Advertisement

Barley (Hordeum vulgare L.) Breeding

  • Essam Fathy El-HashashEmail author
  • Karima Mohamed El-Absy
Chapter

Abstract

Barley (Hordeum vulgare L.) is one of the Neolithic founder crops of Old World agriculture. It is a flowering plant belonging to the family Poaceae or Gramineae (herbs) that is cultivated in temperate climates across the world at 350–4050 m above sea level, and evolved from H. spontaneum (K. Koch) Thell. The economically most important species of the genus is barley, H. vulgare. Species of barley consist of diploid (2n = 2x = 14), tetraploid (2n = 4x = 24), and hexaploid (2n = 6x = 42) cytotypes. Barley constitutes the fourth most important grain crop in the world after wheat, rice and maize. Barley grain is used as livestock feed and forage, malt beverages, human food, soil improvement and has medicinal value, but is barely considered as a highly-needed crop of the present era. Common barley hails originally from western Asia and North Africa. It is one of the earliest documented agricultural grains, dating back to the Neolithic period (8500 years ago) in the Nile Delta portion of the Fertile Crescent. Barley is a rich source of proteins, B vitamins, niacin, minerals and fiber dietary; also, it is a good source of manganese and phosphorus. Raw barley consists of carbohydrates (78%), proteins (10%), water (10%) and fat (1%). This chapter discusses the taxonomy, economic importance, origin and history, germplasm resources, traditional breeding methods and biotechnology methods, and their application for crop improvement in association with conventional breeding methods of barley.

Keywords

Biotechnology methods Hybridization Importance Mutation Taxonomy Traditional breeding 

References

  1. Acquaah G (2007) Principles of plant genetics and breeding, 1st edn. Blackwell, MaldenGoogle Scholar
  2. Acquaah G (2012) Principles of plant genetics and breeding, 2nd edn. Wiley-Blackwell, OxfordCrossRefGoogle Scholar
  3. Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135:187–204CrossRefGoogle Scholar
  4. Akar T, Avci M, Dusunceli F (2004) Barley: post-harvest operations. http://www.fao.org/fileadmin/user_upload/inpho/docs/Post_Harvest_Compendium_-_BARLEY.pdf
  5. Altinkut A, Kazan K, Gozukirmizi N (2003) AFLP marker linked to water-stress-tolerant bulks in barley (Hordeum vulgare L.). Genet Mol Biol 26(1):77–82CrossRefGoogle Scholar
  6. Anderson MK, Reinbergs E (1985) Barley breeding. In: Rasmusson D (ed) Barley, ASA Monograph No 26, pp 231–268Google Scholar
  7. Ayliffe MA, Pallotta M, Langridge P, Pryor AJ (2007) A barley activation tagging system. Plant Mol Biol 64(3):329–347PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bai B, Shi B, Hou N et al (2017) MicroRNAs participate in gene expression regulation and phytohormone cross-talk in barley embryo during seed development and germination. BMC Plant Biol 17:150PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bevan MW, Flavell RB, Chilton MD (1983) A chimeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304:184–187CrossRefGoogle Scholar
  10. Blattner FR (2009) Progress in phylogenetic analysis and a new infragenetic classification of barley genus Hordeum (Poaceae:Triticeae). Breed Sci 59:471–480CrossRefGoogle Scholar
  11. Blattner FR, Pleines T, Jakob SS (2010) Rapid radiation in the barley genus Hordeum (Poaceae) during the Pleistocene in the Americas. In: Glaubrecht M (ed) Evolution in action. Springer, Berlin, pp 17–33CrossRefGoogle Scholar
  12. Blokhin VI (2006) Peculiarities of cultural practices of barley in Tatarstan. J Zemledeliye 3:15–17Google Scholar
  13. Bockelman HE, Valkoun J, Ullrich S (2010) Barley germplasm conservation and resources. Wiley-Blackwell OxfordGoogle Scholar
  14. Boscari A, Clement M, Volkov V et al (2009) Potassium channels in barley: cloning, functional characterization and expression analyses in relation to leaf growth and development. Plant Cell Environ 32:1761–1777PubMedCrossRefGoogle Scholar
  15. Bowman JGP, Blake TK, Surber LMM et al (2011) Feed-quality variation in the barley core collection of the USDA national small grains collection. Crop Sci 41:863–870CrossRefGoogle Scholar
  16. Brennan CS, Cleary LJ (2005) The potential use of Cerea l (1→3, 1→4)-β,6-Dglucans as functional food ingredients. J Cereal Sci 42:1–13CrossRefGoogle Scholar
  17. Briggs DE (1978) Barley. Chapman and Hall, London. Community Plant Variety Office (CPVO), Angers. 2008. Available at http://www.cpvo.europa.eu/
  18. Chand N, Vishwakarma SR, Verma OP, Kumar M (2008) Worth of genetic parameters to sort out new elite barley lines over heterogeneous environments. Barley Gene Newsl 38:10–13Google Scholar
  19. Chawla HS, Wenzel G (1987) In vitro selection of barley and wheat for resistance against Helminthosporium sativum. Theor Appl Genet 74:841–845PubMedCrossRefPubMedCentralGoogle Scholar
  20. Chen F, Hayes PM (1989) A comparison of Hordeum bulbosum mediated haploid production efficiency in barley, using in vitro floret and tiller culture. Theor Appl Genet 77:701–704PubMedCrossRefPubMedCentralGoogle Scholar
  21. Cheng J, Fan H, Li L et al (2018) Genome-wide identification and expression analyses of rpp13-like genes in barley. Bio Chip J 12(2):102–113Google Scholar
  22. Cho MJ, Jiang W, Lemaux PG, Buchanan BB (1999) Over expression of thioredoxin leads to enhanced activity of starch branching enzyme (pullulanase) in barley grain. Proc Natl Acad Sci U S A (25):14641–14646Google Scholar
  23. Choi DW, Rodriguez EM, Close TJ (2002) Barley Cbf3 gene identification, expression pattern, and map location. Plant Physiol 129:1–7CrossRefGoogle Scholar
  24. Cossani CM, Slafer GA, Savin R (2011) Do barley and wheat (bread and durum) differ in grain weight stability through seasons and water-nitrogen treatments in a Mediterranean location? Field Crops Res 121:240–247CrossRefGoogle Scholar
  25. Dawson IK, Russell J, Powell W et al (2015) Barley: a translational model for adaptation to climate change. New Phytol 206:913–993PubMedCrossRefPubMedCentralGoogle Scholar
  26. Decoteau DR (2005) Principles of plant science, environmental factors and technology in growing plants. Pearson, Upper Saddle RiverGoogle Scholar
  27. Dewey RD (1984) The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson JP (ed) Gene manipulation in plant improvement. Plenum, New York, pp 209–279CrossRefGoogle Scholar
  28. Doležel J, Greilhuber J, Lucretti S et al (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot 82:17–26CrossRefGoogle Scholar
  29. Dudits D, Kao KN, Constabel F, Gamborg OL (1976) Fusion of carrot and barley protoplasts and division of heterokaryocytes. Can J Genet Cytol 19:263–269CrossRefGoogle Scholar
  30. Duke JA (1983) Handbook of energy crops. Hordeum vulgare L. Purdue University, Center for New Crops & Plants Products. Lafayette, Ind. unpublishedGoogle Scholar
  31. Dzyubenko NI (2018) Vavilov’s collection of worldwide crop genetic resources in the 21st century. Biopreserv Biobank 16(5):377–383PubMedPubMedCentralCrossRefGoogle Scholar
  32. EFSA Journal (2011) Scientific opinion on the substantiation of a health claim related to barley beta-glucans and lowering of blood cholesterol and reduced risk of (coronary) heart disease pursuant to Article 14 of Regulation (EC), No 1924/2006. http://www.efsa.europa.eu/en/efsajournal/doc/2471.pdf, 9(12):2471
  33. Eglinton J, Coventry S, Chalmers K (2006) Breeding outcomes from molecular genetics. In: Mercer CF (ed) Proceedings of the 13th Australasian plant breeding conference, Christchurch, New Zealand, 18–21 April 2006, pp 743–749Google Scholar
  34. FAO (1996) FAO state of the world’s plant genetic resources for food and agriculture. RomeGoogle Scholar
  35. FAO (2010) The second report on the state of the world’s plant genetic resources for food and agriculture. Commission on genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations, Rome. http://www.fao.org/docrep/013/i1500e/i1500e00.htm. Cited 28 Feb 2013
  36. FAO (2016) The state of food and agriculture: climate change, agriculture and food security. Available from: https://www.fao.org/3/a-i6030e.pdfGoogle Scholar
  37. FAO (2018) Commission on genetic resources for food and agriculture. RomeGoogle Scholar
  38. FAO/IAEA (2019) Mutant variety database. http://www-naweb.iaea.org/nafa/pbg/index.html
  39. FAOSTAT (2018) Food and agriculture organization of the United Nations. http://faostat.fao.org. FAO Statistics Division. Crops Primary data last updated December 20, 2018
  40. Fehr WR (1984) Genetic contributions to yield gains of five major crop plants. Spec. Publ. 7. ASA and CSSA, MadisonGoogle Scholar
  41. Fehr WR (1987) Principles of cultivar development: theory and technique, vol 1. McGraw-Hill, New YorkGoogle Scholar
  42. Fischbeck G (2003) Diversification through breeding. In: von Bothmer R, van HT, Knüpffer H, Sato K (eds) Diversity in barley (Hordeum vulgare). Elsevier Science B.V., Amsterdam, pp 29–52Google Scholar
  43. Forster BP, Phillips MS, Miller TE et al (1990) Chromosome location of genes-controlling tolerance to salt (NaCl) and vigor in Hordeum vulgare and Hordeum chilense. Hereditas 65:99–107CrossRefGoogle Scholar
  44. Gepts P, Hancock J (2006) The future of plant breeding. Crop Sci 46:1630–1634CrossRefGoogle Scholar
  45. Global Crop Diversity Trust (2008) Priority crops – barley. http://www.croptrust.org/main/priority.php?itemid=148. Cited 28 Feb 2013
  46. Golegaonkar PG, Karaoglu H, Park RF (2009) Molecular mapping of leaf rust resistance gene Rph 14 in Hordeum vulgare. Theor Appl Genet 119:1281–1288PubMedCrossRefPubMedCentralGoogle Scholar
  47. Gottwald S, Bauer P, Komatsuda T et al (2009) TILLING in the two-rowed barley cultivar ‘Barke’ reveals preferred sites of functional diversity in the gene HvHox1. BMC Res Notes 2:1–14CrossRefGoogle Scholar
  48. Graham L (2013) Lonely ideas: can Russia compete? MIT Press, Cambridge, MACrossRefGoogle Scholar
  49. Graner A, Jahoor A, Schondelmaier J et al (1991) Construction of an RFLP map of barley. Theor Appl Genet 83(2):250–256PubMedCrossRefGoogle Scholar
  50. Grassini P, Eskridge KM, Cassman KG (2013) Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat Commun 4:2918PubMedPubMedCentralCrossRefGoogle Scholar
  51. Griffiths AJF, Wessler SR, Lewontin RC et al (2005) Introduction to genetic analysis, 8th edn. W.H. Freeman & Company, New YorkGoogle Scholar
  52. Harlan HV (1918) The identification of varieties of barley. U.S. Department of Agriculture Bullettin, p 622Google Scholar
  53. Harlan JR (1957) One man’s life with barley. Exposition Press, New YorkGoogle Scholar
  54. Harten AM van (1998) Mutation breeding: theory and practical applications. Cambridge University Press, London, pp 163–251Google Scholar
  55. Hayes HK, Immer FR (1942) Methods of plant breeding. McGraw-Hill, New YorkCrossRefGoogle Scholar
  56. Hearnden PR, Eckermann PJ, Mcmichael G et al (2007) A genetic map of 1,000 SSR and DArT markers in a wide barley cross. Theor Appl Genet 115(3):383–391PubMedCrossRefGoogle Scholar
  57. Heneen WK (2011) Cytogenetic and molecular cytogenetic of barley: a model cereal crop with a large genome. In: Ullrich SE (ed) Barley: production, improvement, and uses. Blackwell, London, pp 112–121Google Scholar
  58. Hensel G, Valkov V, Williams JM, Kumlehn J (2008) Efficient generation of transgenic barley: the way forward to modulate plant-microbe interactions. J Plant Physiol 165(1):71–82PubMedCrossRefGoogle Scholar
  59. Hockett EA (1981) Registration of hulless and hulless short-awned spring barley germplasm. Crop Sci 21:146–147Google Scholar
  60. Horsley RD, Franckowiak JD, Schwarz PB (2009) Barley. In: Carena MJ (ed) Cereals. Springer, pp 227–250Google Scholar
  61. Horvath H, Huang J, Wong OT et al (2000) The production of recombinant proteins in transgenic barley grains. Proc Natl Acad Sci U S A 97:1914–1919PubMedPubMedCentralCrossRefGoogle Scholar
  62. Horvath H, Rostoks N, Brueggeman R et al (2003) Genetically engineered stem rust resistance in barley using the Rpg1 gene. Proc Nat Acad Sci 100:364–369PubMedCrossRefGoogle Scholar
  63. International Grains Council (2018) Five-year baseline projections of supply and demand for wheat, maize (corn), rice and soyabeans to 2022/23. https://www.igc.int/en/markets/5yeardownload.aspx mode=download.pdf
  64. ISBC (2012) International Barley Genome Sequencing Consortium. A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716CrossRefGoogle Scholar
  65. Islamovic E, Obert DE, Oliver RE et al (2013) A new genetic linkage map of barley (Hordeum vulgare L.) facilitates genetic dissection of height and spike length and angle. Field Crops Res 154:91–99CrossRefGoogle Scholar
  66. Ivanizs L, Farkas A, Linc G et al (2018) Molecular cytogenetic and morphological characterization of two wheat-barley translocation lines. PLoS One 13(6):e0198758PubMedPubMedCentralCrossRefGoogle Scholar
  67. Jacobsen N, von Bothmer R (1992) Supraspecific groups in the genus Hordeum. Hereditas 116:21–24CrossRefGoogle Scholar
  68. Jiang G-L (2013) Molecular markers and marker-assisted breeding in plants. InTech.  https://doi.org/10.5772/52583Google Scholar
  69. Jiang G-L (2015) Molecular marker-assisted breeding: a plant breeder’s review. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies: breeding, biotechnology and molecular tools. Springer, Cham, pp 431–472CrossRefGoogle Scholar
  70. Jost M, Szurman-Zubrzycka M, Gajek K et al (2019) TILLING in barley. In: Harwood WA (ed) Barley: methods and protocols, methods in molecular biology. Springer, Dordrecht, pp 73–94Google Scholar
  71. Joung YH, Choi PS, Kwon SY, Harn CH (2015) Plant transformation methods and applications. Chapter 9. In: Koh H-J, Kwon S-Y, Thomson M (eds) Current technologies in plant molecular breeding. Springer, Dordrecht, pp 297–343CrossRefGoogle Scholar
  72. Kang MS, Subudhi PK, Baisakh N, Priyadarshan PM (2007) Crop breeding methodologies: classic and modern. In: Kang MS, Priyadarshan PM (eds) Breeding major food staples. Blackwell, Hoboken, pp 5–40CrossRefGoogle Scholar
  73. Kao KN, Michayluk MR (1974) A method for high-frequency intergeneric fusion of plant protoplasts. Planta 115:355–367PubMedCrossRefGoogle Scholar
  74. Kasha KJ, Kao KN (1970) High frequency of haploid production in barley (Hordeum vulgare L.). Nature 225:874–876PubMedCrossRefGoogle Scholar
  75. Kasha KJ, Sadasiva RS (1971) Genome relationship between Hordeum vulgare L. and H. bulbosum L. Chromosoma 35:264–287CrossRefGoogle Scholar
  76. Kihara M, Okada Y, Kuroda H et al (2000) Improvement of β-amylase thermostability in transgenic barley seeds and transgene stability in progeny. Mol Breed 6:511–517CrossRefGoogle Scholar
  77. Kim D-W, Agrawal GK, Rakwal R et al (2014) Genomic methods for improving abiotic stress tolerance in crops. In: Ricroch A, Chopra S, Fleischer S (eds) Plant biotechnology: experience and future prospects. Springer, Cham, pp 35–42Google Scholar
  78. Kisaka H, Kisaka M, Kanno A, Kameya T (1997) Production and analysis of plants that are somatic hybrids of barley (Hordeum vulgare L.) and carrot (Daucus carota L.). Theor Appl Genet 94:221–226CrossRefGoogle Scholar
  79. Kisaka H, Kisaka M, Kanno A, Kameya T (1998) Intergeneric somatic hybridization of rice (Oryza sativa L.) and barley (Hordeum vulgare L.) by protoplast fusion. Plant Cell Rep 17:362–367PubMedCrossRefGoogle Scholar
  80. Kleinhofs A, Chao S, Sharp PJ (1988) Mapping of nitrate reductase genes in barley and wheat. In: Miller TE, Koebner RMD (eds) Proc 7th International Wheat Genetics Symposium, vol 1. Institute of Plant Science Research, Cambridge, pp 541–546Google Scholar
  81. Kling J (2004) An introduction to barley – notes from css 330 world foods class. Accessed 18 Apr 2006. http://oregonstate.edu/instruct/css/330/five/BarleyOverview.htm
  82. Knežević D, Pržulj N, Zečević V et al (2004) Breeding strategies for barley quality improvement and wide adaptation. Kragujevac J Sci 26:75–84Google Scholar
  83. Kumlehn J, Stein N (2014) Biotechnological approaches to barley improvement. Springer, BerlinCrossRefGoogle Scholar
  84. Kumlehn J, Serazetdinova L, Hensel G et al (2006) Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotech J 4(2):251–261CrossRefGoogle Scholar
  85. Kumlehn J, Gurushidze M, Hensel G (2014) Genetic engineering. In: Kumlehn J, Stein N (eds) Biotechnological approaches to barley improvement. Springer, Berlin, pp 393–407CrossRefGoogle Scholar
  86. Kurowska M, Labocha-Pawłowska A, Gnizda D et al (2012) Molecular analysis of point mutations in a barley genome exposed to MNU and gamma rays. Mutat Res 738–739:52–70PubMedCrossRefGoogle Scholar
  87. Larkin PJ, Scowcroft WR (1983) Somaclonal variation and crop improvement. In: Kosuge T, Meredith C, Hollaender A (eds) Genetic engineering of plants. Plenum Press, New York, pp 289–314CrossRefGoogle Scholar
  88. Lee G, Kim D, Kwon S et al (2015) Identification of mutagenized plant populations. In: Koh H-J, Kwon S-Y, Thomson M (eds) Current technologies in plant molecular breeding, pp 205–239CrossRefGoogle Scholar
  89. Li X, Cheng X, Liu J et al (2011) Heterologous expression of the Arabidopsis DREB1A/CBF3 gene enhances drought and freezing tolerance in transgenic Lolium perenne plants. Plant Biotech Rep 5:61–69CrossRefGoogle Scholar
  90. Lobell DB, Burke MB, Tebaldi C et al (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610PubMedCrossRefPubMedCentralGoogle Scholar
  91. Longin CFH, Muehleisen J, Maurer HP et al (2012) Hybrid breeding in autogamous cereals. Theor Appl Genet 125:1087–1096PubMedCrossRefPubMedCentralGoogle Scholar
  92. Lopachev NA, Titova EM, Yatsina NV, Naumkin AV (2001) New cultural practices of barley. J Zemledeliye 4:10–11Google Scholar
  93. Löve A (1984) Conspectus of the Triticeae. Feddes Repert 95:425–521Google Scholar
  94. Maluszynski М, Ahloowalia BS, Sigurbjôrnsson B (1995) Application of in vivo and in vitro mutation techniques for crop improvement. Euphytica 85:303–315CrossRefGoogle Scholar
  95. Martin A, Alvarez JB, Martin LM et al (1999) The development of Tritordeum: a novel cereal for food processing. J Cereal Sci 30:85–95CrossRefGoogle Scholar
  96. Mascher M, Gundlach H, Himmelbach A et al (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433PubMedCrossRefGoogle Scholar
  97. Mba C (2013) Induced mutations unleash the potentials of plant genetic resources for food and agriculture. Agronomie 3:200–231CrossRefGoogle Scholar
  98. McCouch S, Baute GJ, Bradeen J (2013) Agriculture: feeding the future. Nature 499:23–24PubMedCrossRefPubMedCentralGoogle Scholar
  99. Mehra KL, Arora RK (1982) Plant genetic resources of India, their diversity and conservation. NBPGR scientific monograph 4:60. National Bureau of Plant Genetic Resources, New DelhiGoogle Scholar
  100. Mendiondo GM, Gibbs DJ, Szurman-Zubrzycka M et al (2016) Enhanced waterlogging tolerance in barley by manipulation of expression of the N-end rule pathway E3 ligase PROTEOLYSIS6. Plant Biotech J 14:40–50CrossRefGoogle Scholar
  101. Mengesha MH (1984) International germplasm collection, conservation, and exchange at ICRISTA. In: Conservation of crop germplasm-international perspective. Crop Science Society of America, Madison, pp 47–54Google Scholar
  102. Mittler R, Shulaev V (2013) Functional genomics, challenges and perspectives for the future. Physiol Plant 148:317–321PubMedCrossRefPubMedCentralGoogle Scholar
  103. Mlčochová L, Chloupek O, Uptmoor R et al (2004) Molecular analysis of the barley cv. ‘Valticky’ and its X-ray-derived semidwarf-mutant ‘Diamant. Plant Breed 123(5):421–442CrossRefGoogle Scholar
  104. Morran S, Eini O, Pyvovarenko T et al (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotech J 9:230–249CrossRefGoogle Scholar
  105. Mrízová K, Holasková E, TufanÖz M et al (2014) Transgenic barley: a prospective tool for biotechnology and agriculture. Biotech Adv 32:137–157CrossRefGoogle Scholar
  106. Mylonas IG, Georgiadis A, Apostolidis AP et al (2014) Barley cultivar discrimination and hybrid purity control using RAPD markers. Romanian Biotech Lett 19(3):9421–9428Google Scholar
  107. Nagel M, Vogel H, Landjeva S et al (2009) Seed conservation in ex situ genebanks-genetic studies on longevity in barley. Euphytica 170:5–14CrossRefGoogle Scholar
  108. Nevo E (1992) Origin, evolution, population genetics and resources for breeding of wild barley, Hordeum spontaneum in the Fertile Crescent. In: Shewry PR (ed) Barley: genetics, biochemistry, molecular biology and biotechnology. CAB International, Wallingford, pp 19–43Google Scholar
  109. Nevski SA (1941) Beiträge zur Kenntniss der wildwachsenden Gersten in Zusammenhang mit der Frage über den Ursprung von Hordeum vulgare L. and Hordeum distichon L. (Versuch einer Monographie der Gattung Hordeum). Trudy Bot Inst Akad Nauk SSSR Ser 1(5):64–255Google Scholar
  110. Newman RK, Newman CW (2008) Barley for food and health: science, technology, and products. Wiley, HobokenCrossRefGoogle Scholar
  111. Newton AC, Flavell AJ, George TS et al (2011) Crops that feed the world 4. Barley: a resilient crop? Strengths and weaknesses in the context of food security. Food Sec 3:141–178CrossRefGoogle Scholar
  112. Oh S, Kwon C, Choi D et al (2007) Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotech J 5:646–656CrossRefGoogle Scholar
  113. Ohnoutkova L (2019) Mutation breeding in barley: historical overview. In: Harwood WA (ed) Barley: methods and protocols. Springer, Dordrecht, pp 7–19CrossRefGoogle Scholar
  114. Patrick H, Alfonso C-M (2013) New and renewed breeding methodology. In: Zhang G, Li G, Liu X (eds) Advance in barley sciences: proceedings of 11th international barley genetics symposium. Zhejiang University Press and Springer, Dordrecht, pp 349–357CrossRefGoogle Scholar
  115. Peltonen-Sainio P, Jauhiainen L, Hakala K (2011) Crop responses to temperature and precipitation according to long-term multi-location trials at high latitude conditions. J Agric Sci 149(1):49–62CrossRefGoogle Scholar
  116. Penna S, Vitthal SB, Yadav PV (2012) In vitro mutagenesis and selection in plant cultures and their prospects for crop improvement. Bioremed Biodiv Bioavail 6(1):6–14Google Scholar
  117. Petersen G, Seberg O (2003) Phylogenetic analyses of the diploid species of Hordeum (Poaceae) and a revised classification of the genus. Syst Bot 28:293–306Google Scholar
  118. Pickering R (1983) The location of a gene for incompatibility between Hordeum vulgare L. and H. bulbosum L. Hereditas 51:455–459CrossRefGoogle Scholar
  119. Pickering R (1984) The influence of genotype and environment on chromosome elimination in crosses between Hordeum vulgare, H. bulbosum. Plant Sci 34:153–164Google Scholar
  120. Pickering R (2000) Do the wild relatives of cultivated barley have a place in barley improvement? In: Logue S (ed) Barley genetics VIII: Proceedings of the 8th international barley genetics symposium, vol I. Department of Plant Science, Waite Campus, Adelaide University, Australia, pp 223–230Google Scholar
  121. Pickering RA, Hill AM, Michel M et al (1995) The transfer of a powdery mildew resistance gene from Hordeum bulbosum L. to barley (H. vulgare L.) chromosome 2 (2I). Theor Appl Genet 91:1288–1292PubMedCrossRefPubMedCentralGoogle Scholar
  122. Rakshit S, Ganapathy KN (2014) Comparative genomics of cereal crops: status and future prospects. In: Kavi Kishor PB, Bandopadhyay R, Suravajhala P (eds) Agricultural bioinformatics. Springer, New Delhi, pp 59–87Google Scholar
  123. Ramage RT (1985) Cytogenetics in barley. In: Rasmusson DC (ed) ASA Monograph No. 26, pp 127–154Google Scholar
  124. Ramireddy E, Hosseini SA, Eggert K et al (2018) Root engineering in barley: increasing cytokinin degradation produces a larger root system, mineral enrichment in the shoot and improved drought tolerance. Plant Physiol 177:1078–1095PubMedPubMedCentralCrossRefGoogle Scholar
  125. Rao GJN, Reddy JN, Variar M, Mahender A (2016) Molecular breeding to improve plant resistance to abiotic stresses. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies: agronomic, abiotic and biotic stress traits. Springer, Cham, pp 283–326CrossRefGoogle Scholar
  126. Rauf S, Al-Khayri JM, Zaharieva M et al (2016) Breeding strategies to enhance drought tolerance in crops. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies: agronomic, abiotic and biotic stress traits. Springer, Cham, pp 397–445CrossRefGoogle Scholar
  127. Ren X, Wang J, Liu L et al (2016) SNP-based high density genetic map and mapping of btwd1 dwarfing gene in barley. Sci Rep 6:31741PubMedPubMedCentralCrossRefGoogle Scholar
  128. Ribaut J-M, de Vicente MC, Delannay X (2010) Molecular breeding in developing countries: challenges and perspectives. Curr Opin Plant Biol 13:1–6CrossRefGoogle Scholar
  129. Robinson RA (2007) Crop histories, 2nd ed., Rev. Sharebook Publishing. www.sharebooks.ca
  130. Rohila JS, Rajinder K, Wua J, Wua R (2002) Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley Hva1 cDNA. Plant Sci 163:525–532CrossRefGoogle Scholar
  131. Roy SJ, Huang W, Wang XJ et al (2013) A novel protein kinase involved in Na(+) exclusion revealed from positional cloning. Plant Cell Environ 36:553–568PubMedCrossRefGoogle Scholar
  132. Saikumar K, Kumar VD (2014) Plant micrornas: an overview. In: Kishor PB, Bandopadhyay K, Suravajhala R (eds) Agricultural bioinformatics. Springer, New Delhi, pp 139–159Google Scholar
  133. Saitou N (2004) Genome and evolution. Shinyo-Sha, Tokyo. (in Japanese)Google Scholar
  134. Saitou N (2013) Introduction to evolutionary genomics, computational biology. Springer, LondonCrossRefGoogle Scholar
  135. Salvi S, Druka A, Milner SG, Gruszka D (2014) Induced genetic variation, TILLING and NGS-based cloning. In: Kumlehn J, Stein N (eds) Biotechnological approaches to barley improvement. Springer, Berlin, pp 287–310CrossRefGoogle Scholar
  136. Sato K, Flavell AJ, Russell JL et al (2014) Genetic diversity and germplasm management: wild barley, landraces, breeding materials. In: Kumlehn J, Stein N (eds) Biotechnological approaches to barley improvement. biotechnology in agriculture and forestry, vol 69. Springer, Berlin, pp 21–36CrossRefGoogle Scholar
  137. Schillinger WF, Cook RJ, Papendick RI (1999) Increased dryland cropping intensity with no-till barley. Agron J 91:744–752CrossRefGoogle Scholar
  138. Shackley BJ (2000) Crop management. In: Anderson WK, Garlinge JR (eds) The wheat book: principles and practice. Department of Agriculture and Food, Western Australia, Perth. Bulletin 4443:131–164Google Scholar
  139. Singh RJ (2006) Utilization of genetic resources for barley improvement. In: Singh R, Prem J, Jauhar P (eds) Genetic resources, chromosome engineering, and crop improvement series volume 2 cereals. Taylor & Francis, London, pp 233–255CrossRefGoogle Scholar
  140. Singh BD, Singh AK (2015) Marker-assisted plant breeding: principles and practices. Springer, New DelhiCrossRefGoogle Scholar
  141. Singh J, Zhang S, Chen C (2006) High-frequency Ds remobilization over multiple generations in barley facilitates gene tagging in large genome cereals. Plant Mol Biol 62(6):937–950PubMedCrossRefGoogle Scholar
  142. Soltész A, Vágújfalvi A, Rizza F et al (2012) The rice Osmyb4 gene enhances tolerance to frost and improves germination under unfavourable conditions in transgenic barley plants. J Appl Genet 53:133–143PubMedCrossRefGoogle Scholar
  143. Soltész A, Smedley M, Vashegyi I et al (2013) Transgenic barley lines prove the involvement of TaCBF14 and TaCBF15 in the cold acclimation process and in frost tolerance. J Exper Bot 64(7):1849–1862CrossRefGoogle Scholar
  144. Somers DA, Narayanan KR, Kleinhofs A et al (1986) Immunological evidence for transfer of the barley nitrate reductase structural gene to Nicotiana tabacum by protoplast fusion. Mol Gen Genet 204:296–301CrossRefGoogle Scholar
  145. Sparla F, Falini G, Botticella E et al (2014) New starch phenotypes produced by TILLING in barley. PLoS One 9(10):e107779PubMedPubMedCentralCrossRefGoogle Scholar
  146. Spencer-Lopes MM, Forster BP, Jankuloski L (2018) Manual on mutation breeding, 3rd ed. FAO/IAEA, ViennaGoogle Scholar
  147. Stein N (2014) Development of sequence resources. In: Kumlehn J, Stein N (eds) Biotechnological approaches to barley improvement. Springer, Berlin, pp 271–285CrossRefGoogle Scholar
  148. Sun DF, Gong X (2009) Barley germplasm and utilization. In: Genetics and improvement of barley malt quality. Zhejiang University Press/Springer, Hangzhou /Berlin, pp 18–62CrossRefGoogle Scholar
  149. Szarejko I, Forster B (2007) Doubled haploidy and induced mutation. Euphytica 158(3):359–370CrossRefGoogle Scholar
  150. Szarejko I, Maluszynski M, Polok K, Kilian A (1991) Doubled haploids in the mutation breeding of selected crops. In: Plant mutation breeding for crop improvement, vol 2. IAEA, Vienna, pp 355–378Google Scholar
  151. Szarejko I, Guzy J, Davalos J et al (1995) Production of mutants using barley DH systems. In: Induced mutations and molecular techniques for crop improvement. IAEA, Vienna, pp 517–530Google Scholar
  152. Tantau H, Balko C, Brettschneider B et al (2004) Improved frost tolerance and winter survival in winter barley (Hordeum vulgare L.) by in vitro selection of proline over accumulating lines. Euphytica 139:19–32CrossRefGoogle Scholar
  153. Tingay S, McElroy D, Kalla R et al (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11:1369–1376CrossRefGoogle Scholar
  154. Tull D, Phillipson BA, Kramhoft B et al (2003) Enhance amylolytic activity in germinating barley through synthesis of a bacterial alpha-amylase. J Cereal Sci 37:71–80CrossRefGoogle Scholar
  155. Umba di-Umba U, Maluszynski M, Szarejko I, Zbieszczyk J (1991) High frequency of barley DH-mutants from M1 after mutagenic treatment with MNH and sodium azide. MBNL 38:8–9Google Scholar
  156. USDA (2018) United States Department of Agriculture Foreign Agricultural Service, Office of Global Analysis, Washington, DCGoogle Scholar
  157. USDA (2019) United States Department of Agriculture Foreign Agricultural Service, Office of Global Analysis. February 2019, https://apps.fas.usda.gov/psdonline/circulars/grain.pdf
  158. Vagera J, Novotny J, Ohnoutkova L (2004) Induced and neurogenesis in vitro in mutated populations of barley, Hordeum vulgare. Plant Cell Tissue Organ Cult 77:55–61CrossRefGoogle Scholar
  159. van Hintum T, Menting F (2003) Diversity in ex situ genebank collections of barley. In: von Bothmer R, van Hintum T, Knüpffer H, Sato K (eds) Diversity in barley (Hordeum vulgare). Elsevier Science, Amsterdam, pp 247–257Google Scholar
  160. Vasil V, Vasil IK (1979) Isolation and culture of cereal protoplasts. I. Callus formation from pearl millet (Pennisetum americanum) protoplasts. Z Pflanzenphysiol 92:379–383CrossRefGoogle Scholar
  161. Verstegen H, Köneke O, Korzun V, von Broock R (2014) The world importance of barley and challenges to further improvements. In: Kumlehn J, Stein N (ed) Biotechnological approaches to barley improvement. Springer Berlin, pp 3–19CrossRefGoogle Scholar
  162. von Bothmer R (1992) The wild species of Hordeum: relationships and potential use for improvement of cultivated barley. In: Shewry PR (ed) Barley: genetics, biochemistry, molecular biology and biotechnology. CAB International, Wallingford, pp 3–18Google Scholar
  163. von Bothmer R (1996) Distribution and habitat preferences in the genus Hordeum in Iran and Turkey. Ann Natur Hist Mus Wien 98 B(Suppl):107–116Google Scholar
  164. von Bothmer R, Jacobsen N (1985) Origin, taxonomy, and related species. In: Rasmusson D (ed) Barley. ASA Monograph No. 26, pp 19–56Google Scholar
  165. von Bothmer R, Linde-Laursen I (1989) Backcrosses to cultivated barley (Hordeum vulgare L.) and partial elimination of alien chromosomes. Hereditas 111:145–147CrossRefGoogle Scholar
  166. von Bothmer R, Flink J, Jacobsen N et al (1983) Interspecific hybridization with cultivated barley (Hordeum vulgare L.). Hereditas 99:219–244CrossRefGoogle Scholar
  167. von Bothmer R, Seberg O, Jacobsen N (1992) Genetic resources in the Triticeae. Hereditas 116: 141–150CrossRefGoogle Scholar
  168. von Bothmer R, Jacobsen N, Baden C et al (1995) An ecogeographical study of the genus Hordeum, 2nd ed. Systematic and ecogeographic studies on crop gene pools. No 7. IBPGR, RomeGoogle Scholar
  169. von Bothmer R, Sato K, Komatsuda T et al (2003) The domestication of cultivated barley. In: von Bothmer R, van Hintum T, Knüpffer H, Sato K (eds) Diversity in barley (Hordeum vulgare). Elsevier Science B.V., Amsterdam, pp 9–27Google Scholar
  170. Wan B (2015) Transgenic pyramiding for crop improvement. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies: breeding, biotechnology and molecular tools. Springer, Cham, pp 369–396CrossRefGoogle Scholar
  171. Wang L, Xue Q, Newman RK, Newman CW (1993) Enrichment of tocopherol, tocotrienol, and oil in barley by milling and pearling. Cereal Chem 70(5):499–501Google Scholar
  172. Wang J, Jiang J, Wang Y (2013) Protoplast fusion for crop improvement and breeding in China. Plant Cell Tissue Organ Cult 112:131–142CrossRefGoogle Scholar
  173. Wiebe GA (1978) Breeding. In: Barley: origin, botany, culture, winter hardiness, genetics, utilization, and pests. Agriculture Handbook 338. USDA, Washington, DC, pp 117–127Google Scholar
  174. Williams JT (1989) Plant germplasm preservation: a global perspective. In: Knutson L, Stoner AK (eds) Biotic diversity and germplasm preservation, global imperatives. Kluwer, Dordrecht, pp 81–96CrossRefGoogle Scholar
  175. Winkler H (1920) Verbreitung und Ursache der Parthenogenesis im Pflanzen- und Tierreiche. Verlag Von Gustav Fischer, JenaGoogle Scholar
  176. Xu Y, Xie C, Wan J et al (2013) Marker-assisted selection in cereals: platforms, strategies and examples. In: Gupta PK, Varshney RK (eds) Cereal genomics II. Springer, Dordrecht, pp 375–411CrossRefGoogle Scholar
  177. Yawson DO, Mulholland BJ, Ball T et al (2017) Effect of climate and agricultural land use changes on UK feed barley production and food security to the 2050s. Land 6(74):1–14Google Scholar
  178. Zalewski W, Galuszka P, Gasparis S et al (2010) Silencing of the HvCKX1 gene decreases the cytokinin oxidase/dehydrogenase level in barley and leads to higher plant productivity. J Exp Bot 61:1839–1851PubMedCrossRefGoogle Scholar
  179. Zhang G, Li C (2009) Genetics and improvement of barley malt quality. Zhejiang University Press/Springer, Hangzhou/BerlinGoogle Scholar
  180. Zhao T, Palotta M, Langridge P (2006) Mapped Ds/T-DNA launch pads for functional genomics in barley. Plant J 47(5):811–826PubMedCrossRefGoogle Scholar
  181. Zhou G, Zhang Q, Tan C et al (2015) Development of genome-wide InDel markers and their integration with SSR, DArT and SNP markers in single barley map. BMC Genomics 16:804PubMedPubMedCentralCrossRefGoogle Scholar
  182. Zohary D, Hopf M (1993) Domestication of plants in the old World. Clarendon Press, OxfordGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Essam Fathy El-Hashash
    • 1
    Email author
  • Karima Mohamed El-Absy
    • 2
    • 3
  1. 1.Department of Agronomy, Faculty of AgricultureAl-Azhar UniversityCairoEgypt
  2. 2.Department of Biology, Faculty of ScienceTabuk UniversityTabukSaudi Arabia
  3. 3.Eco-physiology Unit, Plant Ecology and Ranges DepartmentDesert Research CenterCairoEgypt

Personalised recommendations