Advertisement

Quinoa (Chenopodium quinoa Willd.) Breeding

  • Luz Rayda Gomez-PandoEmail author
  • Enrique Aguilar-Castellanos
  • Martha Ibañez-Tremolada
Chapter

Abstract

Quinoa is native to the Andean Region, with recognized nutritional value and the ability to thrive in marginal agricultural environments. It is a very important alternative crop to face the negative environmental changes that are reducing yield and quality, and causing food insecurity during recent decades. This species has been cultivated in the Andean Region for thousands of years in very marginal environments from sea level in Chile to more than 4000 m elevation in the Peruvian and Bolivian Altiplano. High genetic diversity of quinoa ecotypes made it possible to yield quality grains in soil pH values of 4.5–9.5> in diverse annual rainfall 200–2000 mm, and at very low temperatures in flowering and grain-filling periods, with diseases, insect epidemics and other negative management practices. The recognition of quinoa values since the 1980s has increased significantly the demand and interest from other countries to grow this plant in marginal lands. Cultivation has increased notably in the Andean Region, in North America, Europe, Asia and Africa, with very good agricultural and industrial results. Current wide distribution and planting in large-scale farms have shown limitations because growth conditions are different from those typical in the origin center. High susceptibility to biotic factors (diseases, pests and weeds), low heat tolerance, damage by long photoperiods, lack of appropriate culture technologies for different farming systems, and limitations in food elaboration and industrial uses, are major limitations. These can be overcome with new improved varieties using the highly diverse germplasm and appropriate breeding methodology; and employing appropriate agronomic practices for sustainable production to ensure food security in marginal lands and environments.

Keywords

Abiotic factors Adaptation Chenopodium Germplasm Nutritious value Quinoa Tolerance 

References

  1. Abugoch JLE (2009) Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. In: Steve LT (ed) Advances in food and nutrition research. Academic, Amsterdam, pp 1–31Google Scholar
  2. Adolf VI, Shabala S, Andersen MN et al (2012) Varietal differences of quinoa’s tolerance to saline conditions. Plant Soil 357:117–129CrossRefGoogle Scholar
  3. Adolf VI, Jacobsen SE, Shabala S (2013) Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environ Exp Bot 92:43–54CrossRefGoogle Scholar
  4. Aguilar AP (1980) Identificación de mecanismos de androesterilidad, componentes de rendimiento y contenido proteico en quinua (Chenopodium quinoa Willd.) Universidad Agraria La Molina, Lima, Peru (thesis)Google Scholar
  5. Aguilar PC, Jacobsen SE (2003) Cultivation of quinoa on the Peruvian Altiplano. Food Rev Int 19:31–41CrossRefGoogle Scholar
  6. Ahumada A, Ortega A, Chito D, Benítez R (2016) Saponinas de quinua (Chenopodium quinoa Willd.): un subproducto con alto potencial biológico. Rev Colomb Cienc Quim Farm 45(3):438–469CrossRefGoogle Scholar
  7. Álvarez-Flores RA (2012) Réponses morphologiques et architecturales du système racinaire au déficit hydrique chez des Chenopodium cultivés et sauvages d’Amérique andine. Université Montpellier 2, Montpellier, France (thesis)Google Scholar
  8. Andrade AJ, Babot P, Bertero HD et al (2015) Argentina. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 422–433Google Scholar
  9. Apaza V, Cáceres G, Estrada R, Pinedo R (2013) Catálogo de variedades comerciales de quinua en el Perú. FAO and INIA, PeruGoogle Scholar
  10. Aroni JC, Cayoja M, Laime MA (2009) Situación actual al 2008 de la Quinua Real en el altiplano sur de Bolivia. FAUTAPO, La PazGoogle Scholar
  11. Azurita-Silva A, Jacobsen SE, Razzaghi F et al (2015) Quinoa drought responses and adaptation. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 157–171Google Scholar
  12. Balzotti MRB, Thornton JN, Maughan PJ et al (2008) Expression and evolutionary relationships of the Chenopodium quinoa 11S seed storage protein gene. Int J Plant Sci 169:281–291CrossRefGoogle Scholar
  13. Barros-Rodriguez M, Cajas-Naranjo M, Nuñez-Torres O et al (2018) In situ rumen degradation kinetics and in vitro gas production of seed, whole plant and stover of Chenopodium quinoa. J Anim Plant Sci 28(1):327–331Google Scholar
  14. Bascuñan-Godoy L, Reguera M, Abdel-Tawab YM, Blumwald E (2016) Water deficit stress-induced changes in carbon and nitrogen partitioning in Chenopodiumm quinoa Willd. Planta 243(3):591–603PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bazile D, Martinez E, Fuentes F et al (2015a) Quinoa in Chile. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 401–421Google Scholar
  16. Bazile D, Salcedo S, Santivañez T (2015b) Conclusions: challenge, opportunities and threats to quinoa in the face of global change. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 586–589Google Scholar
  17. Bazile D, Jacobsen SE, Verniau A (2016a) The global expansion of quinoa: trends and limits. Front Plant Sci 7: 622:1–6.  https://doi.org/10.3389/fpls.2016.00622
  18. Bazile D, Pulvento C, Verniau A et al (2016b) Worldwide evaluations of quinoa: preliminary results from post international year of quinoa FAO projects in nine countries. Front Plant Sci 7:850.  https://doi.org/10.3389/fpls.2016.00850CrossRefPubMedPubMedCentralGoogle Scholar
  19. Becker VI, Goessling JW, Duarte B et al (2017) Combined effects of soil salinity and high temperature on photosynthesis and growth of quinoa plants (Chenopodium quinoa). Funct Plant Biol 44(7):665–678CrossRefGoogle Scholar
  20. Bedoya-Perales N, Pumi G, Mujica A et al (2018) Quinoa expansion in Peru and its implication for land use management. Sustainability 10(532):1–13Google Scholar
  21. Bendevis MA, Sun Y, Shabala S et al (2014) Differentiation of photoperiod-induced ABA and soluble sugar responses of two quinoa (Chenopodium quinoa Willd.) cultivars. J Plant Growth Reg 33:562–570CrossRefGoogle Scholar
  22. Benlhabib O, Boujartani N, Maugham J et al (2016) Elevated genetic diversity in an F2:6 population of quinoa (Chenopodium quinoa) developed through an inter-ecotype cross. Front Plant Sci 7(1222):1–9Google Scholar
  23. Bertero HD (2003) Response of developmental processes to temperature and photoperiod in quinoa (Chenopodium quinoa Willd). Food Rev Int 19:87–97CrossRefGoogle Scholar
  24. Bertero HD, King RW, Hall AJ (1999) Photoperiod-sensitive developmental phases in quinoa (Chenopodium quinoa Willd.). Field Crop Res 60:231–243CrossRefGoogle Scholar
  25. Bertero D, De la Vega A, Correa G et al (2004) Genotype and genotype by environment interaction effect for grain yield and grain size of quinoa (Chenopodium quinoa Willd.) as revealed by pattern analysis of international multi-environment trials. Field Crop Res 89:299–318CrossRefGoogle Scholar
  26. Bhargava A, Ohri D (2015) Quinoa in the Indian subcontinent. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 511–523Google Scholar
  27. Bhargava A, Shukla S, Ohri D (2006) Chenopodium quinoa: an Indian perspective. Ind Crop Prod 23:73–87CrossRefGoogle Scholar
  28. Bhargava A, Shukla S, Ohri D (2007) Genetic variability and interrelationship among various morphological and quality traits in quinoa (Chenopodium quinoa Willd). Field Crops Res 101:104–116CrossRefGoogle Scholar
  29. Biondi S, Ruiz K, Martínez EA et al (2015) Tolerance to saline conditions. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 143–156Google Scholar
  30. Bois JF, Winkel T, Lhomme JP et al (2006) Response of some Andean cultivars of quinoa (Chenopodium quinoa Willd.) to temperature: effects on germination, phenology, growth and freezing. Eur J Agron 25:299–308CrossRefGoogle Scholar
  31. Bojanic A (2011) La Quinua: cultivo milenario para contribuir a la seguridad alimentaria mundial. FAO, RomeGoogle Scholar
  32. Bollaert W (1860) Antiquarian, ethnological and other researchers in New Granada, Ecuador, Peru and Chile. Trübner & Co, LondonGoogle Scholar
  33. Bonifacio A (1990) Caracteres hereditarios y ligamiento factorial en la quinua (Chenopodium quinoa Willd.). Bolivia Universidad Mayor de San Simon, Cochabamba (thesis)Google Scholar
  34. Bonifacio A (1991) Materiales de aislamiento en cruzamientos de la quinua. In: Congreso Internacional sobre Cultivos Andinos, 6to. Quito, Ecuador, pp 67-68Google Scholar
  35. Bonifacio A (1995) Interspecific and intergeneric hybridization in chenopod species. Brigham Young University, Provo, Utah (thesis)Google Scholar
  36. Bonifacio A (2003) Chenopodium spp. genetic resources, ethnobotany, and geographic distribution. Food Rev Int 19(1):1–7.  https://doi.org/10.1081/FRI-120018863CrossRefGoogle Scholar
  37. Bonifacio A (2004) Genetic variation in cultivated and wild Chenopodium species for quinoa breeding Brigham Young University, Provo, Utah (thesis)Google Scholar
  38. Bonifacio A, Mujica A, Álvarez A, Roca W (2004) Mejoramiento genético, germoplasma y producción de semilla. In: Mujica A, Jacobsen S, Izquierdo J, Marathee JP (eds) Quinua: ancestral cultivo andino, alimento del presente y futuro. FAO/UNA/CIP, Santiago, pp 125–187Google Scholar
  39. Bonifacio A, Rojas W, Saravia A et al (2006) PROINPA consolida un programa de mejoramiento genético y difusión de semilla de quinua. Informe Compendio 2005–2006. Fundación PROINPA, Cochabamba, pp 65–70Google Scholar
  40. Bonifacio A, Aroni G, Villca M (2012) Catálogo etnobotánico de la quinua Real. Cochabamba, BoliviaGoogle Scholar
  41. Bonifacio A, Gómez-Pando L, Rojas W (2015) Quinoa breeding and modern variety development. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 172–191Google Scholar
  42. Bosque-Sánchez H, Lemeur R, Van Damme P, Jacobsen SE (2003) Ecophysiological analysis of drought and salinity stress of quinoa. Food Rev Int 19:111–119CrossRefGoogle Scholar
  43. Bravo R, Catacora P (2010) Granos Andinos: avances, logros y experiencias desarrolladas en quinua. In: Bravo R, Valdivia R, Andrade K et al (eds) Cañihua y kiwicha en el Perú. Ed FIDA – Bioversity International, RomeGoogle Scholar
  44. Bruno MC (2006) A morphological approach to documenting the domestication of Chenopodium in the Andes. In: Zeder MA, Bradley DG, Emshwiller E, Smith BD (eds) Documenting domestication new genetic and archaeological paradigm. University of California Press, Berkeley, pp 32–45Google Scholar
  45. Bruno MC (2008) Waranq waranq: ethnobotanical perspectives on agricultural. Intensification in the Titicaca Lake basin (Taraco Peninsula, Bolivia). Washington University, St. Louis MO (thesis)Google Scholar
  46. Bruno MC, Whitehead WT (2003) Chenopodium cultivation and the formative period of agriculture at Chiripa, Bolivia. Lat Am Antiq 14(3):339–355CrossRefGoogle Scholar
  47. Burrieza HP, Koyro HW, Martínez Tosar L et al (2012) High salinity induces dehydrin accumulation in Chenopodium quinoa Willd. Embryos. Plant Soil 354:69–79CrossRefGoogle Scholar
  48. Caldwell S (2013) “Superfood” quinoa finds interior Alaska farming fanbase. Alaska Dispatch. Available at: http://www.alaskadispatch.com/article/20130422/superfood-quinoa-finds-interior-alaska-farming-fanbase. Accessed 23 Feb 2018
  49. Canahua MA (1977) Observaciones del comportamiento de quinua en sequía. In: Primer Congreso Internacional sobre cultivos andinos. Universidad Nacional San Cristóbal de Huamanga, Instituto Interamericano de Ciencias Agrícolas, Ayacucho, pp 390–392Google Scholar
  50. Cardozo A, Tapia M (1979) Valor nutritivo. In: Tapia M, Gandarillas H, Alandia S et al (eds) Quinoa y kañiwa. Cultivos andinos. Editorial IICA, Centro Internacional de Investigaciones para el Desarrollo (CIID), Instituto Interamericano de Ciencias Agrícolas (IICA), Colombia, pp 149–192Google Scholar
  51. Carjuzaa P, Castellión M, Distéfano AJ et al (2008) Detection and subcellular localization of dehydrin-like proteins in quinoa (Chenopodium quinoa Willd.) embryos. Protoplasma 233:149–156PubMedCrossRefPubMedCentralGoogle Scholar
  52. Carmen M (1984) Aclimatization of quinoa (Chenpodium quinoa Willd.) and canihua (Chenopodium pallidicaule Aellen) to Finland. Ann Agric Fenniae 23:135–144Google Scholar
  53. Christensen JL, Ruiz-Tapia EN, Jornsgard B, Jacobsen SE (1999) Fast seed germinating of quinoa (Chenopodium quinoa Willd.) at low temperature. In: COST 814-Workshop: alternative crops for sustainable agriculture, Turku, Finland, pp 220–225Google Scholar
  54. Christensen SA, Pratt DB, Pratt C et al (2007) Assessment of genetic diversity in the USDA and CIP-FAO international nursery collections of quinoa (Chenopodium quinoa Willd.) using microsatellite markers. Plant Genet Res 5:82–95CrossRefGoogle Scholar
  55. Christiansen JL, Jacobsen SE, Jørgensen ST (2010) Photoperiodic effect on flowering and seed development in quinoa (Chenopodium quinoa Willd.). Acta Agric Scand Sect B Plant Soil Sci 60:539–544Google Scholar
  56. Coles ND, Coleman CE, Christensen SA et al (2005) Development and use of an expressed sequenced tag library in quinoa (Chenopodium quinoa Willd.) for the discovery of single nucleotide polymorphisms. Plant Sci 168(2):439–447CrossRefGoogle Scholar
  57. Costa-Tartara SMC, Manifesto MM, Bramardi SJ, Bertero HD (2012) Genetic structure in cultivated quinoa (Chenopodium quinoa Willd.), a reflection of landscape structure in Northwest Argentina. Conserv Genet 13:1027–1038CrossRefGoogle Scholar
  58. Coulibaly AK, Sangare A, Konate M et al (2015) Assessment and adaptation of quinoa (Chenopodium quinoa Willd.) to the agroclimatic conditions in Mali, West Africa: an example of south-north-south cooperation. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 524–533Google Scholar
  59. Danielsen S, Jacobsen SE, Echegaray J, Ames T (2001) Impact of downy mildew on the yield of quinoa. In: CIP Program Report 1999–2000, International Potato Center, Lima, Peru, pp 397–401Google Scholar
  60. Danielsen S (2001) Heterothallism in Peronospora farinosa f. sp. chenopodii, the causal agent of downy mildew in quinoa (Chenopodium quinoa). J Basic Microbiol 41(5):305–308PubMedCrossRefPubMedCentralGoogle Scholar
  61. Danielsen S (2004) Seed transmission of downy mildew (Peronospora farinosa f. sp. chenopodii) in quinoa and effect of relative humidity on seedling infection. Seed Sci Tech 32:91–98CrossRefGoogle Scholar
  62. De Santis G, D’Ambrosio T, Rinaldi M, Rascio A (2016) Heritabilities of morphological and quality traits and interrelationships with yield in quinoa (Chenopodium quinoa Willd.) genotypes in the Mediterranean environment. J Cereal Sci 70:177–185CrossRefGoogle Scholar
  63. Del Castillo C, Winkel T, Mahy G, Bizoux JP (2007) Genetic structure of quinoa (Chenopodium quinoa Willd.) from the Bolivian altiplano as revealed by RAPD markers. Genet Res Crop Evol 54:897–905CrossRefGoogle Scholar
  64. Delatorre-Herrera J, Pinto M (2009) Importance of ionic and osmotic components of salt stress on the germination of four quinoa (Chenopodium quinoa Willd.) selections. Chilean J Agric Res 69:477–485CrossRefGoogle Scholar
  65. Dillehay TD, Rossen J, Andres TC, Williams DE (2007) Preceramic adoption of peanut, squash and cotton in northern Peru. Science 316:1890–1893PubMedCrossRefPubMedCentralGoogle Scholar
  66. Dizes J, Bonifacio A (1992) Estudio en microscopia electrónica de la morfología de los órganos de la quinoa (Chenopodium quinoa W.) y de la cañahua (Chenopodium pallidicaule A.) en relación con la resistencia a la sequía. In: D. Morales y J. Vacher (eds.). Actas del VII Congreso Internacional sobre Cultivos Andinos. La Paz, Bolivia. 4-8 de Julio de 1991, pp 69–74Google Scholar
  67. Domínguez SS (2003) Quinoa: postharvest and commercialization. Food Rev Int 19:191–201CrossRefGoogle Scholar
  68. Eathington SR, Crosbie M, Edwards MD et al (2007) Molecular markers in a commercial breeding program. Crop Sci 47:S514–S163CrossRefGoogle Scholar
  69. Espindola G, Bonifacio A (1996) Catálogo de variedades mejoradas de quinua y recomendaciones para producción y uso de semilla certificada. Publicación conjunta IBTA/DNS Bol 2, La Paz, BoliviaGoogle Scholar
  70. Fairbanks DJ, Burgener KW, Robison LR et al (1990) Electrophoretic characterization of quinoa seed proteins. Plant Breed 104:190–195CrossRefGoogle Scholar
  71. FAO (2011) Quinoa: an ancient crop to contribute to world food security. In: 37ava Conferencia de la FAO-Estado Plurinacional de Bolivia, Food and Agriculture Organization, Rome, ItalyGoogle Scholar
  72. FAO-WIEWS (2013) Sistema mundial de información y alerta sobre los recursos fitogenéticos para la agricultura y la alimentación. http://apps3.fao.org/wiews
  73. FAOSTAT (2018) www.fao.org/statistics/esGoogle Scholar
  74. Franco TL, Hidalgo R (2003) Análisis estadístico de datos de caracterización morfológica de recursos fitogenéticos. Boletín Técnico IPGRI Nº 8, Instituto Internacional de Recursos Fitogenéticos (IPGRI), Cali, Colombia, p 89Google Scholar
  75. Fuentes F, Martínez E, De la Torre J et al (2006) Diversidad genética de germoplasma chileno de quinua (Chenopodium quinoa Willd.) usando marcadores de microsatélites SSR. In: Estrella AM, Batallas E, Peralta y Mazón N (eds) Resúmenes XII congreso internacional de cultivos andinos. 24 al 27 de julio de 2006. Quito, EcuadorGoogle Scholar
  76. Fuentes FF, Martínez EA, Hinrichsen PV et al (2009) Assessment of genetic diversity patterns in Chilean quinoa (Chenopodium quinoa Willd.) germplasm using multiplex fluorescent microsatellite markers. Conserv Genet 10:369–377CrossRefGoogle Scholar
  77. Fuentes-Bazan S, Mansion G, Borsch T (2012a) Towards a species level tree of the globally diverse genus Chenopodium (Chenopodiaceae). Mol Phyl Evol 62:359–374CrossRefGoogle Scholar
  78. Fuentes-Bazan S, Uotila P, Borsch T (2012b) A novel phylogeny-based generic classification for Chenopodium sensu lato, and a tribal rearrangement of Chenopodioideae (Chenopodiaceae). Willdenowia 42(1):5–24CrossRefGoogle Scholar
  79. Gandarillas H (1968) Razas de quinua. Boletín Experimental 34. Ministerio de Agricultura y Asuntos Campesinos. División de Investigaciones Agrícolas, Universo. La Paz, BoliviaGoogle Scholar
  80. Gandarillas H (1969) Esterilidad genética y citoplasmática de la quinua (Chenopodium quinoa Willd.). Turrialba 19:429–430Google Scholar
  81. Gandarillas H (1979) Mejoramiento genético. In: Tapia ME (ed) Quinua y kaniwa. Cultivos Andinos, Centro Internacional para el Desarrollo, Bogotá, Colombia, pp 65–82Google Scholar
  82. Gandarillas H (1986) Estudio anatómico de los organos de la quinua. Estudio de caracteres correlacionados y sus efectos sobre el rendimiento. Hibridaciones entre especies de la Subsección Cellulata del género Chenopodium. La PazGoogle Scholar
  83. Gandarillas A, Rojas W, Bonifacio A, Ojeda N (2015) Quinoa in Bolivia: the PROINPA Foundationʼs perspective. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 344–361Google Scholar
  84. Garrido M, Silva P, Silva H et al (2013) Evaluación del rendimiento de nueve genotipos de quinua (Chenopodium quinoa Willd.) bajo diferentes disponibilidades hídricas en ambiente mediterraneo. IDESIA(Chile) 31(2):69–76Google Scholar
  85. Gawlik-Dziki U, Świeca M, Sułkowski M et al (2013) Antioxidant and anticancer activities of Chenopodium quinoa leaves extracts – in vitro study. Food Chem Toxicol 57:154–160PubMedCrossRefPubMedCentralGoogle Scholar
  86. Geerts S, Raes D, García M et al (2008a) Crop water use indicators to quantify the flexible phenology of quinoa (Chenopodium quinoa Willd.) in response to drought stress. Field Crops Res 108:150–156CrossRefGoogle Scholar
  87. Geerts S, Raes D, García M et al (2008b) Introducing deficit irrigation to stabilize yields of quinoa (Chenopodium quinoa Willd.). Eur J Agron 28:427–436CrossRefGoogle Scholar
  88. Geerts S, Raes D, García M et al (2008c) Could deficit irrigation be a sustainable practice for quinoa (Chenopodium quinoa Willd.) in the Southern Bolivian Altiplano. Agric Water Manag 95:909–917CrossRefGoogle Scholar
  89. Gómez L, Eguiluz A (2011) Catalógo del Banco de Germoplasma de Quinua (Chenopodium quinoa Willd), Universidad Nacional Agraria La Molina, p183Google Scholar
  90. Gómez-Caravaca A, Iafelice G, Lavini A et al (2012) Phenolic compounds and saponins in quinoa samples (Chenopodium quinoa Willd.) grown under different saline and nonsaline irrigation regimes. J Agric Food Chem 60:4620–4627PubMedCrossRefPubMedCentralGoogle Scholar
  91. Gomez-Pando L (2014) Development of improved varieties of native grains through radiation-induced mutagenesis. In: Tomlekova NB, Kozgar MI, Wani MR (eds) Mutagenesis: exploring novel genes and pathways. Wageningen Academic Publishers, Dordrecht, pp 105–123CrossRefGoogle Scholar
  92. Gomez-Pando L (2015) Quinoa breeding. In: Murphy K, Matanguihan J (eds) Quinoa improvement and sustainable production. Wiley Blackwell, Hoboken, pp 87–107CrossRefGoogle Scholar
  93. Gomez-Pando L, Aguilar E (2016) Guía de cultivo de la quinua. FAO, RomeGoogle Scholar
  94. Gomez-Pando L, Eguiluz-de la Barra A (2013) Developing genetic variability of quinoa (Chenopodium quinoa Willd.) with gamma radiation for use in breeding programs. Am J Plant Sci 4:349–355.  https://doi.org/10.4236/ajps.2013.42046. http://www.scirp.org/journal/ajpsCrossRefGoogle Scholar
  95. Gomez-Pando L, Alvarez-Castro R, Eguiluz-de la Barra A (2010) Effect of salt stress on Peruvian germplasm of Chenopodium quinoa Willd.: a promising crop. J Agron Crop Sci 196:391–396CrossRefGoogle Scholar
  96. Gomez-Pando L, Mujica A, Cura E et al (2015) Peru. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. FAO & CIRAD, Rome, pp 378–387Google Scholar
  97. Gomez-Pando L, Aguilar E, Ibañez-Tremolada M et al (2017) Introducing quinoa mutant varieties with high water and nutrient use efficiency to the Peruvian highlands. Approaches to improvement of crop genotypes with high water and nutrient use efficiency for water scarce environments. Final Report of a Coordinated Research Project IAEA-TECDOC-1828. International Atomic Energy Agency, Vienna, pp 44–56Google Scholar
  98. Gonzalez JA, Konishi Y, Bruno M et al (2011) Interrelationships among seed yield, total protein and amino acid composition of ten quinoa (Chenopodium quinoa) cultivars from two different agroecological regions. J Sci Food Agric 92:1222–1229PubMedCrossRefPubMedCentralGoogle Scholar
  99. Groot M (2004) Phyto-estrogenic activity of protein-rich feeds for pigs. Project No. 801 71 947 01. RIKILT– Institute of Food Safety, WageningenGoogle Scholar
  100. Hariadi Y, Marandon K, Tian Y et al (2011) Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. J Exp Bot 62:185–193PubMedCrossRefPubMedCentralGoogle Scholar
  101. Hong SY, Cheon KS, Yoo KO et al (2017) Complete chloroplast genome sequences and comparative analysis of Chenopodium quinoa and C album. Front Plant Sci 8(1696):1–12Google Scholar
  102. Ichuta F, Artiaga E (1986) Relación de géneros en la producción y en la Organización Social en Comunidades de Apharuni, Totoruma, Yauricani-Ilave. Informe para optar el grado de Bachiller en Trabajo Social, Puno, pp 15–17Google Scholar
  103. Ignacio J, Vera R (1976) Observaciones sobre la intensidad de floración durante las diferentes horas del día efectuados en quinua Chenopodium quinoa Willd. Anales de la II Convención Internacional de Quenopodiáceas quinua-cañihua, PotosíGoogle Scholar
  104. Iliadis C, Karyotis T, Mitsibonas T (1997) Research on quinoa (Chenopodium quinoa) and amaranth (Amaranthus caudatus) in Greece. In: Proceedings of COST-Workshop., 24–25/10 1997 CPRO-DLO Wageningen, The Netherlands, pp 85–91Google Scholar
  105. Jacobsen SE, Quispe H, Mujica A (2001) Quinoa: an alternative crop for saline in the Andes. In: Scientist and Farmer – Partners in Research for the 21st Century. CIP Program Report 1999–2000; pp 403–408Google Scholar
  106. Jacobsen SE (2003) The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Rev Int 19(1/2):167–177CrossRefGoogle Scholar
  107. Jacobsen SE (2012) What is wrong with sustainability of quinoa production in southern Bolivia – a reply to Winkel et al. J Agron Crop Sci 198(4):320–323CrossRefGoogle Scholar
  108. Jacobsen SE (2015) Adaptation and scope for quinoa in northern latitudes of Europe. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 436–446Google Scholar
  109. Jacobsen SE, Jørgensen I, Stølen O (1994) Cultivation of quinoa (Chenopodium quinoa) under temperate climatic conditions in Denmark. J Agric Sci 122:47–52CrossRefGoogle Scholar
  110. Jacobsen SE, Nuñez N, Stolen O, Mujica A (1999) Que sabemos sobre la resistencia de la quinua a la sequía. In: Jacobsen SR, Mujica A (eds) Fisiología de la resistencia a sequía en quinua (Chenopodium quinoa Willd.). CIP, Lima, pp 65–69Google Scholar
  111. Jacobsen SE, Mujica A, Jensen CR (2003) The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Rev Int 19:99–109CrossRefGoogle Scholar
  112. Jacobsen SE, Monteros C, Christiansen JL et al (2005) Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various phenological stages. Eur J Agron 22:131–139CrossRefGoogle Scholar
  113. Jacobsen SE, Monteros C, Corcuera LJ (2007) Frost resistance mechanisms in quinoa (Chenopodium quinoa Willd.). Eur J Agron 26:471–475CrossRefGoogle Scholar
  114. Jacobsen SE, Liu F, Jensen CR (2009) Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd). Sci Horticul 122:281–287CrossRefGoogle Scholar
  115. Jacobsen SE, Christiansen JL, Rasmussen J (2010) Weed harrowing and inter-row hoeing in organic grown quinoa (Chenopodium quinoa Willd). Outlook Agric 39:223–227CrossRefGoogle Scholar
  116. Jarvis DE, Kopp OR, Jellen EN et al (2008) Simple sequence repeat marker development and genetic mapping in quinoa (Chenopodium quinoa Willd). J Genet 87:39–51PubMedCrossRefPubMedCentralGoogle Scholar
  117. Jarvis DE, Ho YS, Lightfoot DJ et al (2017) The genome of Chenopodium quinoa. Nature 542:307–312.  https://doi.org/10.1038/nature21370CrossRefPubMedPubMedCentralGoogle Scholar
  118. Jellen EN, Maughan PJ, Fuentes F, Kolano BA (2015) Botany, phylogeny and evolution. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 12–23Google Scholar
  119. Jensen CR, Jacobsen SE, Andersen MN et al (2000) Leaf gas exchange and water relation characteristics of field quinoa (Chenopodium quinoa Willd.) during soil drying. Eur J Agron 13:11–25CrossRefGoogle Scholar
  120. Johnson DL (1990) New grains and pseudograins. In: Janick J, Simon JE (eds) Advances in new crops, Timber Press, Portland, pp 122–127. Available at: <http://www.hort.purdue.edu/newcrop/proceedings1990/v1-122.html>. Accessed 23 Feb 2018
  121. Karyotis T, Iliadis C, Noulas C, Mitsibonas T (2003) Preliminary research on seed production and nutrient content quinoa varieties in a saline-sodic soil. J Agron Crop Sci 189:402–408CrossRefGoogle Scholar
  122. Kitz L (2008) Evaluation of downy mildew (Peronospora farinosa f. sp. chenopodii) resistance among quinoa genotypes and investigation of P. farinosa growth using scanning electron microscopy. Brigham Young University, Provo, Utah (thesis)Google Scholar
  123. Kolano B, Gardunia BW, Michalska M et al (2011) Chromosomal localization of two novel repetitive sequences isolated from the Chenopodium quinoa Willd. Genome 54(9):710–717PubMedCrossRefPubMedCentralGoogle Scholar
  124. Kolano B, Siwinska D, Gomez-Pando L et al (2012) Genome size variation in Chenopodium quinoa (Chenopodiaceae). Plant Syst Evol 298:251–255CrossRefGoogle Scholar
  125. Kolano B, McCann J, Orzechowska M et al (2016) Molecular and cytogenetic evidence for an allotetraploid origin of Chenopodium quinoa and C. berlandieri (Amaranthaceae). Mol Phylogen Evol 100:109–123CrossRefGoogle Scholar
  126. Koyro HW, Eisa SS (2008) Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa Willd. Plant Soil 302:79–90CrossRefGoogle Scholar
  127. Langlie B, Hastorf CA, Bruno MC et al (2011) Diversity in Andean Chenopodium domestication: describing a new morphological type from La Barca, Bolivia 1300–1250 B.C. J Ethnobiol 31(1):72–88CrossRefGoogle Scholar
  128. Latchman RR (1936) La agricultura precolombina en Chile y los países vecinos. Ediciones de la Universidad de Chile, SantiagoGoogle Scholar
  129. León R (2014) Respuesta del Cultivo de Quínua (Chenopodium quinoa Willd.) Línea Mutante ‘La Molina 89-77’ a Tres Regímenes de Riego por Goteo en Condiciones de La Molina, p 93Google Scholar
  130. Leon J (2004–2005) Hibridación y comparación de la F1 F1 con sus progenitores en tres cultivares de quinua (Chenopodium quinoa Willd.) en Puno, Perú. www.monografias.com/...quinua.../mejoramiento-genetico-quinua-hibrid
  131. Lescano RJL (1980) Avances en la genética de la quinua. In: Reunión de genética y fitomejoramiento de la quinua. Genética y fitomejoramiento de la quinua. Universidad Nacional Técnica del Altiplano, Instituto Boliviano de Tecnología Agropecuaria, IICA, Centro Internacional de Investigación para el Desarrollo Puno, Peru, pp 81–89Google Scholar
  132. Lescano JL (1994) Mejoramiento y fisiologia de cultivos andinos. Cultivos andinos en el Perú. CONCYTEC, Proyecto FEAS, LimaGoogle Scholar
  133. Liu GT, Zheng Y, Chen WH et al (1999) Effect of daidzein fed to pregnant cows on milk production and the levels of hormones in colostrums. J Nanjing Agric Univ 22:69–72Google Scholar
  134. Liu J, Wang R, Liu W et al (2018) Genome-wide characterization of heat – shock protein 70s from Chenopodium quinoa and expression analyses of Cqhsp 70s in response to drought stress. Genes 35:1–5CrossRefGoogle Scholar
  135. López ML (2012) Estudio de macro y micro restos de quinoa de contextos arqueológicos del último milenio en dos regiones puneñas. Facultad de Filosofía y Humanidades, Universidad Nacional de Córdova (thesis)Google Scholar
  136. López ML, Nielsen A (2012) Macrorrestos de Chenopodium quinoa Willd. en la plaza de Laqaya (Nor Lipez, Potosi, Bolivia). Rev Intersec Antropol 14:295–300Google Scholar
  137. Lumbreras LG, Kaulicke P, Santillana JI, Espinoza W (2008) Economía prehispánica (Tomo 1). In: Contreras C (ed) Compendio de historia economía del Perú. Banco Central de Reserva del Perú. Instituto de Estudios Peruanos, Lima, pp 53–77Google Scholar
  138. Lutz M, Bascuñan-Godoy (2017) The revival of quinoa: a crop for health. In: Waisundara V, Shiomi N (eds) Superfood and functional food-an overview of their processing and utilization. In Tech, pp 37–54. ISBN 978-953-51-5020-6Google Scholar
  139. Lutz M, Martinez A, Martinez EA (2013a) Daidzein and genistein contents in seeds of quinoa (Chenopodium quinoa Willd.) from local ecotypes grown in arid Chile. Indust Crop Prod 49:117–121CrossRefGoogle Scholar
  140. Lutz M, Martínez A, Vega-Gálvez A et al (2013b) Isoflavones content of quinoa grains from local ecotypes grown in different conditions. Ann Nutri Metabol 63:1582Google Scholar
  141. Maluszynski M, Szarejko I, Bhatia C et al (2009) Methodologies for generating variability. In: Ceccarelli S, Guimaraes EP, Weltzien E (eds) Plant breeding and farmer participation. Rome, FAO, pp 159–194Google Scholar
  142. Martínez EA, Veas E, Jorquera C et al (2009) Re-introduction of quinoa into arid Chile: cultivation of two lowland races under extremely low irrigation. J Agron Crop Sci 195:1–10CrossRefGoogle Scholar
  143. Mason SL, Stevens MR, Jellen EN et al (2005) Development and use of microsatellite markers for germplasm characterization in quinoa (Chenopodium quinoa Willd.). Crop Sci 45:1618–1630CrossRefGoogle Scholar
  144. Mastebroek HD, Limburg H (1997) Breeding harvest security in Chenopodium quinoa. In: Proceedings of the COST 814 workshop on small grains cereals and pseudo-cereals. Copenhagen, Denmark, pp 79–86, 22–24 February 1996Google Scholar
  145. Mastebroek HD, van Loo EN, Dostra O (2002) Combining ability for seed yield traits of Chenopodium quinoa breeding lines. Euphytica 125, pp 427–432CrossRefGoogle Scholar
  146. Mastebroek HD, Van Loo R (2000) Breeding of quinoa – state of the art. In: Parente G, Frame J (eds) Abstracts/Proceedings of COST 814 conference, crop development for cool and wet regions of Europe; 2000 May 10–13; Pordenone, Italy. Office of Official Publications of the European Communities, Luxembourg, pp 491–496Google Scholar
  147. Matanguihan JB, Maughan PJ, Jellen EN, Kolano B (2015) Quinoa cytogenetics, molecular genetics and diversity. In: Murphy KM, Matanguihan JB (eds) Quinoa: improvement and sustainable production. Wiley-Blackwell, Hoboken, pp 109–123CrossRefGoogle Scholar
  148. Maugham PJ, Bonifacio A, Coleman CE, Jellen EN et al (2007) Quinoa: Chenopodium quinoa. In: Kole S (ed) Genome mapping and molecular breeding in plants. Volume 3 pulses, sugar and tuber crops. Springer, Berlin, pp 154–158Google Scholar
  149. Maughan PJ (2006) Molecular and cytological characterization of ribosomal RNA genes in Chenopodium quinoa and Chenopodium berlandieri. Genome 49(7):825–839PubMedCrossRefPubMedCentralGoogle Scholar
  150. Maughan PJ, Bonifacio A, Jellen EN et al (2004) A genetic linkage map of quinoa (Chenopodium quinoa) based on AFLP, RAPD, and SSR markers. Theor Appl Genet 109:1188–1195PubMedCrossRefPubMedCentralGoogle Scholar
  151. Maughan PJ, Turner TB, Coleman CE et al (2009) Characterization of salt overly sensitive 1 (SOS1) gene homoeologs in quinoa (Chenopodium quinoa Willd.). Genome 52:647–657PubMedCrossRefPubMedCentralGoogle Scholar
  152. Maughan PJ, Smith SM, Rojas-Beltran JA et al (2012) Single nucleotide polymorphism identification, characterization, and linkage mapping in quinoa. Plant Genome 5:114–125CrossRefGoogle Scholar
  153. Mazón N, Peralta E, Monar C et al (2007) Pata de Venado (Taruka chaki) nueva variedad de quinua precoz y de grano dulce. Plegable No. 261. Programa Nacional de Leguminosas y Granos Andinos. Estación Experimental Santa Catalina. INIAP. Quito, EcuadorGoogle Scholar
  154. Meehl GA et al. (2007) Global climate projections. In Climate change 2007: the physical science basis. Contributionof Working Group I to the Fourth Assessment Report ofthe Intergovernmental Panel on Climate Change (eds S.Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis,K. B. Averyt, M. Tignor & H. L. Miller).Cambridge, UK: Cambridge University Press, pp 747–846Google Scholar
  155. Mendoza V (2013) Comparativo de Accesiones de quinua (Chenopodium quinoa Willd.) en condiciones de Costa Central. Facultad de Agronomía. Universidad Nacional Agraria La Molina. Lima, Peru (thesis)Google Scholar
  156. Michel AJ (2008) Estudio de suelos del área productora de quinua real, altiplano sur Boliviano. Fundación AUTAPO, Programa Quinua-Altiplano Sucre, Bolivia. www.infoquinua.bo
  157. Morales AJ, Bajgain P, Garver Z et al (2011) Physiological responses of Chenopodium quinoa to salt stress. Int J Plant Phys Biochem 3:219–232Google Scholar
  158. Morales AJ, Zurita-Silva A, Maldonado J, Silva H (2017) Transcriptional responses of Chilean quinoa (Chenopodium quinoa Willd.) under water deficit conditions uncover ABA-independent expression patterns. Front Plant Sci 8:216.  https://doi.org/10.3389/fpls.2017.00216CrossRefPubMedPubMedCentralGoogle Scholar
  159. Moreno C, Seal CE, Papenbrock J (2017) Seed priming improves germination in saline conditions for Chenopodium quinoa and Amaranthus caudatus. J Agron Crop Sci 204:40–48CrossRefGoogle Scholar
  160. Morillo-Coronado AC, Castro-Roberto MA, Morillo-Coronado Y (2017) Characterization of genetic diversity of a collection of quinua (Chenopodium quinoa Willd.). Biotechnol Sector Agropec Agroind 15(2):49–56Google Scholar
  161. Mota C, Santos M, Mauro R et al (2016) Protein content and aminoacid profile of pseudocereals. Food Chem 193:55–61PubMedCrossRefPubMedCentralGoogle Scholar
  162. Mujica A (1992) Granos y leguminosas andinas. In: Hernández J, Bermejo J, León J (eds) Cultivos marginados: otra perspectiva de 1492. Rome, FAO, pp 129–146Google Scholar
  163. Mujica A, Jacobsen SE (2000) Agrobiodiversidad de las Aynokas de quinua (Chenopodium quinoa Willd.) y la seguridad alimentaria. In: Felipe-Morales C, Manrique A, editors. Proc. Seminario Taller Agrobiodiversidad en la Región Andina y Amazónica. 23-25 Noviembre 1988. Lima: NGO- CGIAR, pp 151–156Google Scholar
  164. Mujica A, Jacobsen SE (2005) La quinua (Chenopodium quinoa Willd.) y sus parientes silvestres. In: Moraes MR, Øllgaard B, Kvist LP et al (eds) Botánica económica de los Andes Centrales. Editores Universidad Mayor de San Andrés, La Paz, pp 449–457Google Scholar
  165. Mujica A, Jacobsen SE, Izquierdo J, Marathee JP (2001) Resultados de la prueba americana y europea de quinua. FAO/UNA/CIP, PunoGoogle Scholar
  166. Murray A (2005) Chenopodium domestication in the south central Andes: confirming the presence of domesticates at Jiskairumoko (Late Archaic-Formative), Peru. Master of Arts Anthropology, California State University, Fullerton (thesis)Google Scholar
  167. Nguyen LV (2016) Genetic variation in response to salt stress of quinoa grown under controlled and field conditions. Int J Adv Sci Eng Inform Technol 6(2):233–238CrossRefGoogle Scholar
  168. Nolasco O, Cruz W, Santa Cruz C, Gutiérrez A (2013) Evaluation of the DNA polymorphism of six varieties of Chenopodium quinoa Willd., using AFLP. Biologist (Lima) 11(2):277–286Google Scholar
  169. Nowak V, Du J, Charrondiere UR (2016) Assesment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chem 193:47–54PubMedCrossRefPubMedCentralGoogle Scholar
  170. Nuñez L (1974) In: Universidad del Norte (ed) La Agricultura prehistórica en los andes meridionales. Editorial Orbe, SantiagoGoogle Scholar
  171. Ochoa J, Frinking HD, Jacobs T (1999) Postulation of virulence groups and resistance factors in the quinoa/downy mildew pathosystem using material from Ecuador. Plant Pathol 48(3):425–430CrossRefGoogle Scholar
  172. Orsini F, Accorsi M, Gianquinto G et al (2011) Beyond the ionic and osmotic response to salinity in Chenopodium quinoa: functional elements of successful halophytism. Funct Plant Biol 38:1–14CrossRefGoogle Scholar
  173. Oyoo M, Khaemba J, Githiri M, Ayiecho P (2015) Production and utilization of quinoa (Chenopodium quinoa Willd.) outside its traditional growing areas: a case of Kenya. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 534–548Google Scholar
  174. Pasko P, Zagrodzki P, Barton H et al (2010) Effect of quinoa seeds (Chenopodium quinoa) in diet on some biochemical parameters and essential elements in blood of high fructose-fed rats. Plant Foods Human Nutr 65:333–338CrossRefGoogle Scholar
  175. Pearsall DM (1980) Ethnobotanical report: plant utilization at a hunting base camp. In: Rick JW (ed) Prehistoric hunters of the high Andes. Academic, New York, pp 191–231Google Scholar
  176. Pearsall DM (1989) Adaptation of prehistoric hunter-gatherers in the high Andes: the changing role of plant resources. In: Harris D, Hillman GC (eds) Foraging and farming. Unwin Hyman, London, pp 318–332Google Scholar
  177. Pearsall DM (2008) Plant domestication and the shift to agriculture in the Andes. In: Silverman H, Isbell WH (eds) Handbook of South American archeology. Springer Science + Business Media, New York, pp 105–120CrossRefGoogle Scholar
  178. Peralta E, Nelson Mason O (2015) Quinoa in Ecuador. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 388–400Google Scholar
  179. Pereda J (2016) Calibración para determinar composición proximal de la quinua (Chenopodium quinoa Willd.) usando la espectroscopía de transmitancia en el infrarrojo cercano. Facultad de Industrias Alimentarias. Universidad Nacional Agraria La Molina, Lima-Peru (thesis)Google Scholar
  180. Peterson A, Jacobsen SE, Bonifacio A, Murphy K (2015a) A crossing method for quinoa. Sustainability 7:3230–3243. www.mdpi.com/journal/sustainabilityCrossRefGoogle Scholar
  181. Peterson AJ, Adam J, Murphy K (2015b) Quinoa in the United States of America and Canada. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. FAO & CIRAD, Rome, pp 549–562Google Scholar
  182. Piva G, Basse C, Mehinagic E (2015) Quinoa DʼAnjou: the beginning of a French quinoa sector. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 447–453Google Scholar
  183. Planella MT, Lopez ML, Bruno MC (2015) Domestication and prehistoric distribution. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 29–41Google Scholar
  184. PROINPA. http://www.proinpa.org (accessed February 2018)
  185. Pulvento C, Riccardi M, Biondi S et al (2015) Quinoa in Italy: research and perspectives. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 454–465Google Scholar
  186. Quispe L (2015) Evaluación del potencial de rendimiento y calidad de líneas mutantes de quinua (Chenopodium quinoa Willd.) var. Pasankalla en condiciones de Costa Central. Universidad Nacional Agraria La Molina (thesis)Google Scholar
  187. Raney JA, Reynolds DJ, Elzinga DB et al (2014) Transcriptome analysis of drought induced stress in Chenopodium quinoa. Am J Plant Sci 5:338–357CrossRefGoogle Scholar
  188. Razzaghi F, Ahmadi SH, Adolf VI et al (2011) Water relations and transpiration of quinoa (Chenopodium quinoa Willd.) under salinity and soil drying. J Agron Crop Sci 197:348–360CrossRefGoogle Scholar
  189. Razzaghi F, Ahmadi SH, Jacobsen SE et al (2012) Effects of salinity and soil-drying on radiation use efficiency, water productivity and yield of quinoa (Chenopodium quinoa Willd.). J Agron Crop Sci 198:173–184CrossRefGoogle Scholar
  190. Rea J (1969) Biología floral de la quinua (Chenopodium quinoa). Turrialba 19:91–96Google Scholar
  191. Reichert RD, Tatarynovich JT, Tyler R (1986) Abrasive dehulling of Quinoa (Chenopodium quinoa): effect on saponin content as determined by an adapted hemolitic assay. Cereal Chem 63(6):471–475Google Scholar
  192. Repo-Carrasco R, Espinoza C, Jacobsen SE (2003) Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Rev Int 19:179–189CrossRefGoogle Scholar
  193. Reynolds DJ (2009) Genetic dissection of triterpenoid saponin production in Chenopodium quinoa using microarray analysis. Brigham Young University. Provo, Utah (thesis)Google Scholar
  194. Risi Carbone JJM, Galwey NW (1984) The Chenopodium grains of the Andes: Inca crops for modern agriculture. Adv Appl Biol 10:145–216Google Scholar
  195. Risi CJ, Galwey NW (1989) The pattern of genetic diversity in the Andean grain crop quinoa (Chenopodium quinoa Willd). II. Multivariate methods. Euphytica 41, pp 135–145CrossRefGoogle Scholar
  196. Rocha JES (2011) Controle genético de caracteres agronómicos em quinoa (Chenopodium quinoa Willd.). Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília, DF, Brazil (thesis)Google Scholar
  197. Rodríguez MF, Rúgolo de Agrasar ZE, Aschero CA (2006) El uso de las plantas en unidades domésticas del Sitio arqueológico Punta de la Peña 4, Puna Meridional Argentina. Chungara Rev Antropol Chilena 38(2):257–271Google Scholar
  198. Rojas W, Pinto M (2015) Ex situ conservation of quinoa: the Bolivian experience. In: Murphy K, Matanguiban J (eds) Quinoa: improvement and sustainable production. Wiley, Blackwel, Hoboken, pp 125–160CrossRefGoogle Scholar
  199. Rojas W, Pinto M, Bonifacio A, Gandarillas A (2010) Banco de germoplasma de granos andinos. In: Rojas W, Pinto M, Soto JL et al (eds) Granos andinos: avances, logros y experiencias desarrolladas en quinua, cañahua y amaranto en Bolivia. Bioversity International, Rome, pp 24–38Google Scholar
  200. Rojas W, Pinto M, Alanoca C et al (2015) Quinoa genetic resources and ex situ conservation. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 56–82Google Scholar
  201. Rojas W, Soto JL, Carrasco E (2004) Study on the social, environmental and economic impacts of quinoa promotion in Bolivia. PROIMPA Foundation, La Paz, BoliviaGoogle Scholar
  202. Rojas-Beltrán J, Bonifacio A, Botani G et al (2010) Obtención de nuevas variedades de quinua frente a los efectos del cambio climático. Informe Compendio 2007–2010. Fundación PROINPA, Cochabamba, pp 67–69Google Scholar
  203. Rosa M, Hilal M, González JA, Prado FE (2009) Low-temperature effect on enzyme activities involved in sucrose–starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings. Plant Physiol Biochem 47:300–307PubMedCrossRefPubMedCentralGoogle Scholar
  204. Ruas PM, Bonifacio A, Ruas CF et al (1999) Genetic relationship among 19 accessions of six species of Chenopodium L. by random amplified polymorphic DNA fragments (RAPD). Euphytica 105:25–32CrossRefGoogle Scholar
  205. Ruiz R (2002) Micropropagación de germoplasma de quinua (Chenopodium quinoa Willd.). Universidad Nacional Agraria La Molina. Lima, Peru (thesis)Google Scholar
  206. Ruiz K, Biondi S, Oses R et al (2014) Quinoa biodiversity and sustainability for food security under climate change. A review. Agron Sustain Dev 34:349–359CrossRefGoogle Scholar
  207. Ruiz-Carrasco KB, Antognoni F, Coulibaly AK et al (2011) Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Phys Biochem 49:1333–1341CrossRefGoogle Scholar
  208. Sánchez V (2015) Identificación preliminar de líneas mutantes de quinua (Chenopodium quinoa Willd.) con mayor eficiencia en el uso de nitrógeno. Universidad Nacional Agraria La Molina Lima. Peru (thesis)Google Scholar
  209. Saravia R (1991) La androesterilidad en quinua y forma de herencia. Bolivia Universidad Mayor de San Simón, Cochabamba (thesis)Google Scholar
  210. Saravia R, Plata G, Gandarillas A (2014) Plagas y enfermedades en el cultivo de quinua. Fundación PROINPA/FAO, Cochabamba/RomeGoogle Scholar
  211. Schmöckel S, Lightfoot DJ, Razali R et al (2017) Identification of putative transmembrane proteins involved in salinity tolerance in Chenopodium quinoa by integrating physiological data, RNA seq, and SNP analyses. Front Plant Sci 8:1023.  https://doi.org/10.3389/fpls.2017.01023CrossRefPubMedPubMedCentralGoogle Scholar
  212. Sederberg MC (2008) Physical mapping of ribosomal RNA genes in new world members of the genus Chenopodium using fluorescence in situ hybridization. Brigham Young University Provo, Utah (thesis)Google Scholar
  213. Shabala S, Mackay A (2011) Ion transport in halophytes. Adv Bot Res 57:151–199CrossRefGoogle Scholar
  214. Shabala L, Mackay A, Tian Y et al (2012) Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa. Phys Plant 146:26–38CrossRefGoogle Scholar
  215. Shu QY, Forster BP, Nakagawa H (2012) Principles and applications of plant mutation breeding. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture International Atomic Energy Agency, Vienna, pp 301–325CrossRefGoogle Scholar
  216. Siener R, Honow R, Seidler A et al (2006) Oxalate contents of species of the Polygonaceae, Amaranthaceae and Chenopodiaceae families. Food Chem 98:220–224CrossRefGoogle Scholar
  217. Sigsgaard L, Jacobsen SE, Christiansen JL (2008) Quinoa, Chenopodium quinoa, provides a new host for native herbivores in northern Europe case studies of the moth, Scrobipalpa atriplicella, and the tortoise beetle, Cassida nebulosa. J Insect Sci 8(50):1–4CrossRefGoogle Scholar
  218. Silvestri V, Gil F (2000) Alogamia en quinua. Tasa en Mendoza (Argentina). Rev Facul Cienc Agrar, Universidad Nacional de Cuyo 32(1):71–76Google Scholar
  219. Simmonds NW (1965) The grain chenopods of the tropical American highlands. Econ Bot 19:223–235CrossRefGoogle Scholar
  220. Simmonds NW (1971) The breeding system of Chenopodium quinoa. I Male sterility Hered 27:73–82Google Scholar
  221. Smith BD (1992) Rivers of change: essays on early agriculture in eastern North America. Smithsonian Institution, Washington, DCGoogle Scholar
  222. Soplín B (2009) Estudio preliminario para la inducción de callos a partir del cultivo in vitro de anteras de Chenopodium quinoa Willd. Facultad de Ciencias. Universidad Nacional Agraria La Molina, Lima, Peru (thesis)Google Scholar
  223. Souza FFJ (2013) Physiological quality of quinoa (Chenopodium quinoa Willd.) seeds stored at different environments and containers. Universidade Estadual de Goiás, Anápolis, GO Brazil (thesis)Google Scholar
  224. Spehar CR (2001) Cruzamentos naturais e variabilidade genética em quinoa (Chenopodium Quinoa Willd.). In: Simpósio de Recursos Genéticos para a América Latina e Caribe, 3, Londrina, PR, Brasília, DF, Embrapa Recursos Genéticos e Biotecnologia. (available in cd)Google Scholar
  225. Spehar CR, Santos RLB, Nasser LCB (2003) Diferenças entre Chenopodium quinoa e a planta daninha Chenopodium album. Planta Daninha 21:487–491CrossRefGoogle Scholar
  226. Spehar CR, da Silva Rocha JE, Quadros W et al (2015) Advances and challenges for quinoa production and utilization in Brazil. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 562–585Google Scholar
  227. Stevens MR, Coleman CE, Parkinson SE et al (2006) BAC library and its use in identifying genes encoding seed storage proteins. Theor Appl Genet 112:1593–1600PubMedCrossRefPubMedCentralGoogle Scholar
  228. Swenson EM (2006) Genetic diversity of Bolivian Peronospora farinosa f. sp. chenopodii (downy mildew) and quinoa’s resistance response. Brigham Young University, Provo, Utah (thesis)Google Scholar
  229. Tamulonis JP (1989) In vitro callus production and shoot organogenesis in Chenopodium quinoa Willd. Colorado State University, Fort Collins (thesis)Google Scholar
  230. Tapia M (1979) Historia y distribución geográfica. In: Tapia M (ed) Quinua y Kaniwa. Cultivos Andinos. Centro Internacional de Investigaciones para el Desarrollo (CIID), Instituto Interamericano de Ciencias Agricolas (IICA), Bogotá, pp 11–19Google Scholar
  231. Tapia ME, Mujica SA, Canahua A (1980) Origen, distribución geográfica y sistemas de producción en quinua. In: Primera reunión sobre genética y fitomejoramiento de la quinua. Universidad Técnica del Altiplano, Instituto Boliviano de Tecnología Agropecuaria, Instituto Interamericano de Ciencias Agrícolas, Centro de Investigación Internacional para el Desarrollo, Puno, pp A1–A8Google Scholar
  232. Uhle M (1919) La arqueología de Arica y Tacna. Bol Soc Ecuat Estud Histór Am 3(7/8):1–48Google Scholar
  233. Varriano-Marston E, de Francisco A (1984) Ultraestructure of quinoa fruit (Chenopodium quinoa Willd.). Food Microstruct 3:165Google Scholar
  234. Vega-Gaávez A, Miranda M, Vergara J et al (2010) Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.) an ancient Andean grain: a review. J Sci Food Agric 90:25–41Google Scholar
  235. Vía y Rada Fernández N (2015) Determinación de la diversidad genética de 172 accesiones de la Colección Nacional de Chenopodium quinoa Willd. Quinua mediante marcadores microsatélites. Universidad Ricardo Palma, Facultad de Ciencias Biológicas, Escuela Profesional de Biología, Lima, Peru (thesis)Google Scholar
  236. Von Baer I, Bazile D, Martínez E (2009) Cuarenta años de mejoramiento de quinoa (Chenopodium quinoa Willd.) en La Araucanía: origen de La Regalona-B. Rev Geogr Valpso (on line), pp 34–44, N° 42/2009 ISSN 0718 – 9877Google Scholar
  237. Ward SM (1998) A new source of restorable cytoplasmic male sterility in quinoa. Euphytica 101:157–163CrossRefGoogle Scholar
  238. Ward SM, Johnson D (1993) Cytoplasmic male sterility in quinoa. Euphytica 66:217–223CrossRefGoogle Scholar
  239. Ward SM, Johnson D (1994) A recessive gene determining male sterility in quinoa. J Hered 8:231–233CrossRefGoogle Scholar
  240. Weber J, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44:388–396PubMedPubMedCentralGoogle Scholar
  241. Whitehead WT (2007) Exploring the Wild and Domestic: Paleoethnobotany at Chriripa, a Formative Site in Bolivia. Dissertation, University of California, Berkeley.Google Scholar
  242. Wilson HD (1990) Crop/weed gene flow: Chenopodium quinoa Willd and C. berlandieri Moq. Theor Applied Genet 86, pp 642–648Google Scholar
  243. Wilson H (1981) Domesticated Chenopodium of the Ozark Bluff dwellers. Econ Bot 42(4):464–477Google Scholar
  244. Wilson H (1988a) Allozyme variation and morphological relationships of Chenopodium hircinum (s.l.). Syst Bot 13(2):215CrossRefGoogle Scholar
  245. Wilson HD (1988b) Quinoa biosystematics I: domesticated populations. Econ Bot 42:461–477CrossRefGoogle Scholar
  246. Wilson H (1988c) Quinoa biosystematics II: free-living populations. Econ Bot 42(4):478–494CrossRefGoogle Scholar
  247. Wilson H, Manhart J (1993) Crop/weed gene flow: Chenopodium quinoa Willd. and C. berlandieri Moq. Theor Appl Genet 86(5):642–648PubMedCrossRefPubMedCentralGoogle Scholar
  248. Wilson C, Read JJ, Abo-Kassem E (2002) Effect of mixed salt salinity on growth and ion relations of a quinoa and a wheat variety. J Plant Nutr 25:2689–2704CrossRefGoogle Scholar
  249. Winkel T, Alvarez-Flores R, Bommel P et al (2015) The southern Altiplano of Bolivia. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 362–377Google Scholar
  250. Woldemichael GM, Wink M (2001) Identification and biological activities of triterpenoid saponins from Chenopodium quinoa. J Agric Food Chem 49:2327–2332PubMedCrossRefPubMedCentralGoogle Scholar
  251. Wright KH, Huber KC, Fairbanks D et al (2002) Isolation and characterization of Atriplex hortensis and sweet Chenopodium quinoa starches. Cereal Chem 79:715–719CrossRefGoogle Scholar
  252. Yang A, Akhtar SS, Iqbal S et al (2018) Saponin seed priming improves salt tolerance in quinoa. J Agro Crop Sci 204:31–39CrossRefGoogle Scholar
  253. Yasui Y, Hirakawa H, Oikawa T et al (2016) Draft genome sequence of an inbred line of Chenopodium quinoa, an allotetraploid crop with great environmental adaptability and outstanding nutritional properties. DNA Res 23:535–546.  https://doi.org/10.1093/dnares/dsw037CrossRefPubMedPubMedCentralGoogle Scholar
  254. Yazar A, Incekaya C, Sezen SM, Jacobsen SE (2015) Saline irrigation of quinoa (Chenopodium quinoa) under Mediterranean conditions. Crop Pasture Sci 66(10):993–1002CrossRefGoogle Scholar
  255. Zhang R, Han Z, Chen J, Zhang C (1995) Daidzein diet promotes mammary gland development and lactation in pregnant rat. Dong Wu Xue Bao 41:414–419Google Scholar
  256. Zhang T, Gu M, Liu Y et al (2017) Development of novel InDel markers and genetic diversity in Chenopodium quinoa through whole-genome re-sequencing. BMC Genomics 18(685):1–15Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Luz Rayda Gomez-Pando
    • 1
    Email author
  • Enrique Aguilar-Castellanos
    • 1
  • Martha Ibañez-Tremolada
    • 1
  1. 1.Cereals and Native Grains Research Program, Agronomy FacultyNational Agricultural UniversityLimaPeru

Personalised recommendations