Advertisement

Durum Wheat (Triticum turgidum ssp. durum) Breeding to Meet the Challenge of Climate Change

  • Pasquale De VitaEmail author
  • Francesca Taranto
Chapter

Abstract

Durum wheat (Triticum turgidum ssp. durum) is a tetraploid wheat species (2n = 28) planted annually on an estimated area of 18 million ha, representing approximately 8–10% of all the wheat cultivated area in the world, and an annual production ranging from 35–40 million mt. Regions of the Mediterranean Basin and North America (i.e. Canada) produce about 60% of world durum wheat production, mainly used for human consumption as pasta, bulgur, couscous and some breads. In general durum wheat is better adapted to high temperatures and to semiarid climates than bread wheat. In spite of its relatively high adaptability to the marginal and drought environments, the production of durum wheat is threatened by the impacts of climate change, and the need for more sustainable development. This chapter provides an update on progress in genetic improvement of durum wheat and on the tools and strategies to maintain productivity and strengthen food security despite increasing water scarcity, higher temperatures, and the emergence of new pests and diseases. These demand changes in the approaches to crop improvement and require implementing novel approaches in gene discovery and plant breeding. Conventional and modern breeding strategies are discussed to integrate new target traits into varieties. Modelling provides a rational approach to identify desirable traits or combination of traits potentially leading to the specification of wheat ideotypes optimized for target environmental and future climatic conditions. The integration of genomics and phenomics is promising to revolutionize plant breeding providing an exceptional opportunity to identify genetic variation that can be employed in durum wheat breeding programs.

Keywords

Climate change Durum wheat Marker-assisted breeding Speed breeding High-throughput phenotyping Genomic selection KASP markers 

Notes

Acknowledgement

This work was supported by the Italian Ministry of Economic Development (MISE) for funding the project HORIZON 2020 PON I&C 2014–2020, INNOGRANO N. F/050393/00/X32.

References

  1. Abdullah S, Sehgal SK, Jin Y et al (2017) Insights into tan spot and stem rust resistance and susceptibility by studying the pre-green revolution global collection of wheat. Plant Pathol J 33(2):125–132PubMedPubMedCentralCrossRefGoogle Scholar
  2. Acuña-Galindo MA, Mason RE, Subramanian NK, Hays DB (2015) Meta-analysis of wheat QTL regions associated with adaptation to drought and heat stress. Crop Sci 55:477–492CrossRefGoogle Scholar
  3. Ainsworth EA, Ort DR (2010) How do we improve crop production in a warming world? Plant Phys 154(2):526–530CrossRefGoogle Scholar
  4. Akhunov E, Nicolet C, Dvorak J (2009) Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay. Theor Appl Genet 119(3):507–517PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alahmad S, Dinglasan E, Leung KM et al (2018) Speed breeding for multiple quantitative traits in durum wheat. Plant Meth 14:36CrossRefGoogle Scholar
  6. Alisaac E, Behmann J, Kuska MT et al (2018) Hyperspectral quantification of wheat resistance to Fusarium head blight: comparison of two Fusarium species. Eur J Plant Pathol 152:1–16CrossRefGoogle Scholar
  7. Altenbach SB, DuPont FM, Kothari KM et al (2003) Temperature, water and fertilizer influence the timing of key events during grain development in a US spring wheat. J Cereal Sci 37(1):9–20CrossRefGoogle Scholar
  8. Aoun M, Breiland M, Kathryn Turner M et al (2016) Genome-wide association mapping of leaf rust response in a durum wheat worldwide germplasm collection. Plant Genome 9(3):1–24CrossRefGoogle Scholar
  9. Appels R, Eversole K, Feuillet C et al (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361(6403):eaar7191PubMedCrossRefPubMedCentralGoogle Scholar
  10. Araus JL (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89:925–940PubMedPubMedCentralCrossRefGoogle Scholar
  11. Araus JL, Slafer GA, Royo C, Serret MD (2008) Breeding for yield potential and stress adaptation in cereals. CRC Crit Rev Plant Sci 27(6):377–412CrossRefGoogle Scholar
  12. Araus JL, Cairns JE, Crossa J et al (2014) Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci 19:52–61PubMedPubMedCentralCrossRefGoogle Scholar
  13. Araus JL, Kefauver SC, Zaman-Allah M et al (2018) Translating high-throughput phenotyping into genetic gain field phenotyping is a bottleneck for crop genetic improvement. Trends Plant Sci 23(5):451–466PubMedPubMedCentralCrossRefGoogle Scholar
  14. Arruda MP, Lipka AE, Brown PJ et al (2016) Comparing genomic selection and marker-assisted selection for Fusarium head blight resistance in wheat (Triticum aestivum L.). Mol Breed 36(7):84CrossRefGoogle Scholar
  15. Avni R, Nave M, Barad O et al (2017) Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357(6346):93–97PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bai G, Ge Y, Hussain W et al (2016) A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding. Comput Electron Agric 128:181–192CrossRefGoogle Scholar
  17. Baloch FS, Alsaleh A, Shahid MQ et al (2017) A whole genome DArTseq and SNP analysis for genetic diversity assessment in durum wheat from central fertile crescent. PLoS One 12(1):e0167821PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bassi FM, Bentley AR, Charmet G et al (2015) Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Sci 242:23–36PubMedCrossRefPubMedCentralGoogle Scholar
  19. Basso B, Fiorentino C, Cammarano D et al (2012) Analysis of rainfall distribution on spatial and temporal patterns of wheat yield in Mediterranean environment. Eur J Agron 41:52–65CrossRefGoogle Scholar
  20. Battenfield SD, Guzmán C, Gaynor RC et al (2016) Genomic selection for processing and end-use quality traits in the CIMMYT spring bread wheat breeding program. Plant Genome 9(2):1–12CrossRefGoogle Scholar
  21. Beales J, Turner A, Griffiths S et al (2007) A Pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet 115(5):721–733PubMedCrossRefGoogle Scholar
  22. Beleggia R, Fragasso M, Miglietta F et al (2018) Mineral composition of durum wheat grain and pasta under increasing atmospheric CO2 concentrations. Food Chem 242:53–61PubMedCrossRefGoogle Scholar
  23. Bentley AR, Turner AS, Gosman N et al (2011) Frequency of photoperiod-insensitive Ppd-A1a alleles in tetraploid, hexaploid and synthetic hexaploid wheat germplasm. Plant Breed 130:10–15CrossRefGoogle Scholar
  24. Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48(5):1649–1664CrossRefGoogle Scholar
  25. Bernardo AN, Ma H, Zhang D, Bai G (2012) Single nucleotide polymorphism in wheat chromosome region harboring Fhb1 for Fusarium head blight resistance. Mol Breed 29:477–488CrossRefGoogle Scholar
  26. Berraies S, Salah Gharbi M, Rezgui S, Yahyaoui A (2014) Estimating grain yield losses caused by septoria leaf blotch on durum wheat in Tunisia. Chil J Agric Res 74(4):432–437CrossRefGoogle Scholar
  27. Bhattacharya S (2017) Deadly new wheat disease threatens Europe’s crops. Nature 542(7640):145–146PubMedCrossRefPubMedCentralGoogle Scholar
  28. Blum A (2011) Plant water relations, plant stress and plant production. In: Plant breeding for water-limited environments. Springer, New York, pp 11–52CrossRefGoogle Scholar
  29. Bogard M, Allard V, Martre P et al (2013) Identifying wheat genomic regions for improving grain protein concentration independently of grain yield using multiple inter-related populations. Mol Breed 31:587–599CrossRefGoogle Scholar
  30. Bokore FE, Knox R, Cuthbert RD et al (2016) Effects of media supplements on doubled haploid production in durum wheat. Can J Plant Sci 97(1):65–71Google Scholar
  31. Bolton MD, Kolmer JA, Garvin DF (2008) Wheat leaf rust caused by Puccinia triticina. Mol Plant Pathol 9(5):563–575PubMedPubMedCentralCrossRefGoogle Scholar
  32. Borlaug N (2007) Feeding a hungry world. Science 318(5849):359PubMedCrossRefPubMedCentralGoogle Scholar
  33. Borrill P, Ramirez-Gonzalez R, Uauy C (2016) expVIP: a customizable RNA-seq data analysis and visualization platform. Plant Phys 170(4):2172–2186CrossRefGoogle Scholar
  34. Bozzini A, Fabriani G, Lintas C (1988) Origin, distribution, and production of durum wheat in the world. In: Fabriani G, Lintas C (eds) Durum: chemistry and technology. AACC. AACC International, St. Paul, pp 1–16Google Scholar
  35. Burgueño J, de los Campos G, Weigel K, Crossa J (2012) Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers. Crop Sci 52(2):707–719CrossRefGoogle Scholar
  36. Canè MA, Maccaferri M, Nazemi G et al (2014) Association mapping for root architectural traits in durum wheat seedlings as related to agronomic performance. Mol Breed 34:1629–1645PubMedPubMedCentralCrossRefGoogle Scholar
  37. Cardi T, D’Agostino N, Tripodi P (2017) Genetic transformation and genomic resources for next-generation precise genome engineering in vegetable crops. Front Plant Sci 8:241PubMedPubMedCentralCrossRefGoogle Scholar
  38. Cavanagh CR, Chao S, Wang S et al (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Nat Acad Sci 110(20):8057–8062PubMedCrossRefPubMedCentralGoogle Scholar
  39. Ceccarelli S (1994) Specific adaptation and breeding for marginal conditions. Euphytica 77(3):205–221CrossRefGoogle Scholar
  40. Ceccarelli S, Grando S, Impiglia A (1998) Choice of selection strategy in breeding barley for stress environments. Euphytica 103(3):307–318CrossRefGoogle Scholar
  41. Ceccarelli S, Grando S, Maatougui M et al (2010) Plant breeding and climate changes. J Agric Sci 148:627–637CrossRefGoogle Scholar
  42. Chakraborty S, Tiedemann AV, Teng PS (2000) Climate change: potential impact on plant diseases. Environ Pollut 108(3):317–326PubMedCrossRefPubMedCentralGoogle Scholar
  43. Chandra S, Singh D, Pathak J et al (2017) SNP discovery from next-generation transcriptome sequencing data and their validation using KASP assay in wheat (Triticum aestivum L.). Mol Breed 37(7):92CrossRefGoogle Scholar
  44. Chen XM (2005) Epidemiology and control of stripe rust (Puccinia striiformis f. sp. tritici) on wheat. Can J Bot 27(3):314–337Google Scholar
  45. Chen Y, Carver BF, Wang S et al (2009) Genetic loci associated with stem elongation and winter dormancy release in wheat. Theor Appl Genet 118(5):881–889PubMedCrossRefPubMedCentralGoogle Scholar
  46. Chen W, Wellings C, Chen X et al (2014) Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Mol Plant Pathol 15(5):433–446PubMedPubMedCentralCrossRefGoogle Scholar
  47. Chenu K, Porter JR, Martre P et al (2017) Contribution of crop models to adaptation in wheat. Trends Plant Sci 22:472–490PubMedCrossRefPubMedCentralGoogle Scholar
  48. Cistué L, Romagosa I, Batlle F, Echávarri B (2009) Improvements in the production of doubled haploids in durum wheat (Triticum turgidum L.) through isolated microspore culture. Plant Cell Rep 28(5):727–735PubMedCrossRefPubMedCentralGoogle Scholar
  49. Cloutier S, McCallum BD, Loutre C et al (2007) Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol Biol 65(1–2):93–106PubMedCrossRefPubMedCentralGoogle Scholar
  50. Colasuonno P, Incerti O, Lozito ML et al (2016) DHPLC technology for high-throughput detection of mutations in a durum wheat TILLING population. BMC Genet 17(1):43PubMedPubMedCentralCrossRefGoogle Scholar
  51. Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2002) Improving intrinsic water-use efficiency and crop yield. Crop Sci 42(1):122–131PubMedCrossRefPubMedCentralGoogle Scholar
  52. Condorelli GE, Maccaferri M, Newcomb M et al (2018) Comparative aerial and ground based high throughput phenotyping for the genetic dissection of NDVI as a proxy for drought adaptive traits in durum wheat. Front Plant Sci 9:893PubMedPubMedCentralCrossRefGoogle Scholar
  53. Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Chang 19(2):292–305CrossRefGoogle Scholar
  54. Cormier F, Le Gouis J, Dubreuil P et al (2014) A genome-wide identification of chromosomal regions determining nitrogen use efficiency components in wheat (Triticum aestivum L.). Theor Appl Genet 127(12):2679–2693PubMedCrossRefPubMedCentralGoogle Scholar
  55. Cormier F, Foulkes J, Hirel B et al (2016) Breeding for increased nitrogen-use efficiency: a review for wheat (T. aestivum L.). Plant Breed 135(3):255–278CrossRefGoogle Scholar
  56. Cotrufo FM, Ineson P, Scott A (1998) Elevated CO2 reduces the nitrogen concentration of plant. Glob Chang Biol 4(1):43–54CrossRefGoogle Scholar
  57. Crossa J, De Los Campos G, Maccaferri M et al (2016) Extending the marker × Environment interaction model for genomic-enabled prediction and genome-wide association analysis in durum wheat. Crop Sci 56:2193–2209CrossRefGoogle Scholar
  58. Crossa J, Pérez-Rodríguez P, Cuevas J et al (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci 22(11):961–975PubMedCrossRefPubMedCentralGoogle Scholar
  59. Cubadda R (1989) Current research and future needs in durum wheat chemistry and technology. Cereal Foods World 34:206–209Google Scholar
  60. Cui F, Zhang N, Fan XL et al (2017) Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci Rep 7(1):3788PubMedPubMedCentralCrossRefGoogle Scholar
  61. CWC, California Wheat Commission (2017) Desert Durum® crop quality report. Available online at: https://californiawheat.org/. Accessed 17 Sept 2018
  62. Daetwyler HD, Bansal UK, Bariana HS et al (2014) Genomic prediction for rust resistance in diverse wheat landraces. Theor Appl Genet 127(8):1795–1803PubMedCrossRefPubMedCentralGoogle Scholar
  63. Dajic Z (2006) Salt stress. In: Madhava Rao KV, Raghavendra AS, Janardhan Reddy K (eds) Physiology and molecular biology of stress tolerance in plants. Springer, Dordrecht, pp 41–99CrossRefGoogle Scholar
  64. de Dorlodot S, Forster B, Pagès L et al (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12(10):474–481PubMedCrossRefPubMedCentralGoogle Scholar
  65. De La Fuente GN, Frei UK, Lübberstedt T (2013) Accelerating plant breeding. Trends Plant Sci 18(12):667–672CrossRefGoogle Scholar
  66. De Vita P, Nicosia OLD, Nigro F et al (2007) Breeding progress in morpho-physiological, agronomical and qualitative traits of durum wheat cultivars released in Italy during the 20th century. Eur J Agron 26:39–53CrossRefGoogle Scholar
  67. De Vita P, Avio L, Sbrana C et al (2018) Genetic markers associated to arbuscular mycorrhizal colonization in durum wheat. Sci Rep 8(1):10612PubMedPubMedCentralCrossRefGoogle Scholar
  68. DeLucia EH, Nabity PD, Zavala JA, Berenbaum MR (2012) Climate change: resetting plant-insect interactions. Plant Phys 160(4):1677–1685CrossRefGoogle Scholar
  69. Desta ZA, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19(9):592–601PubMedCrossRefPubMedCentralGoogle Scholar
  70. Dettori M, Cesaraccio C, Duce P (2017) Simulation of climate change impacts on production and phenology of durum wheat in Mediterranean environments using CERES-Wheat model. Field Crop Res 206:43–53CrossRefGoogle Scholar
  71. Distelfeld A, Uauy C, Fahima T, Dubcovsky J (2006) Physical map of the wheat high-grain protein content gene Gpc-B1 and development of a high-throughput molecular marker. New Phytol 169:753–763PubMedCrossRefPubMedCentralGoogle Scholar
  72. Distelfeld A, Li C, Dubcovsky J (2009) Regulation of flowering in temperate cereals. Curr Opin Plant Biol 12(2):178–184PubMedCrossRefGoogle Scholar
  73. Domínguez-Mendez R, Alcántara-de la Cruz R, Rojano-Delgado AM et al (2017) Multiple mechanisms are involved in new imazamox-resistant varieties of durum and soft wheat. Sci Rep 7:14839PubMedPubMedCentralCrossRefGoogle Scholar
  74. Donatelli M, Magarey RD, Bregaglio S et al (2017) Modelling the impacts of pests and diseases on agricultural systems. Agric Syst 155:213–224PubMedPubMedCentralCrossRefGoogle Scholar
  75. Duveiller E, Singh RP, Nicol JM (2007) The challenges of maintaining wheat productivity: pests, diseases, and potential epidemics. Euphytica 157(3):417–430CrossRefGoogle Scholar
  76. Dyer AT, Johnston RH, Hogg AC, Johnston JA (2009) Comparison of pathogenicity of the Fusarium crown rot (FCR) complex (F-culmorum, F-pseudograminearum and F-graminearum) on hard red spring and durum wheat. Eur J Plant Pathol 125(3):387–395CrossRefGoogle Scholar
  77. Edwards S, Barrier-Guillot B, Clasen PE et al (2009) Emerging issues of HT-2 and T-2 toxins in European cereal production. World Mycotoxin J 2(2):173–179CrossRefGoogle Scholar
  78. Ellis M, Spielmeyer W, Gale K, Rebetzke G, Richards R (2002) “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet 105(6):1038–1042PubMedCrossRefPubMedCentralGoogle Scholar
  79. Eriksson D, Amman KH (2017) A universally acceptable view on the adoption of improved plant breeding techniques. Front Plant Sci 7:1999PubMedPubMedCentralCrossRefGoogle Scholar
  80. Eyal Z (1999) The septoria tritici and stagonospora nodorum blotch diseases of wheat. Eur J Plant Pathol 105(7):629–641CrossRefGoogle Scholar
  81. Fahad S, Bajwa AA, Nazir U et al (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147PubMedPubMedCentralCrossRefGoogle Scholar
  82. Fangmeier A, Grüters U, Högy P et al (1997) Effects of elevated CO2, nitrogen supply and tropospheric ozone on spring wheat-II. Nutrients (N, P, K, S, Ca, Mg, Fe, Mn, Zn). Environ Pollut 96(1):43–59PubMedCrossRefGoogle Scholar
  83. FAO/IAEA Mutant Variety Database (2018) FAO/IAEA Mutant Variety Database. Available online at: https://mvd.iaea.org/. Accessed 15 Sept 2018
  84. Fares C, Menga V, Badeck F et al (2016) Increasing atmospheric CO2 modifies durum wheat grain quality and pasta cooking quality. J Cereal Sci 69:245–251CrossRefGoogle Scholar
  85. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Ann Rev Plant Phys Plant Mol Biol 40(1):503–537CrossRefGoogle Scholar
  86. Feldman M, Millet E (2001) The contribution of the discovery of wild emmer to an understanding of wheat evolution and domestication and to wheat improvement. Isr J Plant Sci 49(1):25–36CrossRefGoogle Scholar
  87. Ferrara GO, Mosaad MG, Mahalakshmi V, Rajaram S (1998) Photoperiod and vernalisation response of Mediterranean wheats, and implications for adaptation. Euphytica 100(1–3):377–384CrossRefGoogle Scholar
  88. Feuillet C, Travella S, Stein N et al (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Nat Acad Sci 100(25):15253–15258PubMedCrossRefGoogle Scholar
  89. Fiedler JD, Salsman E, Liu Y et al (2017) Genome-wide association and prediction of grain and semolina quality traits in durum wheat breeding populations. Plant Genome 10(3):1–12CrossRefGoogle Scholar
  90. Fiorani F, Schurr U (2013) Future scenarios for plant phenotyping. Ann Rev Plant Biol 64:267–291CrossRefGoogle Scholar
  91. Fleury D, Jefferies S, Kuchel H, Langridge P (2010) Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot 61(12):3211–3222PubMedCrossRefGoogle Scholar
  92. Fones H, Gurr S (2015) The impact of Septoria tritici Blotch disease on wheat: an EU perspective. Fungal Genet Biol 79:3–7PubMedPubMedCentralCrossRefGoogle Scholar
  93. Fontaine JX, Ravel C, Pageau K et al (2009) A quantitative genetic study for elucidating the contribution of glutamine synthetase, glutamate dehydrogenase and other nitrogen-related physiological traits to the agronomic performance of common wheat. Theor Appl Genet 119:645–662PubMedCrossRefGoogle Scholar
  94. Foolad MR (1999) Comparison of salt tolerance during seed germination and vegetative growth in tomato by QTL mapping. Genome 42(4):727–734CrossRefGoogle Scholar
  95. Fu YB (2015) Understanding crop genetic diversity under modern plant breeding. Theor Appl Genet 128(11):2131–2142PubMedPubMedCentralCrossRefGoogle Scholar
  96. Fu D, Uauy C, Distelfeld A et al (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323(5919):1357–1360PubMedPubMedCentralCrossRefGoogle Scholar
  97. Gadaleta A, Nigro D, Giancaspro A, Blanco A (2011) The glutamine synthetase (GS2) genes in relation to grain protein content of durum wheat. Funct Integr Genom 11(4):665–670CrossRefGoogle Scholar
  98. García-Llamas C, Martín A, Ballesteros J (2004) Differences among auxin treatments on haploid production in durum wheat × maize crosses. Plant Cell Rep 23(1–2):46–49PubMedGoogle Scholar
  99. Garrett KA, Dendy SP, Frank EE et al (2006) Climate change effects on plant disease: genomes to ecosystems. Annu Rev Phytopathol 44:489–509PubMedCrossRefGoogle Scholar
  100. Garrett KA, Forbes GA, Savary S et al (2011) Complexity in climate-change impacts: An analytical framework for effects mediated by plant disease. Plant Pathol 60(1):15–30CrossRefGoogle Scholar
  101. Ghavami F, Elias EM, Mamidi S et al (2011) Mixed model association mapping for fusarium head blight resistance in Tunisian-derived durum wheat populations. Genet 1:209–218Google Scholar
  102. Ghosh S, Watson A, Gonzalez-Navarro OE et al (2018) Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat Protoc 13(12):2944–2963PubMedCrossRefPubMedCentralGoogle Scholar
  103. Giunta F, De Vita P, Mastrangelo AM et al (2018) Environmental and genetic variation for yield-related traits of durum wheat as affected by development. Front Plant Sci 9:8PubMedPubMedCentralCrossRefGoogle Scholar
  104. Glunt KD, Paaijmans KP, Read AF, Thomas MB (2014) Environmental temperatures significantly change the impact of insecticides measured using WHOPES protocols. Malar J 13(1):350PubMedPubMedCentralCrossRefGoogle Scholar
  105. Goncharov NP (2011) Genus Triticum L. taxonomy: the present and the future. Plant Syst Evol 295:1–4):1–11CrossRefGoogle Scholar
  106. Goswami RS, Kistler HC (2004) Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 5(6):515–525PubMedCrossRefPubMedCentralGoogle Scholar
  107. Gouache D, Bogard M, Thepot S et al (2015) From ideotypes to genotypes: approaches to adapt wheat phenology to climate change. Procedia Environ Sci 29:34–35CrossRefGoogle Scholar
  108. Greco M, Mirauda D, Squicciarino G, Telesca V (2005) Desertification risk assessment in southern Mediterranean areas. Adv Geosci 2:243–247CrossRefGoogle Scholar
  109. Guzman C, Peña RJ, Singh R et al (2016) Wheat quality improvement at CIMMYT and the use of genomic selection on it. Appl Transl Genom 11:3–8PubMedPubMedCentralCrossRefGoogle Scholar
  110. Habash DZ, Kehel Z, Nachit M (2009) Genomic approaches for designing durum wheat ready for climate change with a focus on drought. J Exp Bot 60(10):2805–2815PubMedCrossRefPubMedCentralGoogle Scholar
  111. Haghighattalab A, González Pérez L, Mondal S et al (2016) Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries. Plant Meth 12(1):35CrossRefGoogle Scholar
  112. Haile JK, N’Diaye A, Clarke F et al (2018) Genomic selection for grain yield and quality traits in durum wheat. Mol Breed 38(6):75CrossRefGoogle Scholar
  113. Handmer J, Honda Y, Kundzewicz ZW et al (2012) Changes in impacts of climate extremes: human systems and ecosystems. In: Managing the risks of extreme events and disasters to advance climate change adaptation, special report of the Intergovernmental Panel on Climate Change. IPCC pp 23–29Google Scholar
  114. Harlan JR, Zohary D (1966) Distribution of wild wheats and barley. Science 153(3740):1074–1080PubMedCrossRefPubMedCentralGoogle Scholar
  115. Haudry A, Cenci A, Ravel C et al (2007) Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol 24:1506–1517PubMedCrossRefPubMedCentralGoogle Scholar
  116. He Y, Wang H, Qian B et al (2012) How early can the seeding dates of spring wheat be under current and future climate in Saskatchewan, Canada? PLoS One 7(10):e45153PubMedPubMedCentralCrossRefGoogle Scholar
  117. Heffner EL, Lorenz AJ, Jannink JL, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50(5):1681–1690CrossRefGoogle Scholar
  118. Heslot N, Yang H-P, Sorrells ME, Jannink JL (2012) Genomic selection in plant breeding: a comparison of models. Crop Sci 52(1):146–160CrossRefGoogle Scholar
  119. Hickey LT, Dieters MJ, DeLacy IH et al (2010) Screening for grain dormancy in segregating generations of dormant × non-dormant crosses in white-grained wheat (Triticum aestivum L.). Euphytica 172(2):83–195CrossRefGoogle Scholar
  120. Hickey LT, Wilkinson PM, Knight CR et al (2012) Rapid phenotyping for adult-plant resistance to stripe rust in wheat. Plant Breed 131(1):54–61CrossRefGoogle Scholar
  121. Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 8(9):2369–2387CrossRefGoogle Scholar
  122. Hossain A, Teixeira da Silva JA, Lozovskaya MV, Zvolinsky VP (2012) High temperature combined with drought affect rainfed spring wheat and barley in south-eastern Russia: I. Phenology and growth. Saudi J Biol Sci 19(4):473–487PubMedPubMedCentralCrossRefGoogle Scholar
  123. Hu Y, Schmidhalter U (2005) Drought and salinity: a comparison of their effects on mineral nutrition of plants. J Plant Nutr Soil Sci 168(4):541–549CrossRefGoogle Scholar
  124. Huang L, Brooks SA, Li W et al (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genet 164(2):655–664Google Scholar
  125. Huerta-Espino J, Singh RP, Germán S et al (2011) Global status of wheat leaf rust caused by Puccinia triticina. Euphytica 164(2):655–664Google Scholar
  126. Iannucci A, Marone D, Russo MA et al (2017) Mapping QTL for root and shoot morphological traits in a durum wheat × T. dicoccum segregating population at seedling stage. Int J Genom 2017:6876393Google Scholar
  127. IGC, International Grains Council (2016) Grain market report 469 – 25 August 2016. Retrieved from www.igc.int Accessed on 1 Sept 2018
  128. Infantino A, Santori A, Aureli G et al (2015) Occurrence of Fusarium langsethiae strains isolated from durum wheat in Italy. J Phytopathol 163(7–8):612–619CrossRefGoogle Scholar
  129. Izanloo A, Condon AG, Langridge P et al (2008) Different mechanisms of adaptation to cyclic water stress in two south Australian bread wheat cultivars. J Exp Bot 59(12):3327–3346PubMedPubMedCentralCrossRefGoogle Scholar
  130. Jankowicz-Cieslak J, Tai TH, Kumlehn J, Till BJ (2016) Biotechnologies for plant mutation breeding: protocols. Springer, ChamGoogle Scholar
  131. Jannink J, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genom 9(2):166–177CrossRefGoogle Scholar
  132. Jaradat AA (2014) The value of wheat landraces. Emir J Food Agric 26(2):ICrossRefGoogle Scholar
  133. Jarquín D, Crossa J, Lacaze X et al (2014) A reaction norm model for genomic selection using high-dimensional genomic and environmental data. Theor Appl Genet 127(3):595–607PubMedCrossRefPubMedCentralGoogle Scholar
  134. Jauhar PP, Peterson TS (2001) Hybrids between durum wheat and Thinopyrum junceiforme: prospects for breeding for scab resistance. Euphytica 118(2):127–136CrossRefGoogle Scholar
  135. Jeger MJ, Pautasso M (2008) Plant disease and global change – the importance of long-term data sets. New Phytol 177(1):8–11PubMedCrossRefPubMedCentralGoogle Scholar
  136. Johnson NC, Gehring CA (2007) Mycorrhizas: symbiotic mediators of rhizosphere and ecosystem processes. In: Cordon Z, Whitback J (eds) The rhizosphere. Elsevier Inc, London, pp 73–100CrossRefGoogle Scholar
  137. Juliana P, Singh RP, Singh PK et al (2017) Comparison of models and whole-genome profiling approaches for genomic-enabled prediction of Septoria tritici blotch, Stagonospora nodorum blotch, and tan spot resistance in wheat. Plant Genome 10(2)  https://doi.org/10.3835/plantgenome2016.08.0082CrossRefGoogle Scholar
  138. Kabbaj H, Sall AT, Al-Abdallat A et al (2017) Genetic diversity within a global panel of durum wheat (Triticum durum) landraces and modern germplasm reveals the history of alleles exchange. Front Plant Sci 8:1277PubMedPubMedCentralCrossRefGoogle Scholar
  139. Khan Z, Chopin J, Cai J et al (2018) Quantitative estimation of wheat phenotyping traits using ground and aerial imagery. Remote Sens 10(6):950CrossRefGoogle Scholar
  140. Kipp S, Mistele B, Baresel P, Schmidhalter U (2014) High-throughput phenotyping early plant vigour of winter wheat. Eur J Agron 52:271–278CrossRefGoogle Scholar
  141. Knutsen HK, Alexander J, Barregard L et al (2017) Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J 15(9): e4718Google Scholar
  142. Koevoets IT, Venema JH, Elzenga JTM, Testerink C (2016) Roots withstanding their environment: exploiting root system architecture responses to abiotic stress to improve crop tolerance. Front Plant Sci 7:1335PubMedPubMedCentralCrossRefGoogle Scholar
  143. Kolmer JA (2005) Tracking wheat rust on a continental scale. Curr Opin Plant Biol 8(4):441–449PubMedCrossRefPubMedCentralGoogle Scholar
  144. Krattinger S, Wicker T, Keller B (2009a) Map-based cloning of genes in Triticeae (wheat and barley). In: Feuillet C, Muehlbauer GJ (eds) Genetics and genomics of the Triticeae. Springer, New York, pp 337–357CrossRefGoogle Scholar
  145. Krattinger SG, Lagudah ES, Spielmeyer W et al (2009b) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323(5919):1360–1363PubMedCrossRefPubMedCentralGoogle Scholar
  146. Kumar A, Bernier J, Verulkar S et al (2008) Breeding for drought tolerance: direct selection for yield, response to selection and use of drought-tolerant donors in upland and lowland-adapted populations. Field Crop Res 107(3):221–231CrossRefGoogle Scholar
  147. Kumar U, Joshi AK, Kumari M et al (2010) Identification of QTLs for stay green trait in wheat (Triticum aestivum L.) in the “Chirya 3” × “Sonalika” population. Euphytica 174(3):437–445CrossRefGoogle Scholar
  148. Kumar S, Röder MS, Singh RP et al (2016) Mapping of spot blotch disease resistance using NDVI as a substitute to visual observation in wheat (Triticum aestivum L.). Mol Breed 36(7):95CrossRefGoogle Scholar
  149. Kumudini S, Andrade FH, Boote KJ et al (2014) Predicting maize phenology: intercomparison of functions for developmental response to temperature. Agron J 106(6):2087–2097CrossRefGoogle Scholar
  150. Labbani Z, Richard N, De Buyser J, Picard E (2005) Plantes chlorophylliennes de blé dur obtenues par culture de microspores isolées: importance des prétraitements. Comp Rend Biol 328(8):713–723CrossRefGoogle Scholar
  151. Laidò G, Mangini G, Taranto F et al (2013) Genetic diversity and population structure of tetraploid wheats (Triticum turgidum L.) estimated by SSR, DArT and pedigree data. PLoS One 8(6):e67280PubMedPubMedCentralCrossRefGoogle Scholar
  152. Laidò G, Marone D, Russo MA et al (2014) Linkage disequilibrium and genome-wide association mapping in tetraploid wheat (Triticum turgidum L.). PLoS One 9(4):e95211PubMedPubMedCentralCrossRefGoogle Scholar
  153. Laidò G, Panio G, Marone D et al (2015) Identification of new resistance loci to African stem rust race TTKSK in tetraploid wheats based on linkage and genome-wide association mapping. Front Plant Sci 6:1033PubMedPubMedCentralCrossRefGoogle Scholar
  154. Läuchli A, Grattan S (2007) Plant growth and development under salinity stress. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Dordrecht, pp 1–32Google Scholar
  155. Laurie DA, Bennett MD (1986) Wheat × maize hybridization. Can J Genet Cytol 28(2):313–316CrossRefGoogle Scholar
  156. Le Gouis J (2011) Genetic improvement of nutrient use efficiency in wheat. In: Hawkesford MJ, Barraclough P (eds) The molecular and physiological basis of nutrient use efficiency in crops. John Wiley, New York, pp 121–138CrossRefGoogle Scholar
  157. Li H, Rasheed A, Hickey LT, He Z (2018) Fast-forwarding genetic gain. Trends Plant Sci 23(3):184–186PubMedCrossRefGoogle Scholar
  158. Liu S, Chao S, Anderson JA (2008) New DNA markers for high molecular weight glutenin subunits in wheat. Theor Appl Genet 118(1):177–183PubMedCrossRefGoogle Scholar
  159. Liu W, Maccaferri M, Rynearson S et al (2017) Novel sources of stripe rust resistance identified by genome-wide association mapping in Ethiopian durum wheat (Triticum turgidum ssp. durum). Front Plant Sci 8:774PubMedPubMedCentralCrossRefGoogle Scholar
  160. Lobell DB, Sibley A, Ivan Ortiz-Monasterio J (2012) Extreme heat effects on wheat senescence in India. Nat Clim Chang 2(3):186CrossRefGoogle Scholar
  161. Longin CFH, Sieber AN, Reif JC (2013) Combining frost tolerance, high grain yield and good pasta quality in durum wheat. Plant Breed 132:353–358CrossRefGoogle Scholar
  162. Longin CFH, Mi X, Würschum T (2015) Genomic selection in wheat: optimum allocation of test resources and comparison of breeding strategies for line and hybrid breeding. Theor Appl Genet 128(7):1297–1306PubMedCrossRefPubMedCentralGoogle Scholar
  163. Lopes MS, El-Basyoni I, Baenziger PS et al (2015) Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. J Exp Bot 66:3477–3486PubMedCrossRefPubMedCentralGoogle Scholar
  164. Loss SP, Siddique KHM (1994) Morphological and physiological traits associated with wheat yield increases in Mediterranean environments. Adv Agron 52:229–276CrossRefGoogle Scholar
  165. Luterbacher J, Xoplaki E, Casty C et al (2006) Mediterranean climate variability over the last centuries: a review. Develop Earth Environ Sci 4:27–148Google Scholar
  166. Lynch JP, Wojciechowski T (2015) Opportunities and challenges in the subsoil: pathways to deeper rooted crops. J Exp Bot 66(8):2199–2210PubMedPubMedCentralCrossRefGoogle Scholar
  167. Maccaferri M, Sanguineti MC, Corneti S et al (2008) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genet 178:489–511CrossRefGoogle Scholar
  168. Maccaferri M, Sanguineti MC, Demontis A et al (2011) Association mapping in durum wheat grown across a broad range of water regimes. J Exp Bot 62:409–438PubMedCrossRefPubMedCentralGoogle Scholar
  169. Maccaferri M, Ricci A, Salvi S et al (2015) A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding. Plant Biotech J 13:648–663CrossRefGoogle Scholar
  170. Maccaferri M, El-Feki W, Nazemi G et al (2016) Prioritizing quantitative trait loci for root system architecture in tetraploid wheat. J Exp Bot 67:1161–1178PubMedPubMedCentralCrossRefGoogle Scholar
  171. Maccaferri M, Harris NS, Twardziok SO, Pasam RK, Gundlach H, Spannagl M, Ormanbekova D, Lux T, Prade VM, Milner SG, Himmelbach A, Mascher M, Bagnaresi P, Faccioli P, Cozzi P, Lauria M, Lazzari B, Stella A, Manconi A, Gnocchi M, Moscatelli M, Avni R, Deek J, Biyiklioglu S, Frascaroli E, Corneti S, Salvi S, Sonnante G, Desiderio F, Marè C, Crosatti C, Mica E, Özkan H, Kilian B, De Vita P, Marone D, Joukhadar R, Mazzucotelli E, Nigro D, Gadaleta A, Chao S, Faris JD, Melo ATO, Pumphrey M, Pecchioni N, Milanesi L, Wiebe K, Ens J, MacLachlan RP, Clarke JM, Sharpe AG, Koh CS, Liang KYH, Taylor GJ, Knox R, Budak H, Mastrangelo AM, Xu SS, Stein N, Hale I, Distelfeld A, Hayden MJ, Tuberosa R, Walkowiak S, Mayer KFX, Ceriotti A, Pozniak CJ, Cattivelli L (2019) Durum wheat genome highlights past domestication signatures and future improvement targets. Nat Genet 51(5):885–895PubMedCrossRefPubMedCentralGoogle Scholar
  172. Madec S, Baret F, de Solan B et al (2017) High-throughput phenotyping of plant height: comparing unmanned aerial vehicles and ground LiDAR estimates. Front Plant Sci 8:2002PubMedPubMedCentralCrossRefGoogle Scholar
  173. Mago R, Brown-Guedira G, Dreisigacker S et al (2011) An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat. Theor Appl Genet 122(4):735–744PubMedCrossRefGoogle Scholar
  174. Maier U (1996) Morphological studies of free-threshing wheat ears from a Neolithic site in southwest Germany, and the history of the naked wheats. Veg Hist Archaeobot 5(1–2):39–55CrossRefGoogle Scholar
  175. Marone D, Laidò G, Gadaleta A et al (2012) A high-density consensus map of A and B wheat genomes. Theor Appl Genet 125:1619–1638PubMedPubMedCentralCrossRefGoogle Scholar
  176. Marone D, Russo MA, Laidò G et al (2013) Genetic basis of qualitative and quantitative resistance to powdery mildew in wheat: from consensus regions to candidate genes. BMC Genomics 14(1):562PubMedPubMedCentralCrossRefGoogle Scholar
  177. Masuka B, Araus JL, Das B et al (2012) Phenotyping for abiotic stress tolerance in maize. J Integr Plant Biol 54(4):238–249PubMedCrossRefGoogle Scholar
  178. Matsuoka Y (2011) Evolution of polyploid Triticum wheats under cultivation: the role of domestication, natural hybridization and allopolyploid speciation in their diversification. Plant Cell Physiol 52(5):750–764PubMedCrossRefGoogle Scholar
  179. Meisner C, Acevedo E, Flores D et al (1992) Wheat production and grower practices in the Yaqui Valley, Sonora, Mexico. Vol. 6. CIMMYT, MexicoGoogle Scholar
  180. Mengistu DK, Kiros AY, Pè ME (2015) Phenotypic diversity in Ethiopian durum wheat (Triticum turgidum var. durum) landraces. Crop J 3(3):190–199CrossRefGoogle Scholar
  181. Mereu V, Cesaraccio C, Dubvrosky M et al (2011) Impacts of climate change on durum wheat production in Sardinia (Italy). In: Geophysical research abstracts. EGU General Assembly, Göttingen, p 9242Google Scholar
  182. Messina CD, Sinclair TR, Hammer GL et al (2015) Limited-transpiration trait may increase maize drought tolerance in the US corn belt. Agron J 107(6):1978–1986CrossRefGoogle Scholar
  183. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genet 157(4):1819–1829Google Scholar
  184. Miedaner T, Sieber A, Dasaint H et al (2017) The potential of genomic-assisted breeding to improve fusarium head blight resistance in winter durum wheat. Plant Breed 136(5):610–619CrossRefGoogle Scholar
  185. Milec Z, Tomková L, Sumíková T, Pánková K (2012) A new multiplex PCR test for the determination of Vrn -B1 alleles in bread wheat (Triticum aestivum L.). Mol Breed 30:317–323CrossRefGoogle Scholar
  186. Milus EA, Kristensen K, Hovmøller MS (2009) Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat. Phytopathology 99:89–94PubMedCrossRefGoogle Scholar
  187. Mohammadi R, Haghparast R, Sadeghzadeh B et al (2014) Adaptation patterns and yield stability of durum wheat landraces to highland cold rainfed areas of Iran. Crop Sci 54:944–954CrossRefGoogle Scholar
  188. Monneveux P, Jing R, Misra SC (2012) Phenotyping for drought adaptation in wheat using physiological traits. Front Physiol 3:429PubMedPubMedCentralCrossRefGoogle Scholar
  189. Montenegro JD, Golicz AA, Bayer PE et al (2017) The pangenome of hexaploid bread wheat. Plant J 90:1007–1013PubMedCrossRefGoogle Scholar
  190. Moses J, Jayas D, Alagusundaram K (2015) Climate change and its implications on stored food grains. Agric Res 4:21–30CrossRefGoogle Scholar
  191. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681CrossRefGoogle Scholar
  192. Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57(5):1025–1043PubMedCrossRefGoogle Scholar
  193. Murovec J, Bohanec B (2012) Haploids and doubled haploids in plant breeding. In: Plant breeding. InTech, Rijeka, pp 87–106Google Scholar
  194. Nichols V, Verhulst N, Cox R, Govaerts B (2015) Weed dynamics and conservation agriculture principles: a review. Field Crop Res 183:56–68CrossRefGoogle Scholar
  195. Nigro D, Fortunato S, Giove SL et al (2017) Allelic variants of glutamine synthetase and glutamate synthase genes in a collection of durum wheat and association with grain protein content. Diversity 9(4):52CrossRefGoogle Scholar
  196. Niu Z, Jiang A, Abu Hammad W et al (2014) Review of doubled haploid production in durum and common wheat through wheat × maize hybridization. Plant Breed 133(3):313–320CrossRefGoogle Scholar
  197. Nuttall JG, O’Leary GJ, Panozzo JF et al (2017) Models of grain quality in wheat – a review. Field Crop Res 202:136–145CrossRefGoogle Scholar
  198. O’Donoughue LS, Bennett MD (1994) Durum wheat haploid production using maize wide-crossing. Theor Appl Genet 89(5):559–566PubMedCrossRefPubMedCentralGoogle Scholar
  199. Olivares-Villegas JJ, Reynolds MP, McDonald GK (2007) Drought-adaptive attributes in the Seri/Babax hexaploid wheat population. Funct Plant Biol 34(3):189–203CrossRefGoogle Scholar
  200. Oliveira HR, Campana MG, Jones H et al (2012) Tetraploid wheat landraces in the Mediterranean Basin: taxonomy, evolution and genetic diversity. PLoS One 7(5):e37063PubMedPubMedCentralCrossRefGoogle Scholar
  201. Ortiz R, Trethowan R, Ferrara GO et al (2007) High yield potential, shuttle breeding, genetic diversity, and a new international wheat improvement strategy. Euphytica 157(3):365–384CrossRefGoogle Scholar
  202. Ortiz R, Sayre KD, Govaerts B et al (2008) Climate change: Can wheat beat the heat? Agric Ecosys Envir 126:46–58CrossRefGoogle Scholar
  203. Özkan H, Willcox G, Graner A et al (2011) Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides). Genet Resour Crop Evol 58:11–53CrossRefGoogle Scholar
  204. Paliwal R, Röder MS, Kumar U et al (2012) QTL mapping of terminal heat tolerance in hexaploid wheat (T. aestivum L.). Theor Appl Genet 125(3):561–575PubMedPubMedCentralCrossRefGoogle Scholar
  205. Panio G, Motzo R, Mastrangelo AM et al (2013) Molecular mapping of stomatal-conductance-related traits in durum wheat (Triticum turgidum ssp. durum). Ann Appl Biol 162:258–270CrossRefGoogle Scholar
  206. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: A review. Ecotoxicol Environ Saf 60(3):324–349PubMedCrossRefPubMedCentralGoogle Scholar
  207. Parry MAJ, Madgwick PJ, Bayon C et al (2009) Mutation discovery for crop improvement. J Exp Bot 60(10):2817–2825PubMedCrossRefPubMedCentralGoogle Scholar
  208. Pathirana R (2011) Plant mutation breeding in agriculture. Plant sciences reviews 6(032):107–126Google Scholar
  209. Pearce S, Vazquez-Gross H, Herin SY et al (2015) WheatExp: An RNA-seq expression database for polyploid wheat. BMC Plant Biol 15(1):299PubMedPubMedCentralCrossRefGoogle Scholar
  210. Peleg Z, Fahima T, Korol AB et al (2011) Genetic analysis of wheat domestication and evolution under domestication. J Exp Bot 62:5051–5061PubMedPubMedCentralCrossRefGoogle Scholar
  211. Periyannan S, Moore J, Ayliffe M et al (2013) The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341(6147):786–788PubMedCrossRefPubMedCentralGoogle Scholar
  212. Petrarulo M, Marone D, Ferragonio P et al (2015) Genetic analysis of root morphological traits in wheat. Mol Genet Genomics 290:785–806PubMedCrossRefPubMedCentralGoogle Scholar
  213. Pinto RS, Reynolds MP, Mathews KL et al (2010) Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor Appl Genet 121(6):1001–1021PubMedPubMedCentralCrossRefGoogle Scholar
  214. Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7(2):e32253PubMedPubMedCentralCrossRefGoogle Scholar
  215. Porter JR, Gawith M (1999) Temperatures and the growth and development of wheat: a review. Eur J Agron 10(1):23–36CrossRefGoogle Scholar
  216. Porter JR, Semenov MA (2005) Crop responses to climatic variation. Philos Trans R Soc B 360(1463):2021–2035CrossRefGoogle Scholar
  217. Pozniak CJ, Hucl PJ (2004) Genetic analysis of imidazolinone resistance in mutation-derived lines of common wheat. Crop Sci 44(1):23–30CrossRefGoogle Scholar
  218. Pratap A, Sethi GS, Chaudhary HK (2006) Relative efficiency of anther culture and chromosome elimination techniques for haploid induction in triticale × wheat and triticale × triticale hybrids. Euphytica 150(3):339–345CrossRefGoogle Scholar
  219. Ragupathy R, Naeem HA, Reimer E et al (2008) Evolutionary origin of the segmental duplication encompassing the wheat GLU-B1 locus encoding the overexpressed Bx7 (Bx7OE) high molecular weight glutenin subunit. Theor Appl Genet 116(2):283–296PubMedCrossRefPubMedCentralGoogle Scholar
  220. Ramesh K, Matloob A, Aslam F et al (2017) Weeds in a changing climate: vulnerabilities, consequences, and implications for future weed management. Front Plant Sci 8:95PubMedPubMedCentralCrossRefGoogle Scholar
  221. Ramirez-Gonzalez RH, Uauy C, Caccamo M (2015) PolyMarker: a fast polyploid primer design pipeline. Bioinfor 31:2038–2039CrossRefGoogle Scholar
  222. Ramirez-Villegas J, Watson J, Challinor AJ (2015) Identifying traits for genotypic adaptation using crop models. J Exp Bot 66:3451–3462PubMedCrossRefGoogle Scholar
  223. Randhawa HS, Asif M, Pozniak C et al (2013) Application of molecular markers to wheat breeding in Canada. Plant Breed 119:51–53Google Scholar
  224. Rapp M, Lein V, Lacoudre F et al (2018) Simultaneous improvement of grain yield and protein content in durum wheat by different phenotypic indices and genomic selection. Theor Appl Genet 131:1315–1329PubMedCrossRefPubMedCentralGoogle Scholar
  225. Rasheed A, Wen W, Gao F et al (2016) Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet 129(10):1843–1860PubMedCrossRefPubMedCentralGoogle Scholar
  226. Ray DK, Ramankutty N, Mueller ND et al (2012) Recent patterns of crop yield growth and stagnation. Nat Commun 3:1293PubMedCrossRefPubMedCentralGoogle Scholar
  227. Rebetzke GJ, Richards RA (1999) Genetic improvement of early vigour in wheat. Aust J Agric Res 50(3):291–302CrossRefGoogle Scholar
  228. Rebetzke GJ, Richards RA, Fischer VM, Mickelson BJ (1999) Breeding long coleoptile, reduced height wheats. Euphytica 106:159CrossRefGoogle Scholar
  229. Ren J, Sun D, Chen L et al (2013) Genetic diversity revealed by single nucleotide polymorphism markers in a worldwide germplasm collection of durum wheat. Int J Mol Sci 14:7061–7088PubMedPubMedCentralCrossRefGoogle Scholar
  230. Reynolds MP, Borlaug NE (2006) Impacts of breeding on international collaborative wheat improvement. J Agric Sci 144(1):3–17CrossRefGoogle Scholar
  231. Reynolds MP, van Ginkel M, Ribaut JM (2000) Avenues for genetic modification of radiation use efficiency in wheat. J Exp Bot 51:459–473PubMedCrossRefPubMedCentralGoogle Scholar
  232. Reynolds MP, Pellegrineschi A, Skovmand B (2005) Sink-limitation to yield and biomass: a summary of some investigations in spring wheat. Ann Appl Biol 146(1):39–49CrossRefGoogle Scholar
  233. Reynolds M, Foulkes J, Furbank R et al (2012) Achieving yield gains in wheat. Plant Cell Environ 35(10):1799–1823PubMedCrossRefPubMedCentralGoogle Scholar
  234. Rezaei EE, Siebert S, Hüging H, Ewert F (2018) Climate change effect on wheat phenology depends on cultivar change. Sci Rep 8:4891PubMedPubMedCentralCrossRefGoogle Scholar
  235. Rharrabti Y, García Del Moral LF, Villegas D, Royo C (2003) Durum wheat quality in Mediterranean environments III. Stability and comparative methods in analysing G × E interaction. Field Crop Res 80(2):141–146CrossRefGoogle Scholar
  236. Riaz A, Periyannan S, Aitken E, Hickey L (2016) A rapid phenotyping method for adult plant resistance to leaf rust in wheat. Plant Meth 12:17CrossRefGoogle Scholar
  237. Rosenzweig C, Iglesias A, Yang XB et al (2001) Climate change and extreme weather events; implications for food production, plant diseases, and pests. Glob Chang Hum Heal 2(2):90–104CrossRefGoogle Scholar
  238. Ross-Ibarra J, Morrell PL, Gaut BS (2007) Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc Nat Acad Sci 104(1):8641–8648PubMedCrossRefPubMedCentralGoogle Scholar
  239. Royo C, Nazco R, Villegas D (2014) The climate of the zone of origin of Mediterranean durum wheat (Triticum durum Desf.) landraces affects their agronomic performance. Genet Resour Crop Evol 61:1345CrossRefGoogle Scholar
  240. Sahri A, Chentoufi L, Arbaoui M et al (2014) Towards a comprehensive characterization of durum wheat landraces in Moroccan traditional agrosystems: analysing genetic diversity in the light of geography, farmers’ taxonomy and tetraploid wheat domestication history. BMC Evol Biol 14:264PubMedPubMedCentralCrossRefGoogle Scholar
  241. Saintenac C, Zhang W, Salcedo A et al (2013) Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 341(6147):783–786PubMedPubMedCentralCrossRefGoogle Scholar
  242. Salamini F, Özkan H, Brandolini A et al (2002) Genetics and geography of wild cereal domestication in the near east. Nat Rev Genet 3:429–441PubMedCrossRefGoogle Scholar
  243. Sánchez-León S, Gil-Humanes J, Ozuna CV et al (2018) Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotech J 16(4):902–910CrossRefGoogle Scholar
  244. Sanna G, Giunta F, Motzo R et al (2014) Genetic variation for the duration of pre-anthesis development in durum wheat and its interaction with vernalization treatment and photoperiod. J Exp Bot 65:3177–3188PubMedPubMedCentralCrossRefGoogle Scholar
  245. Scarascia Mugnozza GT (2005) The contribution of Italian wheat geneticists: from Nazareno Strampelli to Francesco D’Amato. In: Proceedings of the international congress “In the wake of double helix from green revolution to gene revolution”, pp 53–75Google Scholar
  246. Scherm B, Balmas V, Spanu F et al (2013) Fusarium culmorum: causal agent of foot and root rot and head blight on wheat. Mol Plant Pathol 4(4):323–341CrossRefGoogle Scholar
  247. Semenov MA, Stratonovitch P, Alghabari F, Gooding MJ (2014) Adapting wheat in Europe for climate change. J Cereal Sci 59:245–256PubMedPubMedCentralCrossRefGoogle Scholar
  248. Sestili F, Botticella E, Bedo Z et al (2010) Production of novel allelic variation for genes involved in starch biosynthesis through mutagenesis. Mol Breed 25(1):145–154CrossRefGoogle Scholar
  249. Shan Q, Wang Y, Li J et al (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc 9(10):2395PubMedCrossRefPubMedCentralGoogle Scholar
  250. Shavrukov Y, Kurishbayev A, Jatayev S et al (2017) Early flowering as a drought escape mechanism in plants: how can it aid wheat production? Front Plant Sci 8:1950PubMedPubMedCentralCrossRefGoogle Scholar
  251. Shi G, Zhang Z, Friesen TL et al (2016) The hijacking of a receptor kinase-driven pathway by a wheat fungal pathogen leads to disease. Sci Adv 2(10):e1600822PubMedPubMedCentralCrossRefGoogle Scholar
  252. Simmonds J, Scott P, Brinton J et al (2016) A splice acceptor site mutation in TaGW2-A1 increases thousand grain weight in tetraploid and hexaploid wheat through wider and longer grains. Theor Appl Gen 129(6):1099–1112CrossRefGoogle Scholar
  253. Simonetti MC, Bellomo MP, Laghetti G et al (1999) Quantitative trait loci influencing free–threshing habit in tetraploid wheats. Genet Resour Crop Evol 46:267–271CrossRefGoogle Scholar
  254. Simons KJ, Fellers JP, Trick HN et al (2006) Molecular characterization of the major wheat domestication gene Q. Genet 172:547–555CrossRefGoogle Scholar
  255. Singh S, Sethi G, Chaudhary H (2004) Different responsiveness of winter and spring wheat genotypes to maize-mediated production of haploids. Cereal Res Comm 32:201–207Google Scholar
  256. Singh DP, Sharma AK, Kumar P et al (2008) Management of leaf blight complex of wheat (Triticum aestivum) caused by Bipolaris sorokiniana and Alternaria triticina in different agroclimatic zones using an integrated approach. Indian J Agric Sci 78:513–517Google Scholar
  257. Singh RP, Hodson DP, Huerta-Espino J et al (2011) The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol 49:465–481PubMedPubMedCentralCrossRefGoogle Scholar
  258. Singh H, Subash N, Gangwar B et al (2015a) Assessing economic impacts of climate change and adaptation in Indo-Gangetic basin. Procedia Environ Sci 29:229–230CrossRefGoogle Scholar
  259. Singh RP, Hodson DP, Jin Y et al (2015b) Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control. Phytopathology 105(7):872–884PubMedCrossRefPubMedCentralGoogle Scholar
  260. Sissons MJ (2008) Role of durum wheat composition on the quality of pasta and bread. FoodReview 2(2):75–90Google Scholar
  261. Slade AJ, McGuire C, Loeffler D et al (2012) Development of high amylose wheat through TILLING. BMC Plant Biol 12(69):1–17Google Scholar
  262. Smiley RW, Gourlie JA, Easley SA et al (2005) Crop damage estimates for crown rot of wheat and barley in the Pacific northwest. Plant Dis 89(6):595–604PubMedCrossRefPubMedCentralGoogle Scholar
  263. Song J, Carver BF, Powers C et al (2017) Practical application of genomic selection in a doubled–haploid winter wheat breeding program. Mol Breed 37:117PubMedPubMedCentralCrossRefGoogle Scholar
  264. Soriano JM, Villegas D, Aranzana MJ et al (2016) Genetic structure of modern durum wheat cultivars and Mediterranean landraces matches with their agronomic performance. PLoS One 1(8):e0160983CrossRefGoogle Scholar
  265. Soriano JM, Villegas D, Sorrells ME, Royo C (2018) Durum wheat landraces from east and west regions of the Mediterranean Basin are genetically distinct for yield components and phenology. Front Plant Sci 9:80PubMedPubMedCentralCrossRefGoogle Scholar
  266. Spindel JE, Begum H, Akdemir D et al (2016) Genome-wide prediction models that incorporate de novo GWAS are a powerful new tool for tropical rice improvement. Hered 116:395–408CrossRefGoogle Scholar
  267. Steuernagel B, Periyannan SK, Hernández-Pinzón I et al (2016) Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat Biotech 34:652–655CrossRefGoogle Scholar
  268. Sun J, Rutkoski JE, Poland JA et al (2017) Multitrait, random regression, or simple repeatability model in high-throughput phenotyping data improve genomic prediction for wheat grain yield. Plant Genome 10(2).  https://doi.org/10.3835/plantgenome2016.11.0111CrossRefGoogle Scholar
  269. Swamy BPM, Sarla N (2011) Meta-analysis of yield QTLs derived from inter-specific crosses of rice reveal consensus regions and candidate genes. Plant Mol Biol Report 29:663CrossRefGoogle Scholar
  270. Sysoeva M, Markovskaya E, Shibaeva T (2010) Plants under continuous light: a review. Plant Stress 4:1–13Google Scholar
  271. Szechy M, Dubas E, Got G (2009) Progress in doubled haploid technology. Adv Haploid Prod High Plants 1:33Google Scholar
  272. Tadesse W, Inagaki M, Tawkaz S et al (2012) Recent advances and application of doubled haploids in wheat breeding. Afr J Biotech 11(89):15484–15492CrossRefGoogle Scholar
  273. Tanno K, Willcox G (2006) How fast was wild wheat domesticated? Science 311:1886PubMedCrossRefGoogle Scholar
  274. Tao F, Rötter RP, Palosuo T et al (2016) Designing future barley ideotypes using a crop model ensemble. Eur J Agron 82:144–162CrossRefGoogle Scholar
  275. Taranto F, Nicolia A, Pavan S, De Vita P, D’Agostino N (2018) Biotechnological and Digital Revolution for Climate-Smart Plant Breeding. Agronomy 8(12):277CrossRefGoogle Scholar
  276. Tattaris M, Reynolds MP, Chapman SC (2016) A direct comparison of remote sensing approaches for high-throughput phenotyping in plant breeding. Front Plant Sci 7:1131PubMedPubMedCentralCrossRefGoogle Scholar
  277. Taub DR, Wang X (2008) Why are nitrogen concentrations in plant tissues lower under elevated CO2? A critical examination of the hypotheses. J Integr Plant Biol 50(11):1365–1374PubMedCrossRefGoogle Scholar
  278. Thuillet AC, Bataillon T, Poirier S et al (2005) Estimation of long-term effective population sizes through the history of durum wheat using microsatellite data. Genet 169:1589–1599CrossRefGoogle Scholar
  279. Trnka M, Rötter RP, Ruiz-Ramos M et al (2014) Adverse weather conditions for European wheat production will become more frequent with climate change. Nat Clim Chang 4:637–643CrossRefGoogle Scholar
  280. Uauy C, Distelfeld A, Fahima T et al (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314(5803):1298–1301PubMedPubMedCentralCrossRefGoogle Scholar
  281. van Eeuwijk F, Bustos-Korts D, Millet EJ et al (2018) Modelling strategies for assessing and increasing the effectiveness of new phenotyping techniques in plant breeding. Plant Sci. in press. Available online.  https://doi.org/10.1016/j.plantsci.2018.06.018PubMedCrossRefPubMedCentralGoogle Scholar
  282. van Slageren M (1994) Wild wheats: a monograph of Aegilops L. and Amblypyrum (Jaub. & Spach) Eig (Poaceae). Agricultural University, WageningenGoogle Scholar
  283. Varanasi A, Prasad PVV, Jugulam M (2016) Impact of climate change factors on weeds and herbicide efficacy. Adv Agron 135:107–146CrossRefGoogle Scholar
  284. Verrillo F, Badeck FW, Terzi V et al (2017) Elevated field atmospheric CO2 concentrations affect the characteristics of winter wheat (cv. Bologna) grains. Crop Past Sci 68:713–725CrossRefGoogle Scholar
  285. Waalwijk C, Kastelein P, De Vries I et al (2003) Major changes in Fusarium spp. in wheat in the Netherlands. Eur J Plant Pathol 109:743–754CrossRefGoogle Scholar
  286. Wang H, Inukai Y, Yamauchi A (2006) Root development and nutrient uptake. Crit Rev Plant Sci 25:279–301CrossRefGoogle Scholar
  287. Wang S, Wong D, Forrest K et al (2014) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotech J 12:787–796CrossRefGoogle Scholar
  288. Watson A, Ghosh S, Williams MJ et al (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4:23–29PubMedCrossRefGoogle Scholar
  289. Watt M, Kirkegaard JA, Rebetzke GJ (2005) A wheat genotype developed for rapid leaf growth copes well with the physical and biological constraints of unploughed soil. Func Plant Biol 178:135–146Google Scholar
  290. Wieser H, Manderscheid R, Erbs M, Weigel HJ (2008) Effects of elevated atmospheric CO2 concentrations on the quantitative protein composition of wheat grain. J Agric Food Chem 56(15):6531–6535PubMedCrossRefGoogle Scholar
  291. Wilhelm EP, Turner AS, Laurie DA (2009) Photoperiod insensitive Ppd-A1a mutations in tetraploid wheat (Triticum durum Desf.). Theor Appl Genet 118(2):285–294PubMedCrossRefGoogle Scholar
  292. Wilhelm EP, Boulton MI, Al-Kaff N, Balfourier F, Bordes J, Greenland AJ, Powell W, Mackay IJ (2013) Rht-1 and Ppd-D1 associations with height, GA sensitivity, and days to heading in a worldwide bread wheat collection. Theor Appl Genet 126(9):2233–2243PubMedCrossRefPubMedCentralGoogle Scholar
  293. Woiwod IP (1997) Detecting the effects of climate change on Lepidoptera. J Insect Conserv 1(3):149–158CrossRefGoogle Scholar
  294. Xie Q, Mayes S, Sparkes DL (2016) Optimizing tiller production and survival for grain yield improvement in a bread wheat × spelt mapping population. Ann Bot 17(1):51–66CrossRefGoogle Scholar
  295. Xu Y, Li P, Zou C et al (2017) Enhancing genetic gain in the era of molecular breeding. J Exp Bot 68(11):2641–2666PubMedCrossRefGoogle Scholar
  296. Yan L, Loukoianov A, Tranquilli G et al (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Nat Acad Sci 100(10):6263–6268PubMedCrossRefPubMedCentralGoogle Scholar
  297. Yan L, Loukoianov A, Blechl A et al (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303(5664):1640–1644PubMedPubMedCentralCrossRefGoogle Scholar
  298. Yan L, Fu D, Li C et al (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Nat Acad Sci 103(51):19581–19586PubMedCrossRefPubMedCentralGoogle Scholar
  299. Yan G, Liu H, Wang H et al (2017) Accelerated generation of selfed pure line plants for gene identification and crop breeding. Front Plant Sci 8:1786PubMedPubMedCentralCrossRefGoogle Scholar
  300. Yang J, Sears RG, Gill BS, Paulsen GM (2002) Quantitative and molecular characterization of heat tolerance in hexaploid wheat. Euphytica 126:275–282CrossRefGoogle Scholar
  301. Zangaro W, De Assis RL, Rostirola LV et al (2008) Changes in arbuscular mycorrhizal associations and fine root traits in sites under different plant successional phases in southern Brazil. Mycorrhiza 19(1):37–45PubMedCrossRefPubMedCentralGoogle Scholar
  302. Zanke C, Ling J, Plieske J et al (2014) Genetic architecture of main effect QTL for heading date in European winter wheat. Front Plant Sci 5:217PubMedPubMedCentralCrossRefGoogle Scholar
  303. Zhang LY, Liu DC, Guo XL et al (2010) Genomic distribution of quantitative trait loci for yield and yield-related traits in common wheat. J Integr Plant Biol 52(11):996–1007PubMedCrossRefPubMedCentralGoogle Scholar
  304. Zhang Y, Liang Z, Zong Y et al (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617PubMedPubMedCentralCrossRefGoogle Scholar
  305. Zheng Z, Wang HB, Chen GD et al (2013) A procedure allowing up to eight generations of wheat and nine generations of barley per annum. Euphytica 191:311–316CrossRefGoogle Scholar
  306. Zhou B, Elazab A, Bort J et al (2015) Low-cost assessment of wheat resistance to yellow rust through conventional RGB images. Comput Electron Agric 116:20–29CrossRefGoogle Scholar
  307. Ziska LH, George K (2004) Rising carbon dioxide and invasive, noxious plants: potential threats and consequences. World Resour Rev 16(4):427–447Google Scholar
  308. Zurek G, Pronczuk S, Zou GH et al (2015) CircNet: a database of circular RNAs derived from transcriptome sequencing data. Theor Appl Genet 16:299–310Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CREA Research Centre for Cereal and Industrial CropsFoggiaItaly

Personalised recommendations