefGoogle Scholar
  18. Capasso R, Sambri I, Cimmino A et al (2012) Homocysteinylated albumin promotes increased monocyte-endothelial cell adhesion and up-regulation of MCP1, Hsp60 and ADAM17. PLoS One 7(2):e31388PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cebula A, Seweryn M, Rempala GA et al (2013) Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota. Nature 497(7448):258–262PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chahine MN, Deniset J, Dibrov E et al (2011) Oxidized LDL promotes the mitogenic actions of Chlamydia pneumoniae in vascular smooth muscle cells. Cardiovasc Res 92(3):476–483PubMedCrossRefGoogle Scholar
  21. Chen C, Chai H, Wang X, Lin PH, Yao Q (2009) Chlamydia heat shock protein 60 decreases expression of endothelial nitric oxide synthase in human and porcine coronary artery endothelial cells. Cardiovasc Res 83(4):768–777PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chen P, Yan H, Tian Y et al (2015) Annexin A2 as a target endothelial cell membrane autoantigen in Behcet's disease. Sci Rep 5:8162PubMedPubMedCentralCrossRefGoogle Scholar
  23. Choi J, Lee SY, Kim K, Choi BK (2011) Identification of immunoreactive epitopes of the Porphyromonas gingivalis heat shock protein in periodontitis and atherosclerosis. J Periodontal Res 46(2):240–245PubMedCrossRefGoogle Scholar
  24. Choi B, Choi M, Park C et al (2015) Cytosolic Hsp60 orchestrates the survival and inflammatory responses of vascular smooth muscle cells in injured aortic vessels. Cardiovasc Res 106(3):498–508PubMedCrossRefGoogle Scholar
  25. Craig EA, Gambill BD, Nelson RJ (1993) Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol Rev 57(2):402–414PubMedPubMedCentralGoogle Scholar
  26. Damluji AA, Ramireddy A, Al-Damluji MS et al (2015) Association between anti-human heat shock protein-60 and interleukin-2 with coronary artery calcium score. Heart 101(6):436–441PubMedCrossRefGoogle Scholar
  27. Danesh J, Collins R, Peto R (1997) Chronic infections and coronary heart disease: is there a link? Lancet 350(9075):430–436PubMedCrossRefGoogle Scholar
  28. Daugherty A, Pure E, Delfel-Butteiger D et al (1997) The effects of total lymphocyte deficiency on the extent of atherosclerosis in apolipoprotein E−/− mice. J Clin Invest 100(6):1575–1580PubMedPubMedCentralCrossRefGoogle Scholar
  29. Deniset JF, Hedley TE, Dibrov E, Pierce GN (2012) Chlamydophila pneumoniae infection induces alterations in vascular contractile responses. Am J Pathol 180(3):1264–1272PubMedCrossRefGoogle Scholar
  30. Deniset JF, Hedley TE, Hlavackova M et al (2018) Heat shock protein 60 involvement in vascular smooth muscle cell proliferation. Cell Signal 47:44–51PubMedCrossRefGoogle Scholar
  31. Dieude M, Gillis MA, Theoret JF et al (2009) Autoantibodies to heat shock protein 60 promote thrombus formation in a murine model of arterial thrombosis. J Thromb Haemost 7(4):710–719PubMedPubMedCentralCrossRefGoogle Scholar
  32. Ding J, Li J, Yang D et al (2018) Molecular characteristics of a novel Hsp60 gene and its differential expression in Manila clams (Ruditapes philippinarum) under thermal and hypotonic stress. Cell Stress Chaperones 23(2):179–187PubMedCrossRefGoogle Scholar
  33. Donaldson B, Al-Barwani F, Pelham SJ et al (2017) Multi-target chimaeric VLP as a therapeutic vaccine in a model of colorectal cancer. J Immunother Cancer 5(1):69PubMedPubMedCentralCrossRefGoogle Scholar
  34. Dubois B, Chapat L, Goubier A et al (2003) Innate CD4+CD25+ regulatory T cells are required for oral tolerance and inhibition of CD8+ T cells mediating skin inflammation. Blood 102(9):3295–3301PubMedCrossRefGoogle Scholar
  35. Ellins E, Shamaei-Tousi A, Steptoe A et al (2008) The relationship between carotid stiffness and circulating levels of heat shock protein 60 in middle-aged men and women. J Hypertens 26(12):2389–2392PubMedCrossRefGoogle Scholar
  36. Esposito P, Tinelli C, Libetta C et al (2011) Impact of seropositivity to Chlamydia pneumoniae and anti-hHsp60 on cardiovascular events in hemodialysis patients. Cell Stress Chaperones 16(2):219–224PubMedCrossRefGoogle Scholar
  37. Fisch P, Malkovsky M, Braakman E et al (1990) Gamma/delta T cell clones and natural killer cell clones mediate distinct patterns of non-major histocompatibility complex-restricted cytolysis. J Exp Med 171(5):1567–1579PubMedCrossRefGoogle Scholar
  38. Foks AC, Lichtman AH, Kuiper J (2015) Treating atherosclerosis with regulatory T cells. Arterioscler Thromb Vasc Biol 35(2):280–287PubMedCrossRefGoogle Scholar
  39. Foks AC, Van Puijvelde GH, Wolbert J et al (2016) CD11b+Gr-1+ myeloid-derived suppressor cells reduce atherosclerotic lesion development in LDLr deficient mice. Cardiovasc Res 111(3):252–261PubMedCrossRefGoogle Scholar
  40. Foote CA, Castorena-Gonzalez JA, Ramirez-Perez FI et al (2016) Arterial stiffening in western diet-fed mice is associated with increased vascular elastin, transforming growth factor-beta, and plasma neuraminidase. Front Physiol 7:285PubMedPubMedCentralCrossRefGoogle Scholar
  41. Friedman A, Weiner HL (1994) Induction of anergy or active suppression following oral tolerance is determined by antigen dosage. Proc Natl Acad Sci U S A 91(14):6688–6692PubMedPubMedCentralCrossRefGoogle Scholar
  42. Frostegard J, Zhang Y, Sun J, Yan K, Liu A (2016) Oxidized low-density lipoprotein (OxLDL)-treated dendritic cells promote activation of T cells in human atherosclerotic plaque and blood, which is repressed by statins: microRNA let-7c is integral to the effect. J Am Heart Assoc 5(9):e003976PubMedPubMedCentralCrossRefGoogle Scholar
  43. Galovic R, Flegar-Mestric Z, Vidjak V, Matokanovic M, Barisic K (2016) Heat shock protein 70 and antibodies to heat shock protein 60 are associated with cerebrovascular atherosclerosis. Clin Biochem 49(1–2):66–69PubMedCrossRefGoogle Scholar
  44. Gao Q, Jiang Y, Ma T et al (2010) A critical function of Th17 proinflammatory cells in the development of atherosclerotic plaque in mice. J Immunol 185(10):5820–5827PubMedCrossRefGoogle Scholar
  45. George J, Shoenfeld Y, Afek A et al (1999) Enhanced fatty streak formation in C57BL/6J mice by immunization with heat shock protein-65. Arterioscler Thromb Vasc Biol 19(3):505–510PubMedCrossRefGoogle Scholar
  46. George J, Afek A, Gilburd B, Shoenfeld Y, Harats D (2001) Cellular and humoral immune responses to heat shock protein 65 are both involved in promoting fatty-streak formation in LDL-receptor deficient mice. J Am Coll Cardiol 38(3):900–905PubMedCrossRefGoogle Scholar
  47. Grundtman C, Kreutmayer SB, Almanzar G, Wick MC, Wick G (2011) Heat shock protein 60 and immune inflammatory responses in atherosclerosis. Arterioscler Thromb Vasc Biol 31(5):960–968PubMedPubMedCentralCrossRefGoogle Scholar
  48. Grundtman C, Jakic B, Buszko M et al (2015) Mycobacterial heat shock protein 65 (mbHSP65)-induced atherosclerosis: preventive oral tolerization and definition of atheroprotective and atherogenic mbHSP65 peptides. Atherosclerosis 242(1):303–310PubMedCrossRefGoogle Scholar
  49. Hansson GK, Libby P (2006) The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 6(7):508–519PubMedCrossRefGoogle Scholar
  50. Hochleitner BW, Hochleitner EO, Obrist P et al (2000) Fluid shear stress induces heat shock protein 60 expression in endothelial cells in vitro and in vivo. Arterioscler Thromb Vasc Biol 20(3):617–623PubMedCrossRefGoogle Scholar
  51. Hu D, Mohanta SK, Yin C et al (2015) Artery tertiary lymphoid organs control aorta immunity and protect against atherosclerosis via vascular smooth muscle cell lymphotoxin beta receptors. Immunity 42(6):1100–1115PubMedPubMedCentralCrossRefGoogle Scholar
  52. Hu Y, Chen Z, Jiang L et al (2018) Effects of oral and subcutaneous administration of Hsp60 on myeloid-derived suppressor cells and atherosclerosis in ApoE−/− mice. Biochem Biophys Res Commun 498(4):701–706PubMedCrossRefGoogle Scholar
  53. Huang CY, Shih CM, Tsao NW et al (2012) GroEL1, from Chlamydia pneumoniae, induces vascular adhesion molecule 1 expression by p37(AUF1) in endothelial cells and hypercholesterolemic rabbit. PLoS One 7(8):e42808PubMedPubMedCentralCrossRefGoogle Scholar
  54. Huang CY, Shih CM, Tsao NW et al (2016) The GroEL protein of Porphyromonas gingivalis regulates atherogenic phenomena in endothelial cells mediated by upregulating toll-like receptor 4 expression. Am J Transl Res 8(2):384–404PubMedPubMedCentralGoogle Scholar
  55. Huber LA, Xu QB, Jurgens G et al (1991) Correlation of lymphocyte lipid composition membrane microviscosity and mitogen response in the aged. Eur J Immunol 21(11):2761–2765PubMedCrossRefGoogle Scholar
  56. Jaensson E, Uronen-Hansson H, Pabst O et al (2008) Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans. J Exp Med 205(9):2139–2149PubMedPubMedCentralCrossRefGoogle Scholar
  57. Jakic B, Buszko M, Cappellano G, Wick G (2017) Elevated sodium leads to the increased expression of Hsp60 and induces apoptosis in HUVECs. PLoS One 12(6):e0179383PubMedPubMedCentralCrossRefGoogle Scholar
  58. Jeong E, Kim K, Kim JH et al (2015) Porphyromonas gingivalis Hsp60 peptides have distinct roles in the development of atherosclerosis. Mol Immunol 63(2):489–496PubMedCrossRefGoogle Scholar
  59. Jing H, Yong L, Haiyan L et al (2011) Oral administration of Lactococcus lactis delivered heat shock protein 65 attenuates atherosclerosis in low-density lipoprotein receptor-deficient mice. Vaccine 29(24):4102–4109PubMedCrossRefGoogle Scholar
  60. Jongstra-Bilen J, Haidari M, Zhu SN et al (2006) Low-grade chronic inflammation in regions of the normal mouse arterial intima predisposed to atherosclerosis. J Exp Med 203(9):2073–2083PubMedPubMedCentralCrossRefGoogle Scholar
  61. Jun L, Jie L, Dongping Y et al (2012) Effects of nasal immunization of multi-target preventive vaccines on atherosclerosis. Vaccine 30(6):1029–1037PubMedCrossRefGoogle Scholar
  62. Justo-Junior AS, Villarejos LM, Lima XTV et al (2018) Monocytes of patients with unstable angina express high levels of chemokine and pattern-recognition receptors. Cytokine 113:61–67PubMedCrossRefGoogle Scholar
  63. Karkhah A, Amani J (2016) A potent multivalent vaccine for modulation of immune system in atherosclerosis: an in silico approach. Clin Exp Vaccine Res 5(1):50–59PubMedPubMedCentralCrossRefGoogle Scholar
  64. Karkhah A, Saadi M, Nouri HR (2017) In silico analyses of heat shock protein 60 and calreticulin to designing a novel vaccine shifting immune response toward T helper 2 in atherosclerosis. Comput Biol Chem 67:244–254PubMedCrossRefGoogle Scholar
  65. Karlin S, Brocchieri L (2000) Heat shock protein 60 sequence comparisons: duplications, lateral transfer, and mitochondrial evolution. Proc Natl Acad Sci U S A 97(21):11348–11353PubMedPubMedCentralCrossRefGoogle Scholar
  66. Khallou-Laschet J, Tupin E, Caligiuri G et al (2006) Atheroprotective effect of adjuvants in apolipoprotein E knockout mice. Atherosclerosis 184(2):330–341PubMedCrossRefGoogle Scholar
  67. Kleindienst R, Xu Q, Willeit J et al (1993) Immunology of atherosclerosis. Demonstration of heat shock protein 60 expression and T lymphocytes bearing alpha/beta or gamma/delta receptor in human atherosclerotic lesions. Am J Pathol 142(6):1927–1937PubMedPubMedCentralGoogle Scholar
  68. Klingenberg R, Ketelhuth DF, Strodthoff D, Gregori S, Hansson GK (2012) Subcutaneous immunization with heat shock protein-65 reduces atherosclerosis in Apoe(−)/(−) mice. Immunobiology 217(5):540–547PubMedCrossRefGoogle Scholar
  69. Knoflach M, Kiechl S, Kind M et al (2003) Cardiovascular risk factors and atherosclerosis in young males: ARMY study (atherosclerosis risk-factors in male youngsters). Circulation 108(9):1064–1069PubMedCrossRefGoogle Scholar
  70. Knoflach M, Kiechl S, Mayrl B et al (2007) T-cell reactivity against Hsp60 relates to early but not advanced atherosclerosis. Atherosclerosis 195(2):333–338PubMedCrossRefGoogle Scholar
  71. Knoflach M, Kiechl S, Penz D et al (2009) Cardiovascular risk factors and atherosclerosis in young women: atherosclerosis risk factors in female youngsters (ARFY study). Stroke 40(4):1063–1069PubMedCrossRefGoogle Scholar
  72. Knoflach M, Messner B, Shen YH et al (2011) Non-toxic cadmium concentrations induce vascular inflammation and promote atherosclerosis. Circ J 75(10):2491–2495PubMedCrossRefGoogle Scholar
  73. Kol A, Bourcier T, Lichtman AH, Libby P (1999) Chlamydial and human heat shock protein 60s activate human vascular endothelium, smooth muscle cells, and macrophages. J Clin Invest 103(4):571–577PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kreutmayer SB, Messner B, Knoflach M et al (2011) Dynamics of heat shock protein 60 in endothelial cells exposed to cigarette smoke extract. J Mol Cell Cardiol 51(5):777–780PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kreutmayer S, Csordas A, Kern J et al (2013) Chlamydia pneumoniae infection acts as an endothelial stressor with the potential to initiate the earliest heat shock protein 60-dependent inflammatory stage of atherosclerosis. Cell Stress Chaperones 18(3):259–268PubMedCrossRefGoogle Scholar
  76. Langohr IM, HogenEsch H, Stevenson GW, Sturek M (2008) Vascular-associated lymphoid tissue in swine (Sus scrofa). Comp Med 58(2):168–173PubMedPubMedCentralGoogle Scholar
  77. Lee HR, Jun HK, Kim HD, Lee SH, Choi BK (2012) Fusobacterium nucleatum GroEL induces risk factors of atherosclerosis in human microvascular endothelial cells and ApoE(−/−) mice. Mol Oral Microbiol 27(2):109–123PubMedCrossRefGoogle Scholar
  78. Li J, Zhao X, Zhang S et al (2011) ApoB-100 and Hsp60 peptides exert a synergetic role in inhibiting early atherosclerosis in immunized ApoE-null mice. Protein Pept Lett 18(7):733–740PubMedCrossRefGoogle Scholar
  79. Li H, Ding Y, Yi G, Zeng Q, Yang W (2012) Establishment of nasal tolerance to heat shock protein-60 alleviates atherosclerosis by inducing TGF-beta-dependent regulatory T cells. J Huazhong Univ Sci Technolog Med Sci 32(1):24–30PubMedCrossRefGoogle Scholar
  80. Lin FY, Lin YW, Huang CY et al (2011) GroEL1, a heat shock protein 60 of Chlamydia pneumoniae, induces lectin-like oxidized low-density lipoprotein receptor 1 expression in endothelial cells and enhances atherogenesis in hypercholesterolemic rabbits. J Immunol 186(7):4405–4414PubMedCrossRefGoogle Scholar
  81. Lin YW, Huang CY, Chen YH et al (2013) GroEL1, a heat shock protein 60 of Chlamydia pneumoniae, impairs neovascularization by decreasing endothelial progenitor cell function. PLoS One 8(12):e84731PubMedPubMedCentralCrossRefGoogle Scholar
  82. Long J, Lin J, Yang X et al (2012) Nasal immunization with different forms of heat shock protein-65 reduced high-cholesterol-diet-driven rabbit atherosclerosis. Int Immunopharmacol 13(1):82–87PubMedCrossRefGoogle Scholar
  83. Maan A, Jorgensen NW, Mansour M et al (2016) Association between heat shock protein-60 and development of atrial fibrillation: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Pacing Clin Electrophysiol 39(12):1373–1378PubMedPubMedCentralCrossRefGoogle Scholar
  84. Mayerl C, Lukasser M, Sedivy R et al (2006) Atherosclerosis research from past to present – on the track of two pathologists with opposing views, Carl von Rokitansky and Rudolf Virchow. Virchows Arch 449(1):96–103PubMedCrossRefGoogle Scholar
  85. Mayr M, Metzler B, Kiechl S et al (1999) Endothelial cytotoxicity mediated by serum antibodies to heat shock proteins of Escherichia coli and Chlamydia pneumoniae: immune reactions to heat shock proteins as a possible link between infection and atherosclerosis. Circulation 99(12):1560–1566PubMedCrossRefGoogle Scholar
  86. Mayr M, Kiechl S, Willeit J, Wick G, Xu Q (2000) Infections, immunity, and atherosclerosis: associations of antibodies to Chlamydia pneumoniae, Helicobacter pylori, and cytomegalovirus with immune reactions to heat-shock protein 60 and carotid or femoral atherosclerosis. Circulation 102(8):833–839PubMedCrossRefGoogle Scholar
  87. Mayr M, Kiechl S, Mendall MA et al (2003) Increased risk of atherosclerosis is confined to CagA-positive Helicobacter pylori strains: prospective results from the Bruneck study. Stroke 34(3):610–615PubMedCrossRefGoogle Scholar
  88. Messner B, Knoflach M, Seubert A et al (2009) Cadmium is a novel and independent risk factor for early atherosclerosis mechanisms and in vivo relevance. Arterioscler Thromb Vasc Biol 29(9):1392–1398PubMedCrossRefGoogle Scholar
  89. Metzler B, Schett G, Kleindienst R et al (1997) Epitope specificity of anti-heat shock protein 65/60 serum antibodies in atherosclerosis. Arterioscler Thromb Vasc Biol 17(3):536–541PubMedCrossRefGoogle Scholar
  90. Metzler B, Mayr M, Dietrich H et al (1999) Inhibition of arteriosclerosis by T-cell depletion in normocholesterolemic rabbits immunized with heat shock protein 65. Arterioscler Thromb Vasc Biol 19(8):1905–1911PubMedCrossRefGoogle Scholar
  91. Michaelsson J, Teixeira de Matos C, Achour A et al (2002) A signal peptide derived from Hsp60 binds HLA-E and interferes with CD94/NKG2A recognition. J Exp Med 196(11):1403–1414PubMedPubMedCentralCrossRefGoogle Scholar
  92. Millonig G, Niederegger H, Rabl W et al (2001a) Network of vascular-associated dendritic cells in intima of healthy young individuals. Arterioscler Thromb Vasc Biol 21(4):503–508PubMedCrossRefGoogle Scholar
  93. Millonig G, Niederegger H, Wick G (2001b) Analysis of the cellular composition of the arterial intima with modified en face techniques. Lab Investig 81(4):639–641PubMedCrossRefGoogle Scholar
  94. Millonig G, Malcom GT, Wick G (2002) Early inflammatory-immunological lesions in juvenile atherosclerosis from the Pathobiological Determinants of Atherosclerosis in Youth (PDAY)-study. Atherosclerosis 160(2):441–448PubMedCrossRefGoogle Scholar
  95. Mundkur L, Ponnusamy T, Philip S et al (2014) Oral dosing with multi-antigenic construct induces atheroprotective immune tolerance to individual peptides in mice. Int J Cardiol 175(2):340–351PubMedCrossRefGoogle Scholar
  96. Musial K, Szprynger K, Szczepanska M, Zwolinska D (2009) Heat shock proteins in children and young adults on chronic hemodialysis. Pediatr Nephrol 24(10):2029–2034PubMedCrossRefGoogle Scholar
  97. Ohashi K, Burkart V, Flohe S, Kolb H (2000) Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 164(2):558–561PubMedCrossRefGoogle Scholar
  98. Perschinka H, Mayr M, Millonig G et al (2003) Cross-reactive B-cell epitopes of microbial and human heat shock protein 60/65 in atherosclerosis. Arterioscler Thromb Vasc Biol 23(6):1060–1065PubMedCrossRefGoogle Scholar
  99. Perschinka H, Wellenzohn B, Parson W et al (2007) Identification of atherosclerosis-associated conformational heat shock protein 60 epitopes by phage display and structural alignment. Atherosclerosis 194(1):79–87PubMedCrossRefGoogle Scholar
  100. Pfister G, Stroh CM, Perschinka H et al (2005) Detection of Hsp60 on the membrane surface of stressed human endothelial cells by atomic force and confocal microscopy. J Cell Sci 118(Pt 8):1587–1594PubMedCrossRefGoogle Scholar
  101. Pockley AG, Bulmer J, Hanks BM, Wright BH (1999) Identification of human heat shock protein 60 (Hsp60) and anti-Hsp60 antibodies in the peripheral circulation of normal individuals. Cell Stress Chaperones 4(1):29–35PubMedCrossRefGoogle Scholar
  102. Powe NR, Bibbins-Domingo K (2016) Dietary salt, kidney disease, and cardiovascular health. JAMA 315(20):2173–2174PubMedCrossRefGoogle Scholar
  103. Rahman M, Steuer J, Gillgren P et al (2017) Induction of dendritic cell-mediated activation of T cells from atherosclerotic plaques by human heat shock protein 60. J Am Heart Assoc 6(11):e006778PubMedPubMedCentralCrossRefGoogle Scholar
  104. Ridker PM, Rifai N, Rose L, Buring JE, Cook NR (2002) Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 347(20):1557–1565PubMedCrossRefGoogle Scholar
  105. Rose NR, Witebsky E (1956) Studies on organ specificity. V. Changes in the thyroid glands of rabbits following active immunization with rabbit thyroid extracts. J Immunol 76(6):417–427PubMedGoogle Scholar
  106. Ross R (1999) Atherosclerosis – an inflammatory disease. N Engl J Med 340(2):115–126PubMedCrossRefGoogle Scholar
  107. Rossmann A, Henderson B, Heidecker B et al (2008) T-cells from advanced atherosclerotic lesions recognize hHsp60 and have a restricted T-cell receptor repertoire. Exp Gerontol 43(3):229–237PubMedCrossRefGoogle Scholar
  108. Rzepecka J, Rausch S, Klotz C et al (2009) Calreticulin from the intestinal nematode Heligmosomoides polygyrus is a Th2-skewing protein and interacts with murine scavenger receptor-A. Mol Immunol 46(6):1109–1119PubMedCrossRefGoogle Scholar
  109. Schett G, Xu Q, Amberger A et al (1995) Autoantibodies against heat shock protein 60 mediate endothelial cytotoxicity. J Clin Invest 96(6):2569–2577PubMedPubMedCentralCrossRefGoogle Scholar
  110. Schett G, Metzler B, Kleindienst R et al (1997) Salivary anti-hsp65 antibodies as a diagnostic marker for gingivitis and a possible link to atherosclerosis. Int Arch Allergy Immunol 114(3):246–250PubMedCrossRefGoogle Scholar
  111. Schulte S, Sukhova GK, Libby P (2008) Genetically programmed biases in Th1 and Th2 immune responses modulate atherogenesis. Am J Pathol 172(6):1500–1508PubMedPubMedCentralCrossRefGoogle Scholar
  112. Seitz CS, Kleindienst R, Xu Q, Wick G (1996) Coexpression of heat-shock protein 60 and intercellular-adhesion molecule-1 is related to increased adhesion of monocytes and T cells to aortic endothelium of rats in response to endotoxin. Lab Investig 74(1):241–252PubMedGoogle Scholar
  113. Soltys BJ, Gupta RS (1997) Cell surface localization of the 60 kDa heat shock chaperonin protein (Hsp60) in mammalian cells. Cell Biol Int 21(5):315–320PubMedCrossRefGoogle Scholar
  114. Stary HC (1992) Composition and classification of human atherosclerotic lesions. Virchows Arch A Pathol Anat Histopathol 421(4):277–290PubMedCrossRefGoogle Scholar
  115. Stulnig TM, Klocker H, Harwood HJ Jr et al (1995) In vivo LDL receptor and HMG-CoA reductase regulation in human lymphocytes and its alterations during aging. Arterioscler Thromb Vasc Biol 15(7):872–878PubMedCrossRefGoogle Scholar
  116. Suckling RJ, He FJ, Markandu ND, MacGregor GA (2012) Dietary salt influences postprandial plasma sodium concentration and systolic blood pressure. Kidney Int 81(4):407–411PubMedCrossRefGoogle Scholar
  117. Sun H, Shen J, Liu T et al (2014) Heat shock protein 65 promotes atherosclerosis through impairing the properties of high density lipoprotein. Atherosclerosis 237(2):853–861PubMedCrossRefGoogle Scholar
  118. Thota LN, Ponnusamy T, Philip S, Lu X, Mundkur L (2017) Immune regulation by oral tolerance induces alternate activation of macrophages and reduces markers of plaque destabilization in Apob(tm2Sgy)/Ldlr(tm1Her/J) mice. Sci Rep 7(1):3997PubMedPubMedCentralCrossRefGoogle Scholar
  119. Traill KN, Huber LA, Wick G, Jurgens G (1990) Lipoprotein interactions with T cells: an update. Immunol Today 11(11):411–417PubMedCrossRefGoogle Scholar
  120. Tuleta I, Reek D, Braun P et al (2015) Influence of intimal Chlamydophila pneumoniae persistence on cardiovascular complications after coronary intervention. Infection 43(1):51–57PubMedCrossRefGoogle Scholar
  121. Van Eden W, Wick G, Albani S, Cohen I (2007) Stress, heat shock proteins, and autoimmunity: how immune responses to heat shock proteins are to be used for the control of chronic inflammatory diseases. Ann N Y Acad Sci 1113:217–237PubMedCrossRefGoogle Scholar
  122. Varbiro S, Biro A, Cervenak J et al (2010) Human anti-60 kD heat shock protein autoantibodies are characterized by basic features of natural autoantibodies. Acta Physiol Hung 97(1):1–10PubMedCrossRefGoogle Scholar
  123. Veglia F, Perego M, Gabrilovich D (2018) Myeloid-derived suppressor cells coming of age. Nat Immunol 19(2):108–119PubMedPubMedCentralCrossRefGoogle Scholar
  124. Waltner-Romen M, Falkensammer G, Rabl W, Wick G (1998) A previously unrecognized site of local accumulation of mononuclear cells. The vascular-associated lymphoid tissue. J Histochem Cytochem 46(12):1347–1350PubMedCrossRefGoogle Scholar
  125. Wang C, Kankaanpaa J, Kummu O et al (2016) Characterization of a natural mouse monoclonal antibody recognizing epitopes shared by oxidized low-density lipoprotein and chaperonin 60 of Aggregatibacter actinomycetemcomitans. Immunol Res 64(3):699–710PubMedCrossRefGoogle Scholar
  126. Wick G, Kleindienst R, Dietrich H, Xu Q (1992) Is atherosclerosis an autoimmune disease? Trends Food Sci Technol 3:114–119CrossRefGoogle Scholar
  127. Wick G, Schett G, Amberger A, Kleindienst R, Xu Q (1995) Is atherosclerosis an immunologically mediated disease? Immunol Today 16(1):27–33PubMedCrossRefGoogle Scholar
  128. Wick G, Romen M, Amberger A et al (1997) Atherosclerosis, autoimmunity, and vascular-associated lymphoid tissue. FASEB J 11(13):1199–1207PubMedCrossRefGoogle Scholar
  129. Wick G, Knoflach M, Xu Q (2004) Autoimmune and inflammatory mechanisms in atherosclerosis. Annu Rev Immunol 22:361–403PubMedCrossRefGoogle Scholar
  130. Wick MC, Mayerl C, Backovic A et al (2008) In vivo imaging of the effect of LPS on arterial endothelial cells: molecular imaging of heat shock protein 60 expression. Cell Stress Chaperones 13(3):275–285PubMedPubMedCentralCrossRefGoogle Scholar
  131. Wick G, Buhr N, Fraedrich G, Grundtman CA (2012a) Darwinian-evolutionary concept for atherogenesis: the role of immunity to Hsp60. In: Inflammation and Atherosclerosiseds. Springer, Wien, pp 171–196CrossRefGoogle Scholar
  132. Wick G, Oellinger R, Almanzar G (2012b) The Vascular-Associated Lymphoid Tissue (VALT). In: Wick G, Grundtman C (eds) Infammation and atherosclerosis. Springer, Wien, pp 77–86CrossRefGoogle Scholar
  133. Wick G, Jakic B, Buszko M, Wick MC, Grundtman C (2014) The role of heat shock proteins in atherosclerosis. Nat Rev Cardiol 11(9):516–529PubMedCrossRefGoogle Scholar
  134. Wick C, Onestingel E, Demetz E, Dietrich H, Wick G (2018) Oral tolerization with mycobacterial heat shock protein 65 reduces chronic experimental atherosclerosis in aged mice. Gerontology 64(1):36–48PubMedCrossRefGoogle Scholar
  135. Willeit J, Kiechl S (1993) Prevalence and risk factors of asymptomatic extracranial carotid artery atherosclerosis. A population-based study. Arterioscler Thromb 13(5):661–668PubMedCrossRefGoogle Scholar
  136. Witebsky E, Rose NR (1956) Studies on organ specificity. IV. Production of rabbit thyroid antibodies in the rabbit. J Immunol 76(6):408–416PubMedGoogle Scholar
  137. Writing Group, M, Mozaffarian D, Benjamin EJ et al (2016) Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation 133(4):e38–e360Google Scholar
  138. Wu HJ, Hao J, Wang SQ, Jin BL, Chen XB (2012) Protective effects of ligustrazine on TNF-alpha-induced endothelial dysfunction. Eur J Pharmacol 674(2–3):365–369PubMedCrossRefGoogle Scholar
  139. Wu C, Guo S, Niu Y et al (2016) Heat-shock protein 60 of Porphyromonas gingivalis may induce dysfunction of human umbilical endothelial cells via regulation of endothelial-nitric oxide synthase and vascular endothelial-cadherin. Biomed Rep 5(2):243–247PubMedPubMedCentralCrossRefGoogle Scholar
  140. Xiao Q, Mandal K, Schett G et al (2005) Association of serum-soluble heat shock protein 60 with carotid atherosclerosis: clinical significance determined in a follow-up study. Stroke 36(12):2571–2576PubMedCrossRefGoogle Scholar
  141. Xiong Q, Feng J, Zhang Y et al (2016) Promotion of atherosclerosis in high cholesterol diet-fed rabbits by immunization with the P277 peptide. Immunol Lett 170:80–87PubMedCrossRefGoogle Scholar
  142. Xu QB, Oberhuber G, Gruschwitz M, Wick G (1990) Immunology of atherosclerosis: cellular composition and major histocompatibility complex class II antigen expression in aortic intima, fatty streaks, and atherosclerotic plaques in young and aged human specimens. Clin Immunol Immunopathol 56(3):344–359PubMedCrossRefGoogle Scholar
  143. Xu Q, Dietrich H, Steiner HJ et al (1992) Induction of arteriosclerosis in normocholesterolemic rabbits by immunization with heat shock protein 65. Arterioscler Thromb 12(7):789–799PubMedCrossRefGoogle Scholar
  144. Xu Q, Kleindienst R, Waitz W, Dietrich H, Wick G (1993) Increased expression of heat shock protein 65 coincides with a population of infiltrating T lymphocytes in atherosclerotic lesions of rabbits specifically responding to heat shock protein 65. J Clin Invest 91(6):2693–2702PubMedPubMedCentralCrossRefGoogle Scholar
  145. Xu Q, Kleindienst R, Schett G et al (1996) Regression of arteriosclerotic lesions induced by immunization with heat shock protein 65-containing material in normocholesterolemic, but not hypercholesterolemic, rabbits. Atherosclerosis 123(1–2):145–155PubMedCrossRefGoogle Scholar
  146. Xu Q, Kiechl S, Mayr M et al (1999) Association of serum antibodies to heat-shock protein 65 with carotid atherosclerosis : clinical significance determined in a follow-up study. Circulation 100(11):1169–1174PubMedCrossRefGoogle Scholar
  147. Xu Q, Schett G, Perschinka H et al (2000) Serum soluble heat shock protein 60 is elevated in subjects with atherosclerosis in a general population. Circulation 102(1):14–20PubMedCrossRefGoogle Scholar
  148. Yoshimoto R, Fujita Y, Kakino A et al (2011) The discovery of LOX-1, its ligands and clinical significance. Cardiovasc Drugs Ther 25(5):379–391PubMedPubMedCentralCrossRefGoogle Scholar
  149. Zhang X, He M, Cheng L et al (2008) Elevated heat shock protein 60 levels are associated with higher risk of coronary heart disease in Chinese. Circulation 118(25):2687–2693PubMedCrossRefGoogle Scholar
  150. Zhao Y, Zhang C, Wei X et al (2015) Heat shock protein 60 stimulates the migration of vascular smooth muscle cells via Toll-like receptor 4 and ERK MAPK activation. Sci Rep 5:15352PubMedPubMedCentralCrossRefGoogle Scholar
  151. Zhong Y, Tang H, Wang X et al (2016) Intranasal immunization with heat shock protein 60 induces CD4(+) CD25(+) GARP(+) and type 1 regulatory T cells and inhibits early atherosclerosis. Clin Exp Immunol 183(3):452–468PubMedCrossRefGoogle Scholar
  152. Zugel U, Schoel B, Yamamoto S et al (1995) Crossrecognition by CD8 T cell receptor alpha beta cytotoxic T lymphocytes of peptides in the self and the mycobacterial Hsp60 which share intermediate sequence homology. Eur J Immunol 25(2):451–458PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Bojana Jakic
    • 1
    • 2
    Email author
  • Georg Wick
    • 1
  • Giuseppe Cappellano
    • 1
    • 3
  1. 1.Laboratory of Autoimmunity, Division of Experimental Pathophysiology and Immunology, BiocenterMedical University of InnsbruckInnsbruckAustria
  2. 2.Division of Translational Cell Genetics, Department for Pharmacology and GeneticsMedical University of InnsbruckInnsbruckAustria
  3. 3.Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Department of Health SciencesUniversity of Piemonte Orientale (UPO)NovaraItaly

Personalised recommendations