Macadamia (Macadamia spp.) Breeding



Macadamia breeding is in its infancy with most cultivars only two generations removed from their wild progenitors. Two active breeding programs have released cultivars in the past decade and several others are in progress. Until recently, the majority of cultivars have been selected from commercial seedling orchards. Breeders are hindered by the large size of the trees which can grow to 15 m, long juvenile phases (fruiting after 5–7 years), and a poor correlation (r = 0.1) between annual nut-in-shell yield at 4 and 10 years. Current programs involve controlled cross-pollination to produce biparental families, progeny trials planted in randomized replicated designs, prediction of clonal and breeding values and use of a multi-trait weighted selection index. Strategies that allow rapid phenotyping are being examined. Selection for small trees and reduced juvenility will accelerate breeding by improving trait prediction accuracy through replication and reducing selection cycle periods, respectively. We discuss the potential to improve breeding efficiency and reduce cultivar release time by incorporation of genomic selection methods. There may be genetic variation in wild germplasm for dwarfing, resistance to major pests and diseases and adaptation to a wider range of climates. Genomic and phenotypic characterization of wild germplasm to identify material of highest conservation value and to identify useful traits has commenced on an ex situ collection of over 300 accessions of the 4 species.


Breeding Crop improvement Horticulture Nut tree Perennial 



This research has been funded by Hort Innovation Australia, using the Macadamia research and development levy and contributions from the Australian Government. Hort Innovation is the grower-owned, not-for-profit Research and Development Corporation for Australian horticulture. The authors acknowledge the assistance of Dr. Abdul Baten and Prof Graham King, Southern Cross University for unpublished genome data; Dr. Chris Menzel, Department of Agriculture and Fisheries for editorial comment; Mr. Jolyon Burnett, Australian Macadamia Society for industry statistics; Mr. Todd Fox for artwork; Prof Xi-young He, Yunnan Institute of Tropical Crops; and Mr. Mark Penter, Agricultural Research Council for information on breeding programs.


  1. Abdin MZ, Kiran U, Kamaluddin AA (eds) (2017) Plant biotechnology: principles and applications. Springer, SingaporeGoogle Scholar
  2. Aguiar ATE, Goncalves C, Paterniani MEAGZ, Castro CEF (2014) Instruções agrícolas para as principais culturas econômicas, 7th edn. IAC Campinas SP No. 200, Boletim. (in Portuguese)Google Scholar
  3. Ahmad Termizi A, Hardner C, Batley J et al (2014) SNP analysis of Macadamia integrifolia chloroplast genomes to determine the genetic structure of wild populations. Acta Hortic 1109:175–180Google Scholar
  4. Akinsanmi OA, Topp B, Drenth A (2012) Pericarps retained in the tree canopy and stomatal abundance are components of resistance to husk spot caused by Pseudocercospora macadamiae in macadamia. Euphytica 185:313–323CrossRefGoogle Scholar
  5. Alam M, Neal J, O’Connor K, Kilian A, Topp B (2018) Ultra-high-throughput DArTseq-based silicoDArT and SNP markers for genomic studies in macadamia. PLoS One 13:e0203465PubMedPubMedCentralCrossRefGoogle Scholar
  6. Alam M, Hardner C, Nock C, O’Connor K, Topp B (2019) Historical and molecular evidence of genetic identity of macadamia cultivars HAES741 and HAES660. HortScience 54:616–620CrossRefGoogle Scholar
  7. Aradhya MK, Yee LK, Zee FT, Manshardt RM (1998) Genetic variability in Macadamia. Genet Resour Crop Evol 45(1):19–32CrossRefGoogle Scholar
  8. Arroyo-Caro JM, Manas-Fernandez A, Alonso DL, Garcia-Maroto F (2016) Type I diacylglycerol acyltransferase (MtDGAT1) from Macadamia tetraphylla: cloning, characterization, and impact of its heterologous expression on triacylglycerol composition in yeast. J Agric Food Chem 64:277–285PubMedCrossRefPubMedCentralGoogle Scholar
  9. Atehortua L, Naranjo EJ, Herrera AL, Gallego AM (2009) Tissue culture medium for Macadamia and Theobroma cacao. Google PatentsGoogle Scholar
  10. Azad AK, Rasul M, Khan MM, Sharma S (2017) Macadamia biodiesel as a sustainable and alternative transport fuel in Australia. Energy Procedia 110:543–548CrossRefGoogle Scholar
  11. Badenes ML, i Martí AF, Ríos G, Rubio-Cabetas MJ (2016) Application of genomic technologies to the breeding of trees. Front Genet 7:198. Scholar
  12. Balding DJ (2006) A tutorial on statistical methods for population association studies. Nat Rev Genet 7(10):781–791PubMedCrossRefPubMedCentralGoogle Scholar
  13. Beaumont JH, Moltzau RH (1937) Nursery propagation and topworking of the macadamia. Hawaii Agr Exp Sta, USDA Circ No 13Google Scholar
  14. Bell HFD (1996) Mutagenic irradiation of macadamia. Mutagenic irradiation of macadamia. Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna (Austria). IAEA, Vienna, Austria, pp 15–17Google Scholar
  15. Bell HFD, Bell DJD, Winks CW et al (1987) Macadamia tree breeding and selection program update 1987. In: Proceedings of the second macadamia research workshop 15–19 Sept 1987, Bangalow, NSW, pp 37–48Google Scholar
  16. Benmahioul B (2017) Factors affecting in vitro micropropagation of Pistachio (Pistacia vera L.). Agric For J 1(1):56–61Google Scholar
  17. Bennell MR (1984) Aspects of the biology and culture of the macadamia. PhD thesis, Univ of SydneyGoogle Scholar
  18. Bhalla PL, Mulwa RMS, Economou AS Read PE (2003) Tissue culture and macadamia propagation. Acta Hortic 616:343–346CrossRefGoogle Scholar
  19. Bliffeld M, Mundy J, Potrykus I, Fütterer J (1999) Genetic engineering of wheat for increased resistance to powdery mildew disease. Theor Appl Genet 98(6–7):1079–1086CrossRefGoogle Scholar
  20. Bright J, Alt S, Commens R (2016) Macadamia integrated orchard management practice guide 2016. NSW Dept of Primary Industries Pub, SydneyGoogle Scholar
  21. Buell CR, Voytas D (2017) Technology turbocharges functional genomics. Am Soc Plant Biol 29:1179–1180Google Scholar
  22. Cao K, Wang L, Zhu G et al (2012) Genetic diversity, linkage disequilibrium, and association mapping analyses of peach (Prunus persica) landraces in China. Tree Genet Genomes 8(5):975–990CrossRefGoogle Scholar
  23. Cha-um S, Chanseetis C, Chintakovid W et al (2011) Promoting root induction and growth of in vitro macadamia (Macadamia tetraphylla L.‘Keaau’) plantlets using CO2–enriched photoautotrophic conditions. Plant Cell Tissue Organ Cult 106(3):435CrossRefGoogle Scholar
  24. Chevre A, Salesses G (1987) Choice of explants for chestnut micropropagation. Acta Hortic 212:517–524CrossRefGoogle Scholar
  25. Cock I (2008) Antibacterial activity of selected Australian native plant extracts. Intern J Microbiol 4(2):1–8Google Scholar
  26. Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142(1–2):169–196CrossRefGoogle Scholar
  27. Confalonieri M, Balestrazzi A, Bisoffi S, Carbonera D (2003) In vitro culture and genetic engineering of Populus spp.: synergy for forest tree improvement. Plant Cell Tissue Organ Cult 72(2):109–138CrossRefGoogle Scholar
  28. Costello G, Gregory M, Donatiu P (2009) Southern macadamia species recovery plan 2008–2112. Report to Dept of the Environ and Heritage, CanberraGoogle Scholar
  29. Cuenca B, Sánchez C, Aldrey A et al (2017) Micropropagation of axillary shoots of hybrid chestnut (Castanea sativa × C. crenata) in liquid medium in a continuous immersion system. Plant Cell Tissue Organ Cult 131(2):307–320CrossRefGoogle Scholar
  30. Cuthbertson DM (1991) An investigation of factors involved in the formation of proteoid roots. PhD thesis, Univ of AdelaideGoogle Scholar
  31. Dahler J, Mcconchie C, Turnbull C (1995) Quantification of cyanogenic glycosides in seedlings of three Macadamia (Proteaceae) species. Aust J Bot 43(6):619–628CrossRefGoogle Scholar
  32. Desta ZA, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19(9):592–601PubMedCrossRefGoogle Scholar
  33. EPBC Act (1999) Environment protection and biodiversity conservation act. Commonwealth of AustraliaGoogle Scholar
  34. Garg ML, Blake RJ, Wills RB, Clayton EH (2007) Macadamia nut consumption modulates favourably risk factors for coronary artery disease in hypercholesterolemic subjects. Lipids 42(6):583–587PubMedCrossRefGoogle Scholar
  35. Gasser CS, Fraley RT (1989) Genetically engineering plants for crop improvement. Science 244(4910):1293–1299PubMedCrossRefGoogle Scholar
  36. Girdis J, Gaudion L, Proust G et al (2017) Rethinking timber: investigation into the use of waste macadamia nut shells for additive manufacturing. JOM 69(3):575–579CrossRefGoogle Scholar
  37. Gitonga LN, Muigai AW, Kahangi EM et al (2009) Status of macadamia production in Kenya and the potential of biotechnology in enhancing its genetic improvement. J Plant Breed Crop Sci 1(3):49–59Google Scholar
  38. Gitonga L, Kahangi E, Gichuki S et al (2008) Factors influencing in vitro shoot regeneration of Macadamia integrifolia. Afr J Biotechnol 7(22):4202–4207Google Scholar
  39. Grattapaglia D, Resende MD (2011) Genomic selection in forest tree breeding. Tree Genet Genomes 7(2):241–255CrossRefGoogle Scholar
  40. Gross C (1995) Macadamia. Flora Aust 16:419–425Google Scholar
  41. Hamilton RA, Fukunaga ET (1959) Growing macadamia nuts in Hawaii. Hawaii Agr Expt Stat, HonoluluGoogle Scholar
  42. Hamilton RA, Ito PJ (1976) Development of macadamia nut cultivars in Hawaii. Calif Macadamia Soc Yearb 22:94–100Google Scholar
  43. Hansche PE (1983) Response to selection. In: Moore JN, Janick J (eds) Methods in fruit breeding. Purdue Univ, West Lafayette, pp 154–171Google Scholar
  44. Hardner C (2016) Macadamia domestication in Hawai‘i. Genet Resour Crop Evol 63(8):1411–1430CrossRefGoogle Scholar
  45. Hardner CM, Greaves B, Coverdale C, Wegener M (2006) Application of economic modelling to support selection decisions in macadamia. In: Mercer CF (ed) Proceedings of 13th Australasian plant breeding conference, Christchurch, pp 431–436Google Scholar
  46. Hardner CM, McConchie CA, Vivian-Smith A, Boyton SJ (2000) Hybrids in macadamia improvement. In: Dungey HS, Dieters M, Nikles DG (eds) Hybrid breeding and genetics of forest trees. Proc QFRI/CRC–SPF Symp, Noosa, 9–14 April 2000. Queensland Govt, Queensland, pp 336–342Google Scholar
  47. Hardner C, Peace C, Henshall J, Manners J (2005) Opportunities and constraints for marker-assisted selection in Macadamia breeding. Acta Hortic 694:85–90CrossRefGoogle Scholar
  48. Hardner CM, Peace C, Lowe AJ et al (2009) Genetic resources and domestication of Macadamia. Hortic Rev 35:1–126Google Scholar
  49. Hardner C, Winks C, Stephenson R, Gallagher E (2001) Genetic parameters for nut and kernel traits in macadamia. Euphytica 117(2):151–161CrossRefGoogle Scholar
  50. Hardner CM, Winks CW, Stephenson RA et al (2002) Genetic parameters for yield in macadamia. Euphytica 125(2):255–264CrossRefGoogle Scholar
  51. Hassankhah A, Vahdati K, Lotfi M et al (2014) Effects of ventilation and sucrose concentrations on the growth and plantlet anatomy of micropropagated Persian walnut plants. Int J Hortic Sci Technol 1(2):111–120Google Scholar
  52. Hayes B, Goddard M (2010) Genome-wide association and genomic selection in animal breeding. Genome 53(11):876–883PubMedCrossRefGoogle Scholar
  53. Heffner EL, Lorenz AJ, Jannink J-L, Me S (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50(5):1681–1690CrossRefGoogle Scholar
  54. Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49(1):1–12CrossRefGoogle Scholar
  55. Höltken A, Wenzlitschke I, Winkelmann T et al (2015) Factors affecting shoot multiplication and rooting of walnut (Juglans regia L.) in vitro. Acta Hortic 1155:525–530Google Scholar
  56. Hu C, Wang P (1983) Meristem, shoot tip and bud cultures. In: Evans DA, Sharp WR, Ammirato PV (eds) Handbook of plant cell culture, vol 1. Macmillan, New York, pp 201–217Google Scholar
  57. Huang X, Han B (2014) Natural variations and genome–wide association studies in crop plants. Annu Rev Plant Biol 65:531–551PubMedCrossRefGoogle Scholar
  58. Huh YS, Lee JK, Nam SY, Hong EY (2017) Effects of medium strength and plant growth regulators on in vitro micropropagation of apple rootstock M9. Kor Plant Res Soc 4:228Google Scholar
  59. Iwata H, Hayashi T, Terakami S et al (2013) Potential assessment of genome–wide association study and genomic selection in Japanese pear Pyrus pyrifolia. Breed Sci 63(1):125–140PubMedPubMedCentralCrossRefGoogle Scholar
  60. Iwata H, Minamikawa MF, Kajiya-Kanegae H et al (2016) Genomics-assisted breeding in fruit trees. Breed Sci 66(1):100–115PubMedPubMedCentralCrossRefGoogle Scholar
  61. Jannink J-L, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9(2):166–177PubMedCrossRefGoogle Scholar
  62. Jones KH, Mayer DG (2009) The Australian macadamia industry: the past and the future. South African Macadamia Growers. Assoc Yearb 17:98–102Google Scholar
  63. Jung C, Müller AE (2009) Flowering time control and applications in plant breeding. Trends Plant Sci 14(10):563–573PubMedCrossRefGoogle Scholar
  64. Khan MA, Korban SS (2012) Association mapping in forest trees and fruit crops. J Exp Bot 63(11):4045–4060PubMedCrossRefGoogle Scholar
  65. Koyuncu N, Çalışkan M, Özkan GÇ et al (2017) Micropropagation of Turkish hazelnut cultivar ‘Palaz’. In: 2nd International Balkan agriculture congressGoogle Scholar
  66. Kumar S, Chagne D, Bink MC et al (2012) Genomic selection for fruit quality traits in apple (Malus x domestica Borkh.). PLoS One 7(5):e36674PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kumar S, Garrick DJ, Bink MC et al (2013) Novel genomic approaches unravel genetic architecture of complex traits in apple. BMC Genomics 14(1):393–406PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kwong QB, Ong AL, Teh CK et al (2017) Genomic selection in commercial perennial crops: applicability and improvement in oil palm (Elaeis guineensis Jacq.). Sci Rep 7:2872–2881PubMedPubMedCentralCrossRefGoogle Scholar
  69. Langdon K, King G, Nock C (2019) DNA paternity testing indicates unexpectedly high levels of self-fertilisation in macadamia. Tree Genet Genomes 15: Article 29Google Scholar
  70. Lapins KO (1983) Mutation breeding. In: Moore JN, Janick J (eds) Methods in fruit breeding. Purdue Univ, West Lafayette, pp 74–99Google Scholar
  71. Lenser T, Theißen G (2013) Molecular mechanisms involved in convergent crop domestication. Trends Plant Sci 18(12):704–714PubMedCrossRefGoogle Scholar
  72. Licea-Moreno RJ, Contreras A, Morales AV et al (2015) Improved walnut mass micropropagation through the combined use of phloroglucinol and FeEDDHA. Plant Cell Tissue Organ Cult 123(1):143–154CrossRefGoogle Scholar
  73. Lima EA, Silveira LS, Masi LN et al (2014) Macadamia oil supplementation attenuates inflammation and adipocyte hypertrophy in obese mice. Mediat Inflamm 2014:870634CrossRefGoogle Scholar
  74. Lodish H, Berk A, Zipursky SL et al (1995) Molecular cell biology, vol 3. WH Freeman, New YorkGoogle Scholar
  75. Lone I, Misger F, Banday F (2017) Effect of different growth regulator combinations on the per cent media browning in walnut in vitro studies using MS medium. Asian J Soil Sci 12(1):135–142CrossRefGoogle Scholar
  76. Luby JJ, Shaw DV (2001) Does marker-assisted selection make dollars and sense in a fruit breeding program? Hortic Sci 36(5):872–879Google Scholar
  77. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits, vol 1. Sinauer, SunderlandGoogle Scholar
  78. Mandal S, Mandal R (2000) Seed storage proteins and approaches for improvement of their nutritional quality by genetic engineering. Curr Sci 79(5):576–589Google Scholar
  79. Marco F, Bitrián M, Carrasco P et al (2015) Genetic engineering strategies for abiotic stress tolerance in plants. In: Plant biology and biotechnology. Springer, New Delhi, pp 579–609CrossRefGoogle Scholar
  80. Marcus JP, Green JL, Goulter KC, Manners JM (1999) A family of antimicrobial peptides is produced by processing of a 7S globulin protein in Macadamia integrifolia kernels. Plant J 19(6):699–710PubMedCrossRefGoogle Scholar
  81. Marie Chevre A, Gill S, Mouras A, Salesses G (1983) In vitro vegetative multiplication of chestnut. J Hortic Sci 58(1):23–29CrossRefGoogle Scholar
  82. Mast AR, Willis CL, Jones EH et al (2008) A smaller Macadamia from a more vagile tribe: inference of phylogenetic relationships, divergence times, and diaspore evolution in Macadamia and relatives (tribe Macadamieae; Proteaceae). Am J Bot 95(7):843–870PubMedCrossRefGoogle Scholar
  83. Matas AJ, Gapper NE, Chung M-Y (2009) Biology and genetic engineering of fruit maturation for enhanced quality and shelf-life. Curr Opin Biotechnol 20(2):197–203PubMedCrossRefPubMedCentralGoogle Scholar
  84. McDowell JM, Woffenden BJ (2003) Plant disease resistance genes: recent insights and potential applications. Trends Biotechnol 21(4):178–183PubMedCrossRefPubMedCentralGoogle Scholar
  85. McManus AM, Nielsen KJ, Marcus JP et al (1999) MiAMP1, a novel protein from Macadamia integrifolia adopts a greek key β–barrel fold unique amongst plant antimicrobial proteins 1. J Mol Biol 293(3):629–638PubMedCrossRefPubMedCentralGoogle Scholar
  86. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829PubMedPubMedCentralGoogle Scholar
  87. Minamikawa MF, Nonaka K, Kaminuma E et al (2017) Genome-wide association study and genomic prediction in citrus: potential of genomics-assisted breeding for fruit quality traits. Sci Rep 7:4721–4734PubMedPubMedCentralCrossRefGoogle Scholar
  88. Ming R, VanBuren R, Liu Y et al (2013) Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.). Genome Biol 14(5):1–11CrossRefGoogle Scholar
  89. Moltzau RH, Ripperton JC (1939) Processing of the macadamia. Hawaii Agric Exp Sta Bull 83:1–31Google Scholar
  90. Moore MJ, Soltis PS, Bell CD et al (2010) Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc Natl Acad Sci 107(10):4623–4628PubMedCrossRefPubMedCentralGoogle Scholar
  91. Mulwa RM, Bhalla PL (2006) In vitro plant regeneration from immature cotyledon explants of macadamia (Macadamia tetraphylla L. Johnson). Plant Cell Rep 25(12):1281–1286PubMedCrossRefPubMedCentralGoogle Scholar
  92. Mulwa RMS, Bhalla PL (2000) In vitro shoot multiplication of Macadamia tetraphylla L. Johnson. J Hortic Sci Biotechnol 75(1):1–5CrossRefGoogle Scholar
  93. Muranty H, Jorge V, Bastien C et al (2014) Potential for marker–assisted selection for forest tree breeding: lessons from 20 years of MAS in crops. Tree Genet Genomes 10(6):1491–1510CrossRefGoogle Scholar
  94. Muranty H, Troggio M, Sadok IB et al (2015) Accuracy and responses of genomic selection on key traits in apple breeding. Hortic Res 2:15060. Scholar
  95. Mustafiz A, Kumari S, Karan R (2016) Ascribing functions to genes: journey to genetic improvement of rice via functional genomics. Curr Genomics 17(3):155–176PubMedPubMedCentralCrossRefGoogle Scholar
  96. Neal JM, Hardner CM, Gross C (2010) Population demography and fecundity do not decline with habitat fragmentation in the rainforest tree Macadamia integrifolia (Proteaceae). Biol Conserv 143(11):2591–2600CrossRefGoogle Scholar
  97. Nock CJ, Baten A, Barkla BJ et al (2016) Genome and transcriptome sequencing characterises the gene space of Macadamia integrifolia (Proteaceae). BMC Genomics 17(1):937PubMedPubMedCentralCrossRefGoogle Scholar
  98. Nock CJ, Baten A, King GJ (2014a) Complete chloroplast genome of Macadamia integrifolia confirms the position of the Gondwanan early-diverging eudicot family Proteaceae. BMC Genomics 15(9):1Google Scholar
  99. Nock CJ, Elphinstone MS, Ablett G et al (2014b) Whole genome shotgun sequences for microsatellite discovery and application in cultivated and wild Macadamia (Proteaceae). Appl Plant Sci 2(4):1300089CrossRefGoogle Scholar
  100. Nock CJ, Hardner CM, Montenegro JD, Termizi AAA, Hayashi S, Playford J, Edwards D, Batley J (2019) Wild origins of macadamia domestication identified through intraspecific chloroplast genome sequencing. Front Plant Sci 10:334Google Scholar
  101. O’Hare P, Stephenson R, Quinlan K, Vock N (2004) Macadamia grower’s handbook. Queensland Dept of Primary Industries and Fisheries, NambourGoogle Scholar
  102. O’Hare P, Topp B (2010) Industry consultation helps guide macadamia breeding objectives. Aust Macadamia Soc News Bull 38(6):38–41Google Scholar
  103. O’Connor K, Powell M, Nock C, Shapcott A (2015) Crop to wild gene flow and genetic diversity in a vulnerable Macadamia (Proteaceae) species in New South Wales, Australia. Biol Conserv 191:504–511CrossRefGoogle Scholar
  104. O’Connor K, Hayes B, Alam M, Topp B (2017) Identifying markers associated with disease-harbouring stick-tights in macadamia. In: International tropical agriculture (TropAg) conference book of poster abstracts, Brisbane, QueenslandGoogle Scholar
  105. O’Connor K, Hayes B, Topp B (2018) Prospects for increasing yield in macadamia using component traits and genomics. Tree Genet Genomes 14(1):7CrossRefGoogle Scholar
  106. O’Connor K, Kilian A, Hayes B, Hardner C, Nock C, Baten A, Alam M, Topp B (2019a) Population structure, genetic diversity and linkage disequilibrium in a macadamia breeding population using SNP and silicoDArT markers. Tree Genet Genomes 15: Article 24Google Scholar
  107. O’Connor K, Hayes B, Hardner C, Alam M, Topp B (2019b) Selecting for nut characteristics in macadamia using a genome-wide association study. HortScience 54:629–632CrossRefGoogle Scholar
  108. Park EJ, Jeknić Z, Sakamoto A et al (2004) Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. Plant J 40(4):474–487PubMedCrossRefPubMedCentralGoogle Scholar
  109. Parkes T, Delaney M, Dunphy M et al (2012) Big scrub: a cleared landscape in transition back to forest? Ecol Manag Restor 13(3):212–223CrossRefGoogle Scholar
  110. Parveez GKA, Rasid OA, Hashim AT et al (2012) Tissue culture and genetic engineering of oil palm. In: Palm oil. Elsevier, Amsterdam, pp 87–135CrossRefGoogle Scholar
  111. Peace C (2005) Genetic characterisation of macadamia with DNA markers. PhD thesis, University of QueenslandGoogle Scholar
  112. Peace CP, Allan P, Vithanage V et al (2005) Genetic relationships amongst macadamia varieties grown in South Africa as assessed by RAF markers. S Afr J Plant Soil 22(2):71–75CrossRefGoogle Scholar
  113. Peace C, Ming R, Schmidt A et al (2008) Genomics of macadamia, a recently domesticated tree nut crop. In: Moore P, Ming R (eds) Genomics of tropical crop plants, Plant genetics and genomics: crops and models, vol 1. Springer, New York, pp 313–332CrossRefGoogle Scholar
  114. Peace C, Vithanage V, Turnbull CGN, Carroll BJ (2002) Characterising macadamia germplasm with codominant radiolabelled DNA amplification fingerprinting (RAF) markers. Acta Hortic 575:371–380CrossRefGoogle Scholar
  115. Pérez-Martín F, Yuste-Lisbona FJ, Pineda B et al (2017) A collection of enhancer trap insertional mutants for functional genomics in tomato. Plant Biotechnol J 15(11):1439–1452PubMedPubMedCentralCrossRefGoogle Scholar
  116. Piagnani C, Eccher T (1988) Factors affecting the proliferation and rooting of chestnut in vitro. Acta Hortic 227:384–386CrossRefGoogle Scholar
  117. Powell M, Accad A, Austin MP et al (2010) Predicting loss and fragmentation of habitat of the vulnerable subtropical rainforest tree Macadamia integrifolia with models developed from compiled ecological data. Biol Conserv 143(6):1385–1396CrossRefGoogle Scholar
  118. Powell M, Accad A, Shapcott A (2014) Where they are, why they are there, and where they are going: using niche models to assess impacts of disturbance on the distribution of three endemic rare subtropical rainforest trees of Macadamia (Proteaceae) species. Aust J Bot 62(4):322–334CrossRefGoogle Scholar
  119. Ramsay HP (1963) Chromosome numbers in the Proteaceae. Aust J Bot 11(1):1–20CrossRefGoogle Scholar
  120. Ros E (2010) Health benefits of nut consumption. Nutrients 2(7):652–682PubMedPubMedCentralCrossRefGoogle Scholar
  121. Ross AA, Willis JMG, Agnew GWJ, Leverington R (1961) A list of promising macadamias. Qld Agric J 87:423–426Google Scholar
  122. Rost J, Muralidharan S, Campbell D et al (2016) Discovery of 7s and 11s globulins as putative allergens in macadamia nut by combining allergenomics and patient serum ige binding. Intern Med J 46(S4):10CrossRefGoogle Scholar
  123. Roussos PA, Archimandriti A, Beldekou I (2016) Improving in vitro multiplication of juvenile European chestnut (Castanea sativa mill) explants by the use of growth retardants. Sci Hortic 198:254–256CrossRefGoogle Scholar
  124. Saleeb WF, Yermanos DM, Huszar CK et al (1973) The oil and protein in nuts of Macadamia tetraphylla L. Johnson, Macadamia integrifolia maiden and Betche, and their F1 hybrid. J Am Soc Hortic Sci 98:453–456Google Scholar
  125. Sánchez-Pérez R, Jørgensen K, Olsen CE et al (2008) Bitterness in almonds. Plant Physiol 146(3):1040–1052PubMedPubMedCentralCrossRefGoogle Scholar
  126. Sánchez-Pérez R, Howad W, Garcia-Mas J et al (2010) Molecular markers for kernel bitterness in almond. Tree Genet Genomes 6(2):237–245CrossRefGoogle Scholar
  127. Schroeder C (1961) Some morphological aspects of fruit tissues grown in vitro. Bot Gaz 122(3):198–204CrossRefGoogle Scholar
  128. Shah DM, Horsch RB, Klee HJ et al (1986) Engineering herbicide tolerance in transgenic plants. Science 233(4762):478–481PubMedCrossRefPubMedCentralGoogle Scholar
  129. Shapcott A, Powell M (2011) Demographic structure, genetic diversity and habitat distribution of the endangered, Australian rainforest tree Macadamia jansenii help facilitate an introduction program. Aust J Bot 59(3):215–225CrossRefGoogle Scholar
  130. Smith LS (1956) New species and notes on Queensland plants. Proc R Soc Queensland 67:50–56Google Scholar
  131. Spain C, Lowe A (2011) Genetic consequences of subtropical rainforest fragmentation on Macadamia tetraphylla (Proteaceae). Silvae Genet 60(1–6):241–249CrossRefGoogle Scholar
  132. Steiger DL, Moore PH, Zee F et al (2003) Genetic relationships of macadamia cultivars and species revealed by AFLP markers. Euphytica 132(3):269–277CrossRefGoogle Scholar
  133. Stephenson RA, Gallagher EC (1986) Effects of temperature during latter stages of nut development on growth and quality of macadamia nuts. Sci Hortic 30(3):219–225CrossRefGoogle Scholar
  134. Strohschen B (1986) Contributions to the biology of useful plants. 4. Anatomical studies of fruit development and fruit classification of the macadamia nut (Macadamia integrifolia maiden and Betche). Angew Bot 60(3/4):239–247Google Scholar
  135. Storey (1963) The named varieties of macadamia. Calif Macadamia Soc Yearb 9:67–74Google Scholar
  136. Storey WB (1976) Subtropical and tropical fruit and nut crops in California, USA. Acta Hortic 57:53–61CrossRefGoogle Scholar
  137. Storey W, Saleeb W (1970) Interspecific hybridization in macadamia. Calif Macadamia Soc Yearb 16:75–83Google Scholar
  138. Storey WB (1959) History of the systematic botany of the Australian species macadamia. Calif Macadamia Soc Yearb 5:68–78Google Scholar
  139. Swenson WK, Dunn JE, Conn EE (1989) Cyanogenesis in the Proteaceae. Phytochemistry 28(3):821–823CrossRefGoogle Scholar
  140. Toft BD, Alam M, Topp B (2018) Estimating genetic parameters of architectural and reproductive traits in young macadamia cultivars. Tree Genet Genomes 14:50–59Google Scholar
  141. Toft BD, Alam MM, Wilkie J, Topp B (2019) Phenotypic association of multi-scale architectural traits with canopy volume and yield: moving towards high-density systems for macadamia. HortScience 54(4):596–602CrossRefGoogle Scholar
  142. Topp BL, Hardner CM, Kelly AM (2012) Strategies for breeding macadamias in Australia. Acta Hortic 935:47–53CrossRefGoogle Scholar
  143. Topp B, Hardner CM, Neal J et al (2016) Overview of the Australian macadamia industry breeding program. Acta Hortic 1127:45–50CrossRefGoogle Scholar
  144. Tripathi L, Atkinson H, Roderick H et al (2017) Genetically engineered bananas resistant to Xanthomonas wilt disease and nematodes. Food Energy Secur 6(2):37–47PubMedPubMedCentralCrossRefGoogle Scholar
  145. Trochoulias T, Lahav E (1983) The effect of temperature on growth and dry-matter production of macadamia. Sci Hortic 19(1–2):167–176CrossRefGoogle Scholar
  146. Trueman SJ (2013) The reproductive biology of macadamia. Sci Hortic 150:354–359CrossRefGoogle Scholar
  147. Umezawa T, Fujita M, Fujita Y et al (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17(2):113–122PubMedCrossRefGoogle Scholar
  148. Van Nocker S, Gardiner SE (2014) Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops. Hortic Res 1:14022PubMedPubMedCentralCrossRefGoogle Scholar
  149. Vidal N, Blanco B, Cuenca B (2015) A temporary immersion system for micropropagation of axillary shoots of hybrid chestnut. Plant Cell Tissue Organ Cult 123(2):229–243CrossRefGoogle Scholar
  150. Wongcharee S, Aravinthan V, Erdei L, Sanongraj W (2017) Use of macadamia nut shell residues as magnetic nanosorbents. Int Biodeterior Biodegradation 124:276–287CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandBrisbaneAustralia
  2. 2.Southern Cross Plant ScienceSouthern Cross UniversityLismoreAustralia

Personalised recommendations