Advertisement

Foxtail Millet (Setaria italica L.): Potential of Smaller Millet for Future Breeding

  • Mangesh Pradip MoharilEmail author
  • Krishnananda Pralhad Ingle
  • Pravin Vishwanath Jadhav
  • Dipti Chandrabhan Gawai
  • Vaibhav Chandrakant Khelurkar
  • Penna SuprasannaEmail author
Chapter

Abstract

Millets are considered nutri-cereals which play a crucial part in overcoming malnutrition and have a significant role in improving the status of human health. Foxtail millet (Setaria italica L.), also known as Italian millet or German millet, belongs to Poaceae family and is cultivated globally, including in India. It is also a staple food and feed in several regions of Asia and Africa. There is a great genetic diversity with a large number of germplasm collections maintained in countries like China, Japan, the USA and India. The crop is nutritionally superior as the grains contain high amounts of proteins, essential amino acids, minerals and vitamins and micronutrients like iron and zinc. Thus, foxtail millet can be useful for biofortification programs aimed at combating malnutrition. Foxtail millet is a relatively drought-tolerant crop and hence genomic interventions can be in place for genetic engineering for abiotic stress tolerance. Recent advancements in a draft genome sequence of this millet has spawned great enthusiasm in unraveling genetic and genomic intricacies, genome-wide molecular marker development, genomics-assisted breeding, identification and validation of stress-associated gene families. There have been great research efforts in the creation and facilitation of genomics databases. In this chapter, we present an overview of the importance, genetic diversity, potential and genomics interventions for foxtail millet improvement.

Keywords

Abiotic stress Biotechnology Diversity Genetic improvement Genomics Molecular markers Nutritional importance 

References

  1. Ahmadi A, Baker DA (2001) The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Grow Reg 35:81–91CrossRefGoogle Scholar
  2. Ajithkumar P, Panneerselvam R (2013) Analysis of intraspecific variation in Setaria italica (L.) P. Beauv landraces using RAPD and ISSR markers. Int J Res Biochem Biophys 3(2):15–20Google Scholar
  3. Arockiasamy S, Prakash S, Ignacimuthu S (2001) High regenerative nature of Paspalum scrobiculatum L, an important millet crop. Curr Sci 80:496–498Google Scholar
  4. Ashraf M (1994) Breeding for salinity tolerance in plants. Crit Rev Plant Sci 13:17–42CrossRefGoogle Scholar
  5. Bailey TL, Boden M, Buske FA et al (2009) MEME Suite: tools for motif discovery and searching. Nucl Acid Res 37(2):W202–W208CrossRefGoogle Scholar
  6. Bajaj S, Mohanty A (2005) Recent advances in rice biotechnology- towards genetically superior transgenic rice. Plant Biotech J 3:275–307CrossRefGoogle Scholar
  7. Barton L, Newsome SD, Chen FH et al (2009) Agricultural origins and the isotopic identity of domestication in northern China. Proc Nat Acad Sci 106:5523–5528CrossRefGoogle Scholar
  8. Beauvois P (1812) Essaid’une nouvelle agrostographie; ou nouveaux genres des Gramiùnees. 32. ParisGoogle Scholar
  9. Benabdelmouna A, Abirached-Darmency M, Darmency H (2001) Phylogenetic and genomic relationships in Setaria italica and its close relatives based on the molecular diversity and chromosomal organization of 5S and 18S-5.8S-25S rDNA genes. Theor Appl Genet 103:668–677CrossRefGoogle Scholar
  10. Bennetzen JL, Schmutz J, Wang H et al (2012) Reference genome sequence of the model plant Setaria. Nat Biotech 30:555–561PubMedCrossRefGoogle Scholar
  11. Bonthala VS, Muthamilarasan M, Roy R, Prasad M (2014) FmTFDb: a foxtail millet transcription factors database for expediting functional genomics in millets. Mol Bio Rep 41(10):6343–6348CrossRefGoogle Scholar
  12. Brutnell TP, Wang L, Swartwood K et al (2010) Setaria viridis: a model for C4 photosynthesis. Plant Cell 22:2537–2544PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chai W, Si W, Ji W et al (2018) Genome-wide investigation and expression profiling of HD-Zip transcription factors in foxtail millet (Setaria italica L.). BioMed Res Int. Article ID 8457614.  https://doi.org/10.1155/2018/8457614Google Scholar
  14. Chakraborty N, Singh N, Kaur K, Raghuram N (2015) G protein signaling components GCR1 and GPA1 mediate responses to multiple abiotic stresses in Arabidopsis. Front Plant Sci 6:1000Google Scholar
  15. Cheng R, Dong Z (2010) Breeding and production of foxtail millet in China. In: He ZH, Bonjean APA (eds) Cereals in China. CIMMYT, Mexico, pp 87–95. isbn:978-970-648-177-1Google Scholar
  16. Chu CC, Wang CC, Sun CS et al (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen source. Sci Sinica 18:659–668Google Scholar
  17. Clarke FR, Clarke JM, Knox RE (2002) Inheritance of stem-solidness in eight durum wheat crosses. Can. J Plant Sci 82:661–664CrossRefGoogle Scholar
  18. Cook JP, Wichman DM, Martin JM et al (2004) Identification of microsatellite markers associated with astem solidness locus in wheat. Crop Sci 44:1397–1402CrossRefGoogle Scholar
  19. Dai F, Nevo E, Wu D et al (2012) Tibet is one of the centers of domestication of cultivated barley. Proc Natl Acad Sci U S A 109:16969–16973PubMedPubMedCentralCrossRefGoogle Scholar
  20. Das G, Patra JK, Baek KH (2017) Insight into MAS: a molecular tool for development of stress resistant and quality of rice through gene stacking. Front Plant Sci 8:985Google Scholar
  21. De Wet JMJ, Oestry-Stidd LL, Cubero JI (1979) Origins and evolution of foxtail millets (Setaria italica). J d’Agric Trad Botan Appl 26(1):53–64Google Scholar
  22. Devos KM, Wang ZM, Beales J et al (1998) Comparative genetic maps of foxtail millet (Setaria italica) and rice (Oryza sativa). Theor Appl Genet 96:63–68CrossRefGoogle Scholar
  23. Diao X (2011) Current status of foxtail millet production in China and future development directions. In: Diao X (ed) Foxtail millet production in China and the industrial technology system. Agriculture, Science and Technology Press, Beijing, pp 20–30Google Scholar
  24. Diao XM, Schnable J, Bennetzen JL, Li JY (2014) Initiation of Setaria as a model plant. Front Agric Sci Eng 1:16–20CrossRefGoogle Scholar
  25. Diatchenko L, Lau Y-F, Campbell AP et al (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Nat Acad Sci U S A 93:6025–6030CrossRefGoogle Scholar
  26. Dipti (2017) Deciphering the differentially expressed genes in foxtail millet (Setaria italica L.) in response to water stress. PhD thesis, Dr. Panjabrao Deshmukh Krishi Vidyapeeth Akola University, Maharshta, IndiaGoogle Scholar
  27. Doust AN, Kellogg EA, Devos KM, Bennetzen JL (2009) Foxtail millet: a sequence-driven grass model system [W]. Plant Phys 149:137–141Google Scholar
  28. Dwivedi S, Upadhyaya H, Senthilvel S et al (2012) Millets: genetic and genomic resources. In: Janick J (ed) Plant breeding reviews. John Wiley, Hoboken, pp 247–374CrossRefGoogle Scholar
  29. En H, Pang ZH, Xiong BH (2008) Comparative analysis of composition and nutritive value of millet bran feed. China Feed 18:39–41Google Scholar
  30. Estrada-Campuzano G, Miralles DJ, Slafer GA (2008) Genotypicvariability and response to water stress of pre- and post-anthesis phases in triticale. Eur J Agron 28:171–177CrossRefGoogle Scholar
  31. Fang FQ, Qian Z, Guang MA, Jing JY (2007) Co-suppression of Si401, a maize pollen speciEsZm401 homologous gene, results in aberrant anther development in foxtail millet. Euphytica 163:103–111Google Scholar
  32. Farooq M, Aziz T, Basra SMA et al (2008) Chilling tolerance in hybrid maize induced by seed priming with salicylic acid. J Agron Crop Sci 194:161–168CrossRefGoogle Scholar
  33. Finn RD, Bateman A, Clements J et al (2014) Pfam: the protein families database. Nucl Acid Res 42:D222–D230CrossRefGoogle Scholar
  34. Fukunaga K, Wang Z, Kato K, Kawase M (2002) Geographical variation of nuclear genome RFLPs and genetic differentiation in foxtail millet, Setaria italica (L.) P. Beauv. Genet Res Crop Evol 49:95–101CrossRefGoogle Scholar
  35. Goron TL, Raizada MN (2015) Genetic diversity and genomic resources available for the small millet crops to accelerate a New Green Revolution. Front Plant Sci 6:157.  https://doi.org/10.3389/fpls.2015.00157CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gupta S, Kumari K, Das J et al (2011) Development and utilization of novel intron length polymorphic markers in foxtail millet [Setaria italica (L.) P. Beauv.]. Genome 54:586–602PubMedCrossRefGoogle Scholar
  37. Harlan JR, de Wet JMJ (1971) Towards a rational classification of cultivated plants. Taxon 20:509–517CrossRefGoogle Scholar
  38. Harris D, Tripathi RS, Joshi A (2002) On-farm seed priming to improve crop establishment and yield in dry direct-seeded rice. In: Pandey S, Mortimer M, Wade L et al (eds) Direct seeding: research strategies and opportunities. International Research Institute, Manila, pp 231–240Google Scholar
  39. Hector JH (1936) Introduction to the botany of field crops. Millets, vol I, Cereals. Central New Agency, Johannesburg, pp 307–319Google Scholar
  40. Hermuth J, Janovska D, Cepkova PH et al (2016) Alternative crops and cropping systems: sorghum and foxtail millet-promising crops for the changing climate in central Europe. Intech Publishing, EuropeGoogle Scholar
  41. Houshmand S, Knox RE, Clarke FR et al (2007) Microsatellite markers flanking a stem solidness gene on chromosome 3BL in durum wheat. Mol Breed 20:261–270CrossRefGoogle Scholar
  42. Hulse JH, Laing EM, Pearson OE (1980) Sorghum and the millets: their composition and nutritional value. Academic, New YorkGoogle Scholar
  43. ICAR (2006) Handbook of agriculture. Indian Council of Agricultural Research, New Delhi, pp 892–912Google Scholar
  44. Ignacimuthu S, Arockiasamy S, Terada R (2000) Genetic transformation of rice: current status and future prospects. Curr Sci 79:186–195Google Scholar
  45. Iriawati, Puspita MI, Roadiansyah A (2017) In vitro regeneration of foxtail millet (Setaria italica (L.) Beauv.) cv Buru Hotong. J Math Fund Sci 49(2):171–180CrossRefGoogle Scholar
  46. Jayaraman A, Puranik S, Rai NK et al (2008) cDNA-AFLP analysis reveals differential gene expression in response to salt stress in foxtail millet (Setaria italica L.). Mol Biotechnol 40(3):241–251PubMedCrossRefPubMedCentralGoogle Scholar
  47. Jia X, Zhang Z, Liu Y et al (2009) Development and genetic mapping of SSR markers in foxtail millet [Setaria italica (L.) P. Beauv.]. Theor Appl Genet 118:821–829.  https://doi.org/10.1007/s00122-008-0942-9CrossRefPubMedPubMedCentralGoogle Scholar
  48. Jia GQ, Huang XH, Zhi H et al (2013) A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet 45:957–961PubMedCrossRefPubMedCentralGoogle Scholar
  49. Jusuf M, Pernes J (1985) Genetic variability of foxtail millet (Setaria italica P. Beauv.): electrophoretic study of five isoenzyme systems. Theor Appl Genet 71:385–391.  https://doi.org/10.1007/BF00251177CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kamara AY, Menkir A, Badu-Apraku B, Ibikunle O (2003) The influence of drought stress on growth, yield and yield components of selected maize genotypes. J Agric Sci 141:43–50.  https://doi.org/10.1017/S0021859603003423CrossRefGoogle Scholar
  51. Karyudi, Fletcher RJ (2002) Osmoregulative capacity in birdseed millet under conditions of water stress. I Variation in Setaria italica and Panicum miliaceum. Euphytica 125(3):337–348.  https://doi.org/10.1023/A:1016073910886CrossRefGoogle Scholar
  52. Kawase M, Sakamoto S (1987) Geographical distribution of landrace groups classified by hybrid pollen sterility in foxtail millet [Setaria italica (L.) P. Beauv.]. Japan J Breed 37:1–9CrossRefGoogle Scholar
  53. Kaya MD, Okçub G, Ataka M et al (2006) Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur J Agron 24:291–295CrossRefGoogle Scholar
  54. Kelley LA, Mezulis S, Yates CM et al (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Proto 10(6):845–858PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kesawat MS, Das BK (2009) Molecular markers: it’s application in crop improvement. J Crop Sci Biotech 12(4):168–178CrossRefGoogle Scholar
  56. Khan Y, Yadav A, Suresh BV et al (2014) Comprehensive genome-wide identification and expression profiling of foxtail millet [Setariaitalica (L.)] miRNAs in response to abiotic stress and development of miRNA database. Plant Cell Tissue Organ Cult 118:279–292CrossRefGoogle Scholar
  57. Kim EJ, Sa KJ, Yu CY et al (2010) Morphological variation of foxtail millet (Setaria italica (L.) P. Beauv.) germplasm collected in Korea, China and Pakistan. Korean J Breed Sci 8:1–8Google Scholar
  58. King RC, Stansfield WD (1997) A dictionary of genetics, 5th edn. Oxford University Press, New YorkGoogle Scholar
  59. Krzywinski M, Schein J, Birol I et al (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19(9):1639–1645PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kumari K, Muthamilarasan M, Misra G et al (2013) Development of eSSR-markers in Setariaitalica and their applicability in studying genetic diversity, cross-transferability and comparative mapping in millet and non-millet species. PLoS One 8(6):e67742PubMedPubMedCentralCrossRefGoogle Scholar
  61. Lambe P, Mutambel HSN, Deltour R, Dinant M (1999) Somatic embryogenesis in pearl millet (Pennisetum glaucum): Strategies to reduce genotype limitation and to maintain long-term totipotency. Plant Cell Tissue Organ Cult 55:23–29CrossRefGoogle Scholar
  62. Lata C, Prasad M (2012) Validation of an allele-specific marker associated with dehydration stress tolerance in a core set of foxtail millet accessions. Plant Breed.  https://doi.org/10.1111/j.1439-0523.2012.01983.x
  63. Lata C, Bhutty S, Bahadur RP et al (2011) Association of an SNP in a novel DREB2-like gene SiDREB2 with stress tolerance in foxtail millet [Setaria italica (L.)]. J Exp Bot 62:3387–3401.  https://doi.org/10.1093/jxb/err016CrossRefPubMedPubMedCentralGoogle Scholar
  64. Lata C, Gupta S, Prasad M (2012) Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Crit RevBiotech 33(3):328–343.  https://doi.org/10.3109/07388551.2012.716809CrossRefGoogle Scholar
  65. Lata C, Mishra AK, Muthamilarasan M et al (2014) Genome-wide investigation and expression profiling of AP2/ERF transcription factor superfamily in foxtail millet (Setaria italica L.). PLoS One 199(11):e113092PubMedPubMedCentralCrossRefGoogle Scholar
  66. Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucl Acid Res 40(1):D302–DD30CrossRefGoogle Scholar
  67. Li T, Ma SS, Gao M, Yang P (1991) Relationship of endogenous hormones of immature inflorescences of naked oats (Avena sativa) and somatic embryogenesis. Acta Scientiarum Naturaliam Universitatis Intramongolicae 22(3):428–432Google Scholar
  68. Li YM (1997) Breeding for foxtail millet drought tolerant cultivars. In: Li Y (ed) Foxtail millet breeding. Agri Press, Beijing, pp 421–446 (in Chinese)Google Scholar
  69. Li PH, Brutnell TP (2011) Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses. J Exp Bot 62:3031–3037PubMedCrossRefPubMedCentralGoogle Scholar
  70. Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461CrossRefGoogle Scholar
  71. Li Y, Wu S (1996) Traditional maintenance and multiplication of foxtail millet (Setaria italica (L.) P. Beauv.) landraces in China. Euphytica 87:33–38CrossRefGoogle Scholar
  72. Li CH, Pao WK, Li HW (1942) Interspecific crosses in Setaria. II. Cytological studies of interspecific hybrids involving 1, S. faberii and S. italica, and 2, a three way cross, F2 of S. italica, S. viridis and S. faberii. J Hered33:351–355Google Scholar
  73. Li Y, Wu S, Cao Y (1995) Cluster analysis of an international collection of foxtail millet (Setaria italica (L.) P. Beauv.). Euphytica 83:79–85CrossRefGoogle Scholar
  74. Li L, Stoeckert Jr CJ, Roos DS (2003) Ortho MCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13(9):2178–2189PubMedPubMedCentralCrossRefGoogle Scholar
  75. Li C, Yue J, Wu X et al (2014) An ABA-responsive DRE-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress. J Exp Bot 65:5415–5427PubMedPubMedCentralCrossRefGoogle Scholar
  76. Li ZY, Wang N, Dong L et al (2015) Differential gene expression in foxtail millet during incompatible interaction with Uromyces Setaria italica. PLoSOne 10(4):e0123825CrossRefGoogle Scholar
  77. Linnaeus C (1753) Species plantarum exhibitentes plantas rite cognitas ad genera relatas, cum different is specificis, nominibus trivialibus, synonym is selectis, et locis natalibus, secundum systema sexuale digestas, Ed. 1. Laurentius Salvius, Stockholm, Sweden. Facsimile published 1957–1959 as Ray Soc. Publ. 140 and 142. The Ray Society, LondonGoogle Scholar
  78. Lisitsyn N, Lisitsyn N, Wigler M (1993) Cloning the difference between two complex. Sci 259(5097):946–51
  79. Liu Y, Yu J, Zhao Q et al (2005) Genetic transformation of millet (Setaria italica) by Agrobacterium-mediated. Chin J Agr Biotech 13:32–37Google Scholar
  80. Malm NR, Rachie KO (1971) Setaria millets: a review of the world literature. S.B. 513. University of Nebraska, Lincoln, pp 19–29Google Scholar
  81. Matsuura A, Tsuji W, An P et al (2012) Effect of pre- and post-heading water deficit on growth and grain yield of four millets. Plant Prod Sci 15(4):323–331CrossRefGoogle Scholar
  82. Mekbib F, Mantell SH, Buchanan-Wollaston V (1997) Callus induction and in vitro regeneration of tef [Eragrostis tef (Zucc.) Trotter] from leaf. J Plant Phys 151:368–372CrossRefGoogle Scholar
  83. Mishra AK, Muthamilarasan M, Khan Y et al (2013) Genome-wide investigation and expression analyses of WD40 protein family in the model plant foxtail millet (Setaria italica L.). PLoS One 9:e86852CrossRefGoogle Scholar
  84. Morgan PW (1990) Effects of abiotic stresses on plant hormone systems. In: Alscher RG, Cummings JR (eds) Stress responses in plants: adaptation and acclimation mechanisms. Wiley-Liss Inc, New York, pp 113–146Google Scholar
  85. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Phys 15:473–497CrossRefGoogle Scholar
  86. Murugan R, Nirmalakumari A (2006) Genetic divergence in foxtail millet (Setaria italic (L.) Beauv.). Indian J Genet 66(4):339–340Google Scholar
  87. Muthamilarasan M, Prasad M (2015) Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses. Theor Appl Genet 128:1–14PubMedCrossRefGoogle Scholar
  88. Muthamilarasan M, Khandelwal R, Yadav CB et al (2014a) Identification and molecular characterization of MYB transcription factor superfamily in C4 model plant foxtail millet (Setaria italica L.). PLoS One 9:e109920PubMedPubMedCentralCrossRefGoogle Scholar
  89. Muthamilarasan M, Bonthala VS, Mishra AK et al (2014b) C2H2-type of zinc finger transcription factors in foxtail millet define response to abiotic stresses. Funct Integr Genomics.  https://doi.org/10.1007/s10142-014-0383-2CrossRefGoogle Scholar
  90. Muthamilarasan M, Venkata SB, Pandey G et al (2014c) Development of 5123 intron-length polymorphic markers for large-scale genotyping applications in foxtail millet. DNA Res 21:41–52PubMedCrossRefGoogle Scholar
  91. Muthamilarasan M, Bonthala VS, Khandelwal R et al (2015) Global analysis of WRKY transcription factor superfamily in Setaria identifies potential candidates involved in abiotic stress signaling. Front Plant Sci 6:910PubMedPubMedCentralGoogle Scholar
  92. Muthamilarasan M, Bonthala VS, Khandelwal R, Jaishankar J, Shweta S, Nawaz K, Prasad M (2015a) Global analysis of WRKY transcription factor superfamily in Setaria identifies potential candidates involved in abiotic stress signaling. Front Plant Sci 6:910.  https://doi.org/10.3389/fpls.2015.00910CrossRefPubMedPubMedCentralGoogle Scholar
  93. Muthamilarasan M, Dhaka A, Yadav R, Prasad M (2015b) Exploration of millet models for developing nutrient rich graminaceous crops. Plant Sci 242:89–97.  https://doi.org/10.1016/j.plantsci.2015.08.023CrossRefPubMedGoogle Scholar
  94. Muthamilarasan M, Dhaka A, Yadav R, Prasad M (2016) Exploration of millet models for developing nutrient rich graminaceous crops. Plant Sci 242:89–97PubMedPubMedCentralCrossRefGoogle Scholar
  95. Muthamilarasan M, Shweta S, Prasad M (2017) Foxtail millet genome sequencing, assembly, annotation, and application. In: Prasad M (ed) The foxtail millet genome. Series: compendium of plant genomes. Springer International Publishing, Cham, pp 11–22Google Scholar
  96. Nirmalakumari A, Vetriventhan M (2010) Characterization of foxtail millet germplasm collections for yield contributing traits. Elect J Plant Breed 1(2):140–147Google Scholar
  97. Nonami H (1998) Plant water relations and control of cell elongation at low water potentials. J Plant Res 111 (3):373–382CrossRefGoogle Scholar
  98. O’Kennedy MM, Grootboom A, Shewry PR (2006) Harnessing sorghum and millet biotechnology for food and health. J Cereal Sci 44:224–235CrossRefGoogle Scholar
  99. Ober ES, Setter TL, Madison JT et al (1991) Influence of water deficit on maize endosperm development enzyme activities and RNA transcripts of starch and zeinsynthesis,abscisic acid, and cell division. Plant Phys 97:154–164PubMedPubMedCentralCrossRefGoogle Scholar
  100. Pan Z, Li K, Zhao L et al (2012) Review and prospects of foxtail millet breeding in Zhangye City Academy. China Seed Indus 7:17–18Google Scholar
  101. Pandey G, Misra G, Kumari K et al (2013) Genome-wide development and use of microsatellite markers for large-scale genotyping applications in foxtail millet [Setaria italica (L.)]. DNA Res 20:197–207PubMedPubMedCentralCrossRefGoogle Scholar
  102. Patil JV (2017) Millets and sorghum: biology and genetic improvement. Wiley.  https://doi.org/10.1002/9781119130765Google Scholar
  103. Patil SM, Sawardekar SV, Bhave SG et al (2009) Development of somaclones and their genetic diversity analysis through RAPD in finger millet (Eleusine coracana) L. Gaertn. Indian J Genet 69:132–139Google Scholar
  104. Paul A, Panneerselvam R (2013) Osmolyte accumulation, photosynthetic pigment and growth of Setaria italica (L.) P. Beauv under drought stress. Asia Pacif J Reprod 2(3):220–224CrossRefGoogle Scholar
  105. Plaut Z (2003) Plant exposure to water stress during specific growth stages. In: Stewart BA, Howell T (eds) Encyclopedia of water science. Marcel Dekker Inc, New York, pp 673–675Google Scholar
  106. Prasada Rao KE, De Wet JMJ, Brink DE, Mengesha MH (1987) Intraspecific variation and systematics of cultivated Setaria italica, foxtail millet (Poaceae). Econ Bot 41:108–116CrossRefGoogle Scholar
  107. Prashant SH, Namakkal SR, Chandra TS (2005) Effect of the antioxidant properties of millet species on oxidative stress and glycemic status in alloxan induced rats. Nutr Res 25:1109–1120CrossRefGoogle Scholar
  108. Puranik S, Bahadur RP, Srivastava PS, Prasad M (2011) Molecular cloning and characterization of a membrane associated NAC family gene, SiNAC from foxtail millet [Setaria italica (L.) P. Beauv]. Mol Biotechnol 49:138–150PubMedCrossRefPubMedCentralGoogle Scholar
  109. Puranik S, Sahu PP, Mandal SN et al (2013) Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria italic L.). PLoS One 8:e64594PubMedPubMedCentralCrossRefGoogle Scholar
  110. Qi X, Xie S, Liu Y et al (2013) Genome-wide annotation of genes and non-coding RNAs of foxtail millet in response to simulated drought stress by deep sequencing. Plant Mol Biol 83:459–473PubMedCrossRefPubMedCentralGoogle Scholar
  111. Qin FF, Zhao Q, Ming Ao G (2008) Co-suppression of Si401, a maize pollen specific Zm401 homologous gene, results in aberrant anther development in foxtail millet. Euphytica 163:103–111CrossRefGoogle Scholar
  112. Reymond P, Farmer EE (1998) Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol 1(5):404–411PubMedCrossRefPubMedCentralGoogle Scholar
  113. Richmond T, Somerville S (2000) Chasing the dream: plant EST microarrays. Curr Opin Plant Biol 3:108–116. pmid:10712953PubMedCrossRefPubMedCentralGoogle Scholar
  114. Risi CJ, Galwey NW (1989) The pattern of genetic diversity in the Andean grain crop quinoa (Chenopodium quinoa Willd). II. Multivariate methods. Euphytica 41:135–145CrossRefGoogle Scholar
  115. Rojas W, Soto JL, Carrasco E (2004) Study on the social, environmental and economic impacts of quinoa promotion in Bolivia. PROIMPA Foundation, La Paz, BoliviaGoogle Scholar
  116. Roychowdhury R, Taoutaou A, Hakeem K (2013) Molecular marker-assisted technologies for crop improvement. In: Book: crop improvement in the era of climate change, Roychowdhury R. I.K. International Publ. House Pvt. Ltd., New Delhi.  https://doi.org/10.13140/RG.2.1.2822.2560CrossRefGoogle Scholar
  117. Sage RF, Monson RK (1999) C4 plant biology. Academic, San DiegoGoogle Scholar
  118. Sakamoto S (1987) Origin and dispersal of common millet and foxtail millet. Japan Agr Res Quart 21(2):84–89Google Scholar
  119. Samarah NH (2005) Effects of drought stress on growth and yield of barley. Agron Sustain Dev 25:145–149CrossRefGoogle Scholar
  120. Sang P (2011) Analysis on breeding development of spring foxtail milletin Shanxi Province. Agri Sci Tech Comm 12:8–9Google Scholar
  121. Saxena R, Vanga SR, Wang J et al (2018) Millets for food security in the context of climate change: are view. Sustainable 10:2228.  https://doi.org/10.3390/su10072228CrossRefGoogle Scholar
  122. Schontz D, Rether B (1999) Genetic variability in foxtail millet, Setaria italica (L.) P. Beauv.: identification and classification of lines with RAPD markers. Plant Breed 118:190–192.  https://doi.org/10.1046/j.1439-0523.1999.118002190.xCrossRefGoogle Scholar
  123. Seetharam A (2006) Millets. Hand book of agriculture. ICAR, New Delhi, pp 892–912Google Scholar
  124. Seetharam A, Patel DP, Halaswamy BH (2006) Small millets. In: Dhillon BS, Saxena S, Agrawal A, Tyagi RK (eds) Plant genetic resources – food grain crops. Narosa Publishing House, New Delhi, pp 204–223Google Scholar
  125. Sharma N, Niranjan K (2018) Foxtail millet: properties, processing, health benefits, and uses. Food Rev Int 34(4):329–363.  https://doi.org/10.1080/87559129.2017.1290103CrossRefGoogle Scholar
  126. Sharma R, Girish AG, Upadhyaya HD et al (2014) Identification of blast resistance in a core collection of foxtail millet germ plasm. Plant Dis 98(4):519–524PubMedCrossRefGoogle Scholar
  127. Shinada H, Iwata N, Sato T, Fujino K (2014) QTL pyramiding for improving of cold tolerance at fertilization stage in rice. Breed Sci 63:483–488.  https://doi.org/10.1270/jsbbs.63.483CrossRefPubMedPubMedCentralGoogle Scholar
  128. Shrawat AK, Lörz H (2006) Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. Plant Biotech J 4:575–603CrossRefGoogle Scholar
  129. Singh RK, Gregorio GB, Jain RK (2007) QTL mapping for salinity tolerance in rice. Phys Mol Biol Plant 13:87–99Google Scholar
  130. Sivadas P, Kothari SL, Chandra N (1990) High frequency embryoid and plantlet formation from tissue cultures of the finger millet -Eleusine coracana (L.) Gaertn. Plant Cell Rep 9:93–96PubMedCrossRefPubMedCentralGoogle Scholar
  131. Sreenivasulu N, Miranda M, Prakash HS et al (2004) Transcriptome changes in foxtail millet genotypes at high salinity: identification and characterization of a PHGPX gene specifically upregulated by NaCl in a salt-tolerant line. J Plant Physiol 161:467–477PubMedCrossRefPubMedCentralGoogle Scholar
  132. Stasolla C, Yeung EC (2003) Advances on embryogenesis in culture of coniferous species: improving somatic embryo quality. Plant Cell Tissue Organ Cult 74:15–35CrossRefGoogle Scholar
  133. Sunil (2015) Gene targeted characterization of foxtail millet (Setaria italica L.) accessions for their high mineral content. Thesis, Dr. PDKV, Akola (MS). IndiaGoogle Scholar
  134. Suprasanna P, Mirajkar S, Bhagwat SG (2015) Induced mutations and crop improvement: development and organization of cell types and tissues. In: Bahadur B, Rajam MV, Sahijram L, Krishnamurthy KV (eds) Plant biology and biotechnology, vol I: plant diversity, organization, function and improvement. Springer, New Delhi, pp 593–617.  https://doi.org/10.1007/978-81-322-2286-6_23CrossRefGoogle Scholar
  135. Suresh BV, Muthamilarasan M, Misra G, Prasad M (2013) FmMDb: aversatile database of foxtail millet markers for millets and bioenergy grasses research. PLoS One 8:e714–e718CrossRefGoogle Scholar
  136. Taiz L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Associates Inc, SunderlandGoogle Scholar
  137. Tapia M (1979) Historia y distribución geográfica. In: Tapia M (ed) Quinua y Kaniwa. Cultivos Andinos. Centro Internacional de Investigaciones para el Desarrollo (CIID), Instituto Interamericano de Ciencias Agricolas (IICA), Bogotá, Colombia, pp 11–19Google Scholar
  138. Tsui WS, Ma HH, Chang TY (1979) The selection and utilization of “Sun Hsi 28” – a male-sterility strain of millet. Sci Agric Sin 12(4):43–46Google Scholar
  139. Upadhyaya HD, Pundir RPS, Gowda CLL et al (2008) Establishing a core collection of foxtail millet to enhance the utilization of germplasm of an underutilized crop. Plant Genet Res 7:177–184.  https://doi.org/10.1017/S1479262108178042CrossRefGoogle Scholar
  140. Upadhyaya HD, Ravishankar CR, Narasimhudu Y et al (2011) Identification of trait-specific germplasm and developing a mini core collection for efficient use of foxtail millet genetic resources in crop improvement. Field Crop Res 124:459–467.  https://doi.org/10.1016/j.fcr.2011.08.004CrossRefGoogle Scholar
  141. Urano D, Chen JG, Botella JR et al (2013) Heterotrimeric G protein signalling in the plant kingdom. Open Biol 3(3):120186.  https://doi.org/10.1098/rsob.120186CrossRefPubMedPubMedCentralGoogle Scholar
  142. Van K, Onoda S, Kim MY et al (2008) Allelic variation of the Waxy gene in foxtail millet (Setaria italica (L.) P. Beauv.) by single nucleotide polymorphisms. Mol Genet Genomics 279:255–266.  https://doi.org/10.1007/s00438-007-0310-5CrossRefPubMedPubMedCentralGoogle Scholar
  143. Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12:e1001883.  https://doi.org/10.1371/journal.pbio.1001883CrossRefPubMedPubMedCentralGoogle Scholar
  144. Vavilov NI (1926) Studies on the origin of cultivated plants. Inst Appl Bot Plant Breed, LeningradGoogle Scholar
  145. Veeranagamallaiah G, Chandraobulreddy P, Jyothsnakumari G, Sudhakar C (2007) Glutamine synthetase expression and pyrroline-5-carboxylate reductase activity influence proline accumulation in two cultivars of foxtail millet (Setaria italica L.) with differential salt sensitivity. Environ Exp Bot 60:239–244CrossRefGoogle Scholar
  146. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Sci 270:484–487CrossRefGoogle Scholar
  147. Vinall HN (1924) Foxtail millet: its culture and utilization in the United States USDA. Farmers Bull 793Google Scholar
  148. Vinoth A, Ravindhran R (2017) Biofortification in millets: a sustainable approach for nutritional security. Front Plant Sci 8:29.  https://doi.org/10.3389/fpls.2017.00029CrossRefPubMedPubMedCentralGoogle Scholar
  149. Wang S (2008) Reviews and prospects of foxtail millet breeding in Heilongjiang province. China Agri Tech Ext 24(6):15–39Google Scholar
  150. Wang TY, Du RH, Chen HB et al (1996) A new way of using herbicide resist ant gene on hybrid utilization in foxtail millet. Sci Agric Sin 29(4):96Google Scholar
  151. Wang ZM, Devos KM, Liu CJ et al (1998) Construction of RFLP-based maps of foxtail millet, Setaria italica (L.) P. Beauv. Theor Appl Genet 96:31–36CrossRefGoogle Scholar
  152. Wang L, Wang X, Wen Q (2008) Breeding and high-yield cultivation technique in high-quality millet varieties. J Shanxi Agri Sci 36(11):53–56Google Scholar
  153. Wang C, Chen J, Zhi H et al (2010) Population genetics of foxtail millet and its wild ancestor. BMC Genet 11:90PubMedPubMedCentralCrossRefGoogle Scholar
  154. Wang MZ, Pan YL, Li C (2011) Culturing of immature inflorescences and Agrobacterium-mediated transformation of foxtail millet (Setaria italica). Afr J Biotechnol 10:16466–16479Google Scholar
  155. Wang C, Jia G, Zhi H et al (2012) Genetic diversity and population structure of Chinese foxtail millet [Setaria italica (L.) Beauv.] landraces. G3 Gene Genom Genet 2:769–777.  https://doi.org/10.1534/g3.112.002907CrossRefGoogle Scholar
  156. Wang L, Czedik-Eysenberg A, Mertz RA et al (2014) Comparative analyses of C4 and C3 photosynthesis in developing leaves of maize and rice. Nat Biotech 32:1158–1165CrossRefGoogle Scholar
  157. Wang J, Wang Z, Du X et al (2017a) A high-density genetic map and QTL analysis of agronomic traits in foxtail millet [Setaria italica (L.) P. Beauv.] using RAD-seq. PLoS One 12(6):e0179717PubMedPubMedCentralCrossRefGoogle Scholar
  158. Wang W, Cao XH, Miclaus M et al (2017b) The promise of agriculture genomics. Int J Genom 2017:1–3Google Scholar
  159. Wilson HD (1990) Crop/weed gene flow: Chenopodium quinoa Willd and C. berlandieri Moq. Theor Applied Genet 86:642–648CrossRefGoogle Scholar
  160. Whitehead WT (2007) Exploring the wild and domestic: Paleoethnobotany at Chriripa, a formative site in Bolivia. Dissertation. University of California, BerkeleyGoogle Scholar
  161. Xu P, Cai W (2014) RAN1 is involved in plant cold resistance and development in rice (Oryza sativa). J Exp Bot 65(12):3277–3287.  https://doi.org/10.1093/jxb/eru178CrossRefPubMedPubMedCentralGoogle Scholar
  162. Xu ZH, Wang DY, Yang LJ, Wei ZM (1984) Somatic embryogenesis and plant regeneration in cultured immature inflorescences of Setaria italica. Plant Cell Rep 3:149–150PubMedCrossRefGoogle Scholar
  163. Xu X, Nagarajan H, Lewis NE et al (2011) The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat Biotech 29:735–741CrossRefGoogle Scholar
  164. Xue YY, Li P, Lin QB (2008) Research evolution on chemical component and physical character of foxtail millet. J Chin Cer Oils Assoc 22:51–56Google Scholar
  165. Yadav RS, Hash CT, Bidinger FR et al (2004) Genomic regions associated with grain yield and aspects of post-flowering drought tolerance in pearl millet across environments and tester background. Euphytica 136:265–277CrossRefGoogle Scholar
  166. Yadav CB, Muthamilarasan M, Pandey G et al (2014) Development of novel micro RNA-based genetic markers in foxtail millet for genotyping applications in related grass species. Mol Breed 34:2219–2224.  https://doi.org/10.1007/s11032-014-0137-9CrossRefGoogle Scholar
  167. Yadav CB, Muthamilarasan M, Garima P et al (2015a) Identification, characterization and expression profiling of dicer-like, argonaute and RNA dependent RNA polymerase gene families in foxtail millet. Plant Mol Biol Rep 33:43–55CrossRefGoogle Scholar
  168. Yadav CB, Bonthala VS, Muthamilarasan M et al (2015b) Genome-wide development of transposable elements-based markers in foxtail millet and construction of an integrated database. DNA Res 22(1):79–90PubMedPubMedCentralCrossRefGoogle Scholar
  169. Yang X, Wan Z, Perry L et al (2012) Early millet use in northern China. PNAS 109:3726–3730.  https://doi.org/10.1073/pnas.1115430109CrossRefPubMedPubMedCentralGoogle Scholar
  170. Yi F, Xie S, Liu Y et al (2013) Genome-wide characterization of microRNA in foxtail millet (Setaria italica). BMC Plant Biol 13:212PubMedPubMedCentralCrossRefGoogle Scholar
  171. You Q, Zhang Z, Yi X et al (2015) SIFGD: Setaria italica Functional Genomics Database. Mol Plant 8:967–970PubMedCrossRefPubMedCentralGoogle Scholar
  172. Zangré R, Nguyen-van E, Rherissi B, Till-Bottraud I (1992) Organisation du pool génique de Setaria italica (L.) P. Beauv. et exploitation des ressources génétiques d’espècesspontanées. In: Lavoisier (ed) Complexes d’espèces, flux de gènes et ressources génétiques des plantes, 8–10 Janvier. Bureau des Ressources Génétiques (BRG), Paris, pp 87–97Google Scholar
  173. Zhang L, Ma XL, Zhang Q et al (2001) Expressed sequence tags from a NaCl treated suaeda salsa cDNA library. Gene 267:193–200PubMedCrossRefPubMedCentralGoogle Scholar
  174. Zhang JP, Wang MY, Bai YF et al (2005) Rapid evaluation on drought tolerance of foxtail millet at seedling stage. J Plant Genet Res 2005:01Google Scholar
  175. Zhang J, Liu T, Fu J et al (2007) Construction and application of EST library from Setaria italica, in response to dehydration stress. Genom 90:121–131CrossRefGoogle Scholar
  176. Zhang G, Liu X, Quan Z et al (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotech 30:549–554CrossRefGoogle Scholar
  177. Zhu GQ, Wu QM (1991) The development of Ve type male sterile line of foxtail millet. Shannxi Agric Sci 1(7):1–7Google Scholar
  178. Zhu XH, Song YC, Zhao ZH et al (2008) Methods for identification of drought tolerance at germination period of foxtail millet by osmotic stress. J Plant Genet Res 9:62–67Google Scholar
  179. Zhu C, Ming C, Zhao-shi X et al (2014) Characteristics and expression patterns of the aldehyde dehydrogenase (ALDH) gene superfamily of foxtail millet (Setaria italica L.). PLoS One 9:e101136PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mangesh Pradip Moharil
    • 1
    Email author
  • Krishnananda Pralhad Ingle
    • 1
  • Pravin Vishwanath Jadhav
    • 1
  • Dipti Chandrabhan Gawai
    • 1
  • Vaibhav Chandrakant Khelurkar
    • 1
  • Penna Suprasanna
    • 2
    Email author
  1. 1.Biotechnology Centre, Department of Agricultural Botany, Post Graduate InstituteDr. Panjabrao Deshmukh Krishi VidyapeethAkolaIndia
  2. 2.Nuclear Agriculture and Biotechnology DivisionBhabha Atomic Research CentreTrombay, MumbaiIndia

Personalised recommendations