Ascomycota and Integrated Pest Management

  • Tariq AhmadEmail author
  • Ajaz Rasool
  • Shaziya Gull
  • Dietrich Stephan
  • Shabnum Nabi
Part of the Sustainability in Plant and Crop Protection book series (SUPP)


Employing fungal pathogens to combat insect pests of agricultural importance has gained momentum due to its ecofriendly approach, availability and host specificity. Successful future prospects include efficiency and improvements in the research methods, proper selection of strains, mass production, genetic manipulations and other innovative techniques. Further aspects are the preparation of formulations that will increase persistence, longer shelf life and ease of application, pathogen virulence and spectrum of action. A description of Ascomycetes biology, taxonomic characters and mode of action is presented here with a focus on its role in Intergrated Pest Management strategies. Recent studies on genetic modifications for improving their virulence are also discussed.


Ascomycota Fungi Entomopathogens Pest IPM Biological control 


  1. Alves, S. B., Pereira, R. M., Lopes, R. B., & Tamai, M. A. (2003). Use of entomopathogenic fungi in Latin America. In R. K. Upadhyay (Ed.), Advances in microbial control of insect pests (pp. 193–211). New York: Kluwer Academic Plenum.Google Scholar
  2. Anand, R., Prasad, B., & Tiwary, B. N. (2009). Relative susceptibility of Spodoptera litura pupae to selected entomopathogenic fungi. BioControl, 54, 85–92.CrossRefGoogle Scholar
  3. Barr, D. J. S. (1992). Evolution and kingdoms of organisms from the perspective of a mycologist. Mycologia, 84, 1–11.CrossRefGoogle Scholar
  4. Barson, G. (1976). Laboratory studies on the fungus verticillum lecanii, a laral pathogen of large elm bark beetle (Colytus scolytus). Annals of Applied Biology, 83, 207–214.CrossRefGoogle Scholar
  5. Bateman, R. P., Neethling, D., & Oosthuizen, F. (1998). Green Muscle handbook for central and southern Africa (pp. 412–423). SA: Lubilosa/Biological Control Products.Google Scholar
  6. Beavers, J. B., McCoy, C. W., & Kaplan, D. T. (1983). Natural enemies of sub-terranean Diaprepes abbbrevialus (Coleoptera: Curculionidae) larvae in Florida. Environmental Entomology, 12, 840–843.CrossRefGoogle Scholar
  7. Bedford, G. O. (1980). Biology, ecology and control of palm rhinoceros beetles. Annual Review of Entomology, 25, 309–339.CrossRefGoogle Scholar
  8. Berbee, M. L., & Taylor, J. W. (1992). Detecting the morphological convergence in true fungi using 18S RNA sequence data. Bio Systems, 28, 117–125.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Beys da Silva, W. O., Santi, L., Schrank, A., & Vainstein, M. H. (2011). Metarhiziumanisopliae lipolytic activity plays a pivotalrolein Rhipicephalus (Boophilus) microplus infection. Fungal Biology, 114, 10–15.CrossRefGoogle Scholar
  10. Bidochka, M. J., & Small, C. (2005). Phylogeography of Metarhizium, an insect pathogenic fungus. In F. E. Vega & M. Blackwell (Eds.), Insect-fungal associations (pp. 28–49). New York: Oxford University Press Inc.Google Scholar
  11. Boldo, J. T., Junges, A., do Amaral, K. B., Staats, C. C., Vainstein, M. H., & Schrank, A. (2009). Endochitinase CHI2 of the biocontrol fungus Metarhizium anisopliae affects its virulence toward the cotton stainer bug Dysdercus peruvianus. Current Genetics, 55, 551–560.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Boucias, D. G., & Pendland, J. C. (1988). Detection of protease inhibitors in the haemolymph of resistant Anticarsia gemmatalis which are inhibitory to the entomopathogenic fungus Nomuraea rileyi. Experientia, 43, 336–339.CrossRefGoogle Scholar
  13. Butt, T. M., Greenfield, B. P. J., Greig, C., Maffeis, T. G. G., Taylor, J. W. D., Piasecka, J., Dudley, E., Abdulla, A., Dubovskiy, I. M., & Garrido-Jurado, I. (2013). Metarhizium anisopliae pathogenesis of mosquito larvae: A verdict of accidental death. PLoS One, 8, e81686.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Butt, T. M., Coates, C. J., Dubovskiy, I. M. & Ratcliffe, N. A. (2016). Entomopathogenic fungi: New insights into host-pathogen interactions. In: Lovett, B., & St. Leger, R. J. (Eds). Advances in genetics. (pp. 307–364). London: Elsevier.Google Scholar
  15. Carroll, G. C., & Wicklow, D. T. (1992). The fungal community: Its organization and role in the ecosystem (Vol. 23, pp. 208–208). New York: Marcel Dekker Inc.Google Scholar
  16. Carruthers, R. I., & Hural, K. (1990). Fungi as naturally occurring entomopathogens. UCLA Symposia Molecular and Cell Biology, 112, 115–138.Google Scholar
  17. Carruthers, R. I., & Soper, R. S. (1987). Fungal diseases. In J. R. Fuxa & Y. Tanada (Eds.), Epizootiology of insect diseases (pp. 357–416). New York: Wiley.Google Scholar
  18. Claydon, N., & Grove, J. F. (1982). Insecticidal secondary metabolic products from the entomogenous fungus Verticillium lecanii. Journal of Invertebrate Pathology, 40, 413–418.CrossRefGoogle Scholar
  19. Copping, L. G. (Ed.). (2001). The biopesticide manual: A world compedium (2nd ed.). Farnham: British Crop Protection Council.Google Scholar
  20. Copping, L. G. (2004). The manual of biocontrol agents, third ed. British crop protection. UK: Council Aston: Available online
  21. De Crecy, E., Jaronski, S., Lyons, B., Lyons, T. J., & Keyhani, N. O. (2009). Directed evolution of a filamentous fungus for thermotolerance. BMC Biotechnology, 9, 74.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Deacon, J. W. (1997). Modern mycology (p. 303). Cambridge: Blackwell Science Ltd.Google Scholar
  23. Driver, F., Milner, R. J., & Trueman, J. W. H. (2000). A taxonomic revision of Metarhizium based on a phylogenetic analysis of rDNA sequence data. Mycological Research, 104, 134–150.CrossRefGoogle Scholar
  24. Ekbom, B. S. (1979a). Investigations on the potential of parasitic fungus (Verticillium lecanii) for biological control of the greenhouse whitefly (Trialeurodes vaporariorum). Swedish Journal of Agricultural Research, 9, 129–138.Google Scholar
  25. De Faria, M. R., & Wraight, S. P. (2007). Mycoinsecticides and mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, 43, 237–256.Google Scholar
  26. Ekbom, B. S. (1979b). Investigations on the potential of parasitic fungus (Verticillium lecanii) for biological control of the greenhouse whitefly (Trialeurodes vaporariorum). Swedish Journal of Agricultural Research, 9, 129–138.Google Scholar
  27. Elangbam, P. D., Elangbam, B. D., & Deepshikha. (2016). A review on prospects of entomopathogenic fungi as potent biological control agents of insect pests. International Journal of Current Research in Biosciences and Plant Biology, 3, 74–82.Google Scholar
  28. Ellis, T. M., Meekes, J., Fransen, J., & van Lenteren, J. C. (2002). Pathogenecity of Aschersonia spp. against whiteflies Bemisia argentifolia and Trileurodis vaporariorum. Journal of Invertebrate Pathology, 81, 1–11.CrossRefGoogle Scholar
  29. Elsworth, J. F., & Grove, J. F. (1977). Cyclodepsipeptides from Beauveria bassiana Bals. Part 1. Beauverolides H and I. Journal of Chemical Society [Perkin 1], 3, 270–273.CrossRefGoogle Scholar
  30. Etzell, R. W., & Petitt, F. L. (1992). Association of Verticillum lecanii with population reduction of red rice root aphid (Rhopalosiphum rufiabdominalis) on aeroponically grown squash. Florida Entomologist, 75, 605–606.CrossRefGoogle Scholar
  31. Evans, H. C., & Whitehead, P. F. (2005). Entomogenous fungi of arboreal Coleoptera from Worcestershire, England, including the new species Harposporium bredonense. Mycological Progress, 4, 91–99.CrossRefGoogle Scholar
  32. F.A.O. (2012). Global pact against plant pests marks 60 years in action. Food and Agriculture Organization of the United Nations.;
  33. Fan, Y., Borovsky, D., Hawkings, C., Ortiz-Urquiza, A., & Keyhani, N. O. (2012a). Exploiting host molecules to augment mycoinsecticide virulence. Nature Biotechnology, 30, 35–37.PubMedCrossRefGoogle Scholar
  34. Fan, Y., Pereira, R. M., Kilic, E., Casella, G., & Keyhani, N. O. (2012b). Pyrokinin b-neuropeptide affects necrophoretic behavior in fire ants (S. invicta), and expression of b-NP in a mycoinsecticide increases its virulence. PLoS One, 7, e26924.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Fang, W., & St. Leger, R. J. (2010). RNA binding proteins mediate the ability of a fungus to adapt to the cold. Environmental Microbiology, 12, 810–820.PubMedCrossRefGoogle Scholar
  36. Fang, W., & St. Leger, R. J. (2012). Enhanced UV resistance and improved killing of malaria mosquitoes by photolyase transgenic entomopathogenic fungi. PLoS One, 7, e43069.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Fang, W., Zhang, Y., Yang, X., Zheng, X., Duan, H., Li, Y., & Pei, Y. (2004). Agrobacterium tumefaciens-mediated transformation of Beauveria bassiana using an herbicide resistance gene as a selection marker. Journal of Invertebrate Pathology, 85, 18–24.PubMedCrossRefGoogle Scholar
  38. Fang, W., Leng, B., Xiao, Y., Jin, K., Ma, J., Fan, Y., Feng, J., Yang, X., Zhang, Y., & Pei, Y. (2005). Cloning of Beauveria bassiana chitinase gene Bbchit1 and its application to improve fungal strain virulence. Applied and Environmental Microbiology, 71, 363–370.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Fang, W., Pei, Y., & Bidochka, M. J. (2006). Transformation of Metarhizium anisopliae mediated by Agrobacterium tumefaciens. Canadian Journal of Microbiology, 52, 623–626.PubMedCrossRefGoogle Scholar
  40. Fang, W., Feng, J., Fan, Y., Zhang, Y., Bidochka, M. J., St. Leger, R. J., & Pei, Y. (2009a). Expressing a fusion protein with protease and chitinase activities increases the virulence of the insect pathogen Beauveria bassiana. Journal of Invertebrate Pathology, 102, 155–159.PubMedCrossRefGoogle Scholar
  41. Fang, W., Pava-Ripoll, M., Wang, S., & St. Leger, R. J. (2009b). Protein kinase A regulates production of virulence determinants by the entomopathogenic fungus, Metarhizium anisopliae. Fungal Genetics and Biology, 46, 277–285.PubMedCrossRefGoogle Scholar
  42. Fang, W., Fernandes, É. K. K., Roberts, D. W., Bidochka, M. J., Leger, S., & J, R. (2010). A laccase exclusively expressed by Metarhizium anisopliae during isotropic growth is involved in pigmentation, tolerance to abiotic stresses and virulence. Fungal Genetics and Biology, 47, 602–607.CrossRefGoogle Scholar
  43. Fang, W., Azimzadeh, P., & St. Leger, R. J. (2012). Strain improvement of fungal insecticides for controlling insect pests and vector-borne diseases. Current Opinion in Microbiology, 15, 232–238.PubMedCrossRefGoogle Scholar
  44. Fargues, J. F. (1984). Adhesion of the fungal spore to the insect cuticle in relation to pathogenicity. In D. W. Roberts & J. R. Aist (Eds.), Infection processes of fungi (Conference Report) (pp. 90–110). Rockefeller Foundation, New York.Google Scholar
  45. Fawcett, H. S. (1908). Fungi parasitic upon Aleyrodes citri. (Special Studies, No. 1. pp. 1–41). University of the State of Florida.Google Scholar
  46. Feng, M. G., Poprawski, T. J., & Khachatourians, G. G. (1994). Production, formulation and application of the entomopathogenic fungus Beauveria bassiana for insect control: Current status. Biocontrol Science and Technology, 4, 3–34.CrossRefGoogle Scholar
  47. Ferron, P. (1978). Biological control of insect pests by entomogenous fungi. Annual Review of Entomology, 23, 409–442.CrossRefGoogle Scholar
  48. Ferron, P. (1981). Pest control by the fungi Beauveria and Metarhizium. In H. D. Burges (Ed.), Microbial control of pests and plant diseases 1970–1980 (pp. 465–482). London: Academic.Google Scholar
  49. Fornazier, R. F., Ferreira, R. R., Vitoria, A. P., Molina, S. M. G., Lea, P. J., & Azevedo, R. A. (2002). Effects of cadmium on antioxidant enzyme activities in sugar cane. Biological Plant, 45, 91–97.CrossRefGoogle Scholar
  50. Fransen, J. J. (1987). Aschersonia aleyrodis as a microbial control agent of greenhouse whitefly, (pp 167). Thesis, University of Wageningen.Google Scholar
  51. Furlong, M. J., & Groden, E. (2001). Evaluation of synergistic interactions between the Colorado potato beetle (Coleoptera: Chrysomelidae) pathogen Beauveria bassiana and the insecticides, imidacloprid, and cyromazine. Journal of Economic Entomology, 94, 344–356.PubMedCrossRefGoogle Scholar
  52. Fuxa, J. R. (1987). Ecological considerations for the use of entomopathogens in IPM. Annual Review of Entomology, 32, 225–251.CrossRefGoogle Scholar
  53. Gao, Q., Jin, K., Ying, S. H., Zhang, Y., Xiao, G., Shang, Y., Duan, Z., Hu, X., Xie, X. Q., Zhou, G., Peng, G., Luo, Z., Huang, W., Wang, B., Fang, W., Wang, S., Zhong, Y., Ma, L. J., St Leger, R. J., Zhao, G. P., Pei, Y., Feng, M. G., Xia, Y., & Wang, C. (2011). Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genetics, 7, e1001264.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Gerson, U., Kenneth, R., & Muttah, T. I. (1979). Hirsutella thompsonii, a fungal pathogen of mites. II. Host-pathogen interactions. Annals of Applied Biology, 91, 29–40.CrossRefGoogle Scholar
  55. Glare, T. R., & Milner, R. J. (1991). Ecology of entomopathogenic fungi. In D. K. Arora, L. Ajello, & L. G. Mukerji (Eds.), Handbook of applied mycology, humans, animals, and insects (Vol. 2, pp. 547–612). New York: Dekker.Google Scholar
  56. Goettel, M. S., Koike, M., Kim, J. J., Aiuchi, D., Shinya, R., & Brodeur, J. (2008). Potential of Lecanicillium spp. for management of insects, nematodes and plant diseases. Journal of Invertebrate Pathology, 98, 256–261.PubMedCrossRefGoogle Scholar
  57. Gongora, C. E. (2004). Transformacion de Beauveria bassiana cepa Bb9112 con les genes de la proteina verde fluorescente y la protease pr1A de M. anisopliae. Revista Colombiana de Entomologia, 30, 1–5.Google Scholar
  58. Gopalakrishnan, C. (1989). Susceptibilty of cabbage diamond blackmoth (Plutella xylostella L.) to the entomofungal pathogen Verticillum lecanii (Zimmerm.) Viegas. Current Science, 58, 1256–1257.Google Scholar
  59. Greenfield, B. P., Lord, A. M., Dudley, E., & Butt, T. M. (2014). Conidia of the insect pathogenic fungus, Metarhizium anisopliae, fail to adhere to mosquito larval cuticle. Royal Society Open Science, 1, 140193. Scholar
  60. Hajek, A. E., & St. Leger, R. J. (1994). Interactions between fungal pathogens and insect hosts. Annual Review of Entomology, 39, 293–322.CrossRefGoogle Scholar
  61. Hamill, R. L., & Sullivan, H. R. (1969). Determination of pyrrolnitrin and derivatives by gas-liquid chromatography. Applied Microbiology, 18, 310–312.PubMedPubMedCentralGoogle Scholar
  62. Hamlen, R. A. (1979). Biological control of insects and mites on European greenhouse crops: Research and commercial implementation. Proceedings of the Florida State Horticultural Society, 92, 367–368.Google Scholar
  63. Hibbett, D. S., Binder, M., Bischoff, J. F., Blackwell, M., & Cannon, P. F. (2007). A higher-level phylogenetic classification of the Fungi. Mycological Research, 111, 509–547.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hodge, K. T., Viaene, N. M., Vianne, N. M., & Gams, W. (1997). Two Harposporium species with Hirsutella synanamorphs. Mycological Research, 101, 1377–1382.CrossRefGoogle Scholar
  65. Hopkins, D. L., & Purcell, A. H. (2002). Xylella fastidiosa: Cause of Pierce’s disease of Grapevine and other emergent disease. Plant Disease, 86, 1056–1066.PubMedCrossRefGoogle Scholar
  66. Horn, A. S. (1915). The occurrence of fungi on Aleurodes vaporariorum in Great Britain. Annals of Applied Biology, 2, 109–111.CrossRefGoogle Scholar
  67. Hu, Q., Li, F., & Zhang, Y. (2016). Risks of mycotoxins from mycoinsecticides to humans. BioMed Research International, 1, 1–1,13.Google Scholar
  68. Hu, X., Xiao, G., Zheng, P., Shang, Y., Su, Y., Zhang, X., Liu, x., Zhan, S., St Leger, R. J., & Wang, C. (2014). Trajectory and genomic determinants of fungal-pathogen speciation and host adaptation. Proceedings of the National Academy of Sciences of the United States of America, 111, 16796–16801.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Huang, H. C., & Erickson, R. S. (2002). Overwintering of Coniothyrium minitans, a mycoparasite of Sclerotinia sclerotiorum, on the Canadian prairies. Australasian Plant Pathology, 31, 291–293.CrossRefGoogle Scholar
  70. Hughes, J. C., & Gillesipie, A. T. (1985). Proceedings and Abstract, XVIIIth, Annual Meeting Society. Invertebrate Pathology, 28.Google Scholar
  71. Hywell-Jones, N. (1995). Torrubiella iriomoteana from scale insects in Thailand and a new related species Torrubiella siamensis with notes on their respective anamorphs. Mycological Research, 99, 330–332.CrossRefGoogle Scholar
  72. Hywell-Jones, N. (1997). Hirsutella species associated with hoppers (Homoptera) in Thailand. Mycological Research, 101, 1202–1206.CrossRefGoogle Scholar
  73. Ignoffo, C. M. (1981). The fungus Nomuraea rileyi as a microbial insecticide. In H. D. Burges (Ed.), Microbial control of pests and plant diseases (pp. 513–538). London: Academic.Google Scholar
  74. Jin, K., Peng, G., Liu, Y., & Xia, Y. (2015). The acid trehalase, ATM1, contributes to the in vivo growth and virulence of the entomopathogenic fungus, Metarhizium acridum. Fungal Genetics and Biology, 77, 61–67.PubMedCrossRefGoogle Scholar
  75. Jain, N., Rana, I. S., Kanojiya, A., & Sandhu, S. S. (2008). Characterization of Beaveria bassiana strains based on protease and lipase activity and their role in pathogenicity. Journal of Basic & Applied Mycology, 1, 18–2, 22.Google Scholar
  76. Kabaluk, J. T., Svircev, A. M., Goettel, M. S., & Woo, S. G. (2010). The use and regulation of microbial pesticides in representative jurisdictions worldwide. IOBC Global, 99.Google Scholar
  77. Kachhawa, D. (2017). Microorganisms as a biopesticides. Journal of Entomology and Zoology Studies., 5(3), 468–473.Google Scholar
  78. Kanagaratnam, P. (1982). Control of glasshouse whitefly, Trialeurodes vaporariorum, by an ‘aphid’ strain of the fungus Verticillium lecanii. Annals of Applied Biology, 111, 213–219.CrossRefGoogle Scholar
  79. Kanaoka, M. (1978). Bassianolide, a new insecticidal cyclodepsipeptide from Beauveria bassiana and Verticillium lecanii. Agricultural Biological Chemistry, 42, 629–640.Google Scholar
  80. Kendrick, M. (2000). The fifth Kingdom, 3rd edition. Mycologue Publications, Sidney, British Columbia, Canada.
  81. Khachatourians, G. G. (1992). Virlunce of five Beauveria strains, Paecilomyces farinosus and Verticillum lecanii against the migratory grasshopper, Melanoplus sanguinipes. Journal of Invertebrate Pathology, 59, 212–214.CrossRefGoogle Scholar
  82. Khan, M. A., & Ahmad, W. (2015). The management of Spodopteran pests using fungal pathogens. In K. S. Sree & A. Varma (Eds.), Biocontrol of lepidopteran pests (pp. 123–160). Cham: Springer.Google Scholar
  83. Kim, J. J., Lee, M. H., Yoon, C. S., Kim, H. S., Yoo, J. K., & Kim, K. C. (2002). Control of cotton aphid and greenhouse whitefly with a fungal pathogen. Journal of National Institute of Agricultural Science and Technolog, 7–14.Google Scholar
  84. Kirk, P. M., Cannon, P. F., Minter, D. W., & Stalpers, J. A. (2008). Dictionary of the Fungi (10th ed.). Wallingford: CABI. ISBN:0-85199-826-7.Google Scholar
  85. Krasnoff, S. B., & Gupta, S. (1994). Identification of the antibiotic phomalactone from the entomopathogenic fungus Hirsutella thompsonii var. synnematosa. Journal of Chemical Ecology, 20, 293–302.PubMedCrossRefPubMedCentralGoogle Scholar
  86. Kumar, P. S., & Singh, S. P. (2001). Coconut mite in India: Biopesticide breakthrough. Biocontrol News and Information, 22, 76N–78N.Google Scholar
  87. Lacadena, J., Mancheño, J. M., Martinez-Ruiz, A., Martinez-del-Pozo, A., Gasset, M., Oñaderra, M., & Gavilanes, J. G. (1995). Substitution of histidine-137 by glutamine abolishes the catalytic activity of the ribosome-inactivating protein I-sarcin. Biochemical Journal, 309, 581–586.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Latge, J. P., & Monsigny, M. (1988). Visualization of exocellular lectins in the entomopathogenic fungus Conidiobolus obscurus. Journal Histochemistry and Cytochemistry, 36, 1419–1424.CrossRefGoogle Scholar
  89. LeConte, J. L. (1874). Hints for the promotion of economic entomology. Proceedings of the American Association for the Advancement of Science, 22, 10–22.Google Scholar
  90. Lesser, M. P. (1996). Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnology and Oceanography, 41, 271–283.CrossRefGoogle Scholar
  91. Li, X., Luo, H., & Zhang, K. (2005). A new species of Harposporium parasitic on nematodes. Canadian Journal of Botany, 83, 558–562.CrossRefGoogle Scholar
  92. Li, Z. Z., Li, C. R., Huang, B., & Meizhen, M. Z. (2001). Discovery and demonstration of the teleomorph of Beauveria bassiana (Bals.) Vuill., an important entomogenous fungus. Chinese Science Bulletin, 46, 751–753.CrossRefGoogle Scholar
  93. Li, Z., Alves, S. B., Roberts, D. W., Fan, M., Delalibera, I., Tang, J., Lopes, R. B., Faria, M., & Rangel, D. E. M. (2010). Biological control of insects in Brazil and China: History, current programs and reasons for their success using entomopathogenic fungi. Biocontrol Science and Technology, 20, 117–136.CrossRefGoogle Scholar
  94. Liao, X., Lu, H. L., Fang, W., & St. Leger, R. J. (2014). Overexpression of a Metarhizium robertsii HSP25 gene increases thermotolerance and survival in soil. Applied Microbiology and Biotechnology, 98, 777–783.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Lin, L., Fang, W., Liao, X., Wang, F., Wei, D., & St. Leger, R. J. (2011). The MrCYP52 cytochrome P450 monoxygenase gene of Metarhizium robertsiii important for utilizing insect epicuticular hydrocarbons. PLoS One, 16, e28984.CrossRefGoogle Scholar
  96. Liu, J. C., Boucias, D. G., Pendland, J. C., Liu, W. Z., & Maruniak, J. (1996). The mode of action of hirsutellin A on eukaryotic cells. Journal of Invertebrate Pathology, 67, 224–228.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Liu, W. Z., Boucias, D. G., & McCoy, C. W. (1995). Extraction and characterization of the insecticidal toxin hirsutellin A produced by Hirsutella thompsonii var. thompsonii. Experimental Mycology, 19, 254–262.PubMedCrossRefPubMedCentralGoogle Scholar
  98. Liu, Z. Y., Liang, Z. Q., Liu, A. Y., Yao, Y. J., Hyde, K. D., & Yu, Z. N. (2002). Molecular evidence for teleomorph-anamorph connections in Cordyceps based on ITS-5.8S rDNA sequences. Mycological Research, 106, 1100–1108.CrossRefGoogle Scholar
  99. Lomer, C. J., Bateman, R. P., Johnson, D. L., Langewald, J., & Thomas, M. (2001). Biological control of locusts and grasshoppers. Annual Review of Entomoly, 46, 667–702.CrossRefGoogle Scholar
  100. Lord, J. C. (2005). From Metchnikoff to Monsanto and beyond: The path of microbial control. Journal of Invertebrate Pathology, 89, 19–29.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Loureiro, E. S. & Monteiro, A. C. (2005). Pathogenicity of isolates of three entomopathogenic fungi against soldiers of Atta sexdentes sexdentes (Linneus, 1758) (Hymenoptera: Formicidae). Revista Arvoe (online), 29(4), 553–561. ISSN:1806-9088. Scholar
  102. Lovett, B., & Leger, R. J. S. (2015). Stress is the rule rather than the exception for Metarhizium. Current Genetics, 61, 253–261.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Luo, S., He, M., Cao, Y., & Xia, Y. (2013). The tetraspanin gene MaPls1 contributes to virulence by affecting germination, appressorial function and enzymes for cuticle degradation in the entomopathogenic fungus, Metarhizium acridum. Environment Microbiology, 15, 2966–2979.Google Scholar
  104. Maimala, S. (2004). Screening strains of Hirsutella thompsonii (FISHER) for mass production by solid-state fermentation technology. Doctoral Dissertation, Kasetsart University, Bangkok, Thailand.Google Scholar
  105. Maina, U. M., Galadima, I. B., Gambo, F. M., & Zakaria, D. (2018). A review on the use of entomopathogenic fungi in the management of insect pests of field crops. Journal of Entomology and Zoology Studies, 6, 27–32.Google Scholar
  106. Marheineke, K., Grunewald, S., Christie, W., & Reilander, H. (1998). Lipid composition of Spodoptera frugiperda (Sf9) and Trichoplusia ni (Tn) insect cells used for baculovirus infection. FEBS Letters, 441, 49–52.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Mathew, S. O., Sandhu, S. S., & Rajak, R. C. (1998). Bioactivity of Nomuraea rileyi against Spilosoma obliqua: Effect of dosage, temperature and relative humidity. Journal of Indian Botanical Society, 77, 23–25.Google Scholar
  108. Matuzzia, R. F., Cardosob, N., Poltronieria, A. S., Poitevina, C. G., Dalzotoa, P., Zawadeneaka, M. A., & Pimentela, I. C. (2016). Potential of endophytic fungi as biocontrol agents of Duponchelia fovealis (Zeller) (Lepidoptera: Crambidae). Brazilian Journal of Biology, 78, 429–435.Google Scholar
  109. Mazet, I., Vey, A., & Hirsutellin, A. (1995). A toxic protein produced in vitro by Hirsutella thompsonii. Microbiology, 141, 1343–1348.PubMedCrossRefGoogle Scholar
  110. McCoy, C. W., Samson, R. A., & Boucias, D. G. (1988). Entomogenous fungi. In C. Ignoffo (Ed.), Handbook of natural pesticides microbial insecticides Part A Entomogenous Protozoa and Fungi (Vol. 5, pp. 156–236). Florida: CRC press.Google Scholar
  111. McCready, S., & Marcello, L. (2003). Repair of UV damage in Halobacterium salinarum. Biochemical Society Transactions, 31, 694–698.PubMedCrossRefGoogle Scholar
  112. Mcleod, D. M. (1954). Investigations on the genera Beauveria Vuill. and Tritirachium Limber. Canadian Journal of Botany, 32, 818–890.CrossRefGoogle Scholar
  113. Mello, A., Murat, C., & Bonfante, P. (2006). Truffles: Much more than a prized and local fungal delicacy. FEMS Microbiology Letters, 260, 1–8.PubMedCrossRefGoogle Scholar
  114. Ment, D., Gindin, G., Rot, A., Soroker, V., Glazer, I., Barel, S., & Samish, M. (2010a). Novel technique for quantifying adhesion of Metarhizium anisopliae conidia to the tick cuticle. Applied Environment Microbiology, 76, 3521–3528.CrossRefGoogle Scholar
  115. Ment, D., Gindin, G., Soroker, V., Glazer, I., Rot, A., & Samish, M. (2010b). Metarhizium anisopliae conidial responses to lipids from tick cuticle and tick mammalian host surface. Journal of Invertebrate Pathology, 103, 132–139.PubMedCrossRefGoogle Scholar
  116. Milner, R. J., & Lutton, G. C. (1986). Dependence of Verticillum lecanni (Fungi: Hyphomycetes) on high humidities for infection and sporulation using Myzus persicae (Homoptera: Aphididae) as host. Environment Entomology, 15, 380–382.CrossRefGoogle Scholar
  117. Milner, R. J., & Staples, J. A. (1996). Biological control of termites: Results and experiences within a CSIRO project in Australia. Biocontrol Science and Technology, 6, 3–9.Google Scholar
  118. Milner, R. J., Staples, J. A., Hartley, T. R., Lutton, G. G., Driver, F., & Watson, J. A. L. (1998a). Occurrence of Metarhizium anisopliae in nests and feeding sites of Australian termites. Mycological Research, 102, 216–220.CrossRefGoogle Scholar
  119. Milner, R. J., Staples, J. A., & Lutton, G. G. (1998b). The selection of an isolate of the hyphomycete fungus, Metarhizium anisopliae, for control of termites in Australia. Biological Control, 11, 240–247.CrossRefGoogle Scholar
  120. Mishra, J., Tewari, S., Singh, S., & Arora, N. K. (2015). Biopesticide: Where we stand? In N. K. Arora (Ed.), Plant microbes Symbiosis: Applied facets (pp. 37–75). New Delhi: Springer.Google Scholar
  121. Moorhouse, E. R., Gillespie, A. T., Sellers, E. K., & Charnley, A. K. (1992). Influence of fungicides and insecticides on the entomogenous fungus Metarhizium anisopliae a pathogen of the vine weevil, Otiorhynchus sulcatus. Biocontrol Science and Technology, 2, 49–58.CrossRefGoogle Scholar
  122. Muma, M. H. (1958). Predators and parasites of citrus mite in Florida. Proceeding of 10th International Congress of Entomology, 4, 633–647.Google Scholar
  123. Mweke, A., Christian, U., & Paulin, N. (2018). Evaluation of the entomopathogenic fungi Metarhizium anisopliae, Beauveria bassiana and Isaria sp. for the management of Aphis craccivora (Hemiptera: Aphididdae). Journal of Economic Entomology, 111, 1587–1594.CrossRefGoogle Scholar
  124. Naejrech, B. B. (1973). Verticillium sp. pathogenic on aphids. Indian Phytopathology, 26, 163–164.Google Scholar
  125. Nunez, E., Iannacone, J., & Omez, H. G. (2008). Effect of two entomopathogenic fungi in controlling aleurodicus cocois (Curtis, 1846) (Hemiptera: Aleyrodidae). Chilean Journal of Agricultural Research, 68, 21–30.Google Scholar
  126. Ocampo, V. R., & Caoili, B. L. (2013). Infection process of entomopathogenic fungi Metarhizium anisopliae in the Tetranychus kanzawai (Kishida) (Tetranynichidae: Acarina). Agrivita, 35, 64.Google Scholar
  127. Omoto, C., & McCoy, C. W. (1998). Toxicity of purified fungal toxin hirsutellin A to the citrus rust mite Phyllocoptruta oleivora (ash.). Journal of Invertebrate Pathology, 72, 319–322.PubMedCrossRefPubMedCentralGoogle Scholar
  128. Ortiz-Urquiza, A., & Keyhani, N. O. (2015). Stress response signaling and virulence: Insights from entomopathogenic fungi. Current Genetics, 61, 239–249.CrossRefGoogle Scholar
  129. Ortiz-Urquiza, A., Luo, Z., & Keyhani, N. O. (2015). Improving mycoinsecticides for insect biological control. Applied Microbiology and Biotechnology, 99, 1057–1068.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Pan, W. Y., & Zheng, H. (1988). Report on application of Beauveria bassiana against Dendrolimus tabulaeformis in arid forest region. In Y. W. Li, J. W. Wu, Z. K. Wu, & Q. F. Xu (Eds.), Study and Application of Entomogenous Fungi in China (Vol. 1, pp. 77–79). Beijing: Academic Periodical Press.Google Scholar
  131. Patrick, W. & Kaskey, J. (2012). Biopesticide: Killer bugs for hire. Bloomberg Business Week.
  132. Peng, G., & Xia, Y. (2015). Integration of an insecticidal scorpion toxin (BjaIT) gene into Metarhizium acridum enhances fungal virulence towards Locusta migratoria manilensis. Management Science, 71, 58–64.Google Scholar
  133. Prior, C., & Greathead, D. G. (1989). Biological control of locusts: The potential for the exploitation of pathogens. FAO Plant Protection Bulletin, 37, 37–48.Google Scholar
  134. Protsenko, E. P. (1967). The importance of the fungus Aschersonia in nature and its practical use by man in the biological control of insects. Sbornik Po Karantinu Rastenii, 19, 147.Google Scholar
  135. Pulido, M. J., Guerrero, P. I., Martínez, M. I. D. J., Valadez, C. B., Guzman, T. J. C., Solis, S. E., Gutierrez, G. C. J., Schrank, A., Bremont, J. F., & Hernandez, G. A. (2011). Isolation, characterization and expression analysis of the ornithine decarboxylase gene (ODC1) of the entomopathogenic fungus, Metarhizium anisopliae. Microbiological Research, 166, 494–507.CrossRefGoogle Scholar
  136. Purcell, A. H. (1989). Homopteran transmission of xylem-inhabiting bacteria. In K. F. Harris (Ed.), Advances in disease vector research (pp. 243–266). New York: Springer.Google Scholar
  137. Purwar, J. R., & Sachan, G. C. (2006). Insect pest through entomopathogenic fungi: A review. Journal of Applied Bioscience, 32, 1–26.Google Scholar
  138. Rajak, R. C., Sandhu, S. S., Mukherjee, S., Kekre, S., & Gupta, A. (1991). Natural outbreak of Nomuraea rileyi on Junonia orithyia. Journal of Biological Control, 5, 123–124.Google Scholar
  139. Ramakers, P. M. J. (1983). Aschersonia aleyrodis a selective biological insecticide. IOBC/WPRS Bulletin, 6, 167–171.Google Scholar
  140. Ramanujam, B., Rangeshwaran, R., Sivakmar, G., Mohan, M., & Yandigeri, M. S. (2014). Management of insect pests by microorganisms. Proceedings of Indian National Science Academy, 80, 455–471.CrossRefGoogle Scholar
  141. Rangaswami, S., Ramamoorthi, K., & Oblisami, G. (1968). Final report, PL 480, studies on microbiology and pathology of insect pests of crop plants. Bangalore: Univiersity of Agriculture and Science.Google Scholar
  142. Rehner, S. A., & Buckley, E. (2005). A Beauveria phylogeny inferred from nuclear ITS and EF1-á sequences: Evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia, 97, 84–98.PubMedPubMedCentralGoogle Scholar
  143. Roberts, D. W., & Humber, R. A. (1981). Entomogenous fungi. In G. T. Cole & B. Kendrick (Eds.), Biology of conidial fungi (Vol. 2, pp. 201–236). Berlin: Academic.CrossRefGoogle Scholar
  144. Rossi-Zalaf, L. S., & Alves, S. B. (2006). Susceptibility of Brevipalpus phoenicis to entomopathogenic fungi. Experiment and Applied Acarology, 40, 37–47.CrossRefGoogle Scholar
  145. Samson, R. A., Evans, H. C., & Latgé, J. P. (1988). Atlas of Entomopathogenic Fungi (pp. 1–187). Berlin: Springer.CrossRefGoogle Scholar
  146. Sandhu, S. S., & Mishra, M. (1994). Larvicidal activity of fungal isolates Beaveria bassiana, Metarhizium anisopliae and Aspergillus flavus against mosquito sp. Culex pipiens. In Proceedings of the National Symposium on Advances in Biological Control of Insect Pests (145–150). New Delhi: Muzaffarnagar.Google Scholar
  147. Sandhu, S. S., & Vikrant, P. (2004). Myco-insecticides: Control of insect pests. In S. P. Gautam, S. S. Sandhu, A. Sharma, & A. K. Pandey (Eds.), Microbial diversity: Opportunities & Challenges (Vol. 3, pp. 47–53). New Delhi: Indica Publishers.Google Scholar
  148. Sandhu, S. S., Rajak, R. C., & Hasija, S. K. (2000). Potential of entomopathogens for the biological management of medically important pest: Progress and prospect. Glimpses in Plant Sciences, 2, 110–117.Google Scholar
  149. Santi, L., Silva, W. O. B., Pinto, A. F. M., Schrank, A., & Vainstein, M. H. (2010). Metarhizium anisopliae host–pathogen interaction: Differential immunoproteomics reveals proteins involved in the infection process of arthropods. Fungal Biology, 114, 312–319.PubMedCrossRefGoogle Scholar
  150. Seryczynska, H. & Bajan, C. (1975). Defensive reactions of L3, L4 larvae of the Colorado beetle to the insecticidal fungi Paecilomyces farinosus (Dicks) Brown Smith, Paecilomyces fumoso-roseus (Wize), Beauveria bassiana (Bols/Vuill.) (Fungi Imperfecti: Moniliales)”. Bulletin de l’Academie Polonaise des Sciences. Serie des Sciences Biologiques, 23, 267–271.Google Scholar
  151. Shah, P. A., & Goettel, M. S. (1999). Directory of microbial control products and services (pp. 81). Society, 2nd edn. Gainesville: Society for Invertebrate Pathology, Division on Microbial Control.Google Scholar
  152. Shah, P. A., Kooyman, C., & Paraso, A. (1997). Surveys for fungal pathogens of locusts and grasshoppers in Africa and the Near East. Memoirs of the Entomological Society Canada, 171, 27–35.CrossRefGoogle Scholar
  153. Shahid, A. A., Rao, A. Q., Bakhsh, A., & Husnain, T. (2012). Entomopathogenic fungi as biological controllers: New insight into their virulence and pathogenicity. Archives Biological Sciencse Belgrage, 64, 21–42.CrossRefGoogle Scholar
  154. Shang, Y., Duan, Z., Huang, W., Gao, Q., & Wang, C. (2012). Improving UV resistance and virulence of Beauveria bassiana by genetic engineering with an exogenous tyrosinase gene. Journal of Invertebrate Pathology, 109, 105–109.PubMedCrossRefGoogle Scholar
  155. Shaukat, A., Zhen, H., & Shunxiang, R. (2010). Production of cuticle degrading enzymes by Isaria fumosorosea and their evaluation as a biocontrol agent against diamondback moth. Journal of Pest Science, 83, 361–370.CrossRefGoogle Scholar
  156. Shaw, K., Davidson, G., Clark, S. J., Ball, B., Pell, J. K., Chandler, D., & Sunderland, K. D. (2002). Laboratory bioassays to assess the pathogenicity of mitosporic fungi to Varroa destructor (Acari: Mesostigmata), an ectoparasitic mite of the honeybee, Apis mellifera. Biological Control, 24, 266–276.CrossRefGoogle Scholar
  157. Sinha, R. P., & Häder, D. P. (2002). UV-induced DNA damage and repair: A review. Photochemical and Photobiological Sciences, 1, 225–236.PubMedCrossRefGoogle Scholar
  158. Solovey, Y. F., & Koltsov, P. D. (1976). Effect of the entomopathogenic fungus Aschersonia on the orange whitefly. Mikologiya i Fitopatologiya, 10, 425–424.Google Scholar
  159. Soman, A. G. (2001). Vertilecanins: New phenopicolinic acid analogues from Verticillium lecanii. Journal of Natural Products, 64, 189–119.PubMedCrossRefGoogle Scholar
  160. Spassova, P., Hristova, E., & Elenkov, E. S. (1980). Pathogenicity of various species of fungi belonging to the genera Aschersonia to the larvae of glass house white fly (Trialeurodes vaporariorum West Wood) on tomato and cucumber. Horticulture and Viticulture Science XVII, 5, 70–76.Google Scholar
  161. Srisukchayakul, P., Wiwat, C., & Pantuwatana, S. (2005). Studies on the pathogenesis of the local isolates of Nomuraea rileyi against Spodoptera litura. ScienceAsia, 31, 273–276.CrossRefGoogle Scholar
  162. St. Leger, R. J., & Butt, T. M. (1989). Synthesis of proteins including a cuticle-degrading protease during differentiation of the entomopathogenic fungus Metarhizium anisopliae. Experimental Mycology, 13, 253–262.CrossRefGoogle Scholar
  163. St. Leger, R., & Cooper, R. M. (1986). Cuticle-degrading enzymes of entomopathogenic fungi: Cuticle degradation in vitro by enzymes from entomopathogens. Journal of Invertebrate Pathology, 47, 167–177.CrossRefGoogle Scholar
  164. St. Leger, R., & Cooper, R. M. (1987). Distribution of chymoelastases and trypsin-like enzymes in five species of entomopathogenic deuteromycetes. Archieves of Biochemistry and Biophysics, 258, 123–131.CrossRefGoogle Scholar
  165. St. Leger, R. J., Joshi, L., Bidochka, M. J., & Roberts, D. W. (1996). Construction of an improved mycoinsecticide over-expressing a toxic protease. Proceedings of the National Academy of Sciences of the United States of America, 93, 6349–6354.PubMedPubMedCentralCrossRefGoogle Scholar
  166. Staats, C. C., Junges, A., Guedes, R. L. M., Thompson, C. E., de Morais, G. L., Boldo, J. T., de Almeida, L. G. P., Andreis, F. C., Gerber, A. L., & Sbaraini, N. (2014). Comparative genome analysis of entomopathogenic fungi reveals a complex set of secreted proteins. BMC Genomics, 15, 1–18.CrossRefGoogle Scholar
  167. Sztejnberg, A., Doron-Shloush, S., & Gerson, U. (1997). The biology of the acaropathogenic fungus Hirsutella kirchneri. International Journal of Biological Science and Technology, 7, 577–590.Google Scholar
  168. Tanada, Y. & Kaya, H. (1993). Insect pathology (pp. 665). New York: Academic.
  169. Tang, L. C., & Hou, R. F. (1998). Potential application of the entomopathogenic fungus, Nomurea riley for control of the corn ear worm, Helicoverpa armigera. Entomologia Experimentalis et Appicata, 88, 25–30.CrossRefGoogle Scholar
  170. Thakur, R., & Sandhu, S. S. (2010). Distribution, occurrence and natural invertebrate hosts of indigenous entomopathogenic fungi of Central India. Indian Journal of Microbiology, 50, 89–96.PubMedPubMedCentralCrossRefGoogle Scholar
  171. Thakur, R., Rajak, R. C., & Sandhu, S. S. (2005). Biochemical and molecular characteristics of indigenous strains of the entomopathogenic fungus Beauveria bassiana of Central India. Biocontrol Science and Technology, 15, 733–744.CrossRefGoogle Scholar
  172. Thompson, S. N., & Borchardt, D. B. (2003). Glucogenic blood sugar formation in an insect Manduca sexta L.: Asymmetric synthesis of trehalose from 13C enriched pyruvate. Comparative Biochemistry and Physiology e Part B: Biochemistry & Molecular Biology, 135, 461–471.CrossRefGoogle Scholar
  173. Tseng, M. N., Chung, P. C., & Tzean, S. S. (2011). Enhancing the stress tolerance and virulence of an entomopathogen by metabolic engineering of dihydroxynaphthalene melanin biosynthesis genes. Applied and Environmental Microbiology, 77, 4508–4519.PubMedPubMedCentralCrossRefGoogle Scholar
  174. U. N. Report. (2011). World population prospects: The 2010 revision. New York: United Nations.Google Scholar
  175. Uchida, M. (1970). Studies on the use of the parasitic fungus Aschersonia sp. for controlling citrus white fly, Dialeurodes citri. Bulletin of the Kanagawa Horticultural Experiment Station, 18, 66–74.Google Scholar
  176. Verhaar, M. A., Hijwegan, T., & Zadoks, J. C. (1996). Glasshouse experiment on biocontrol of Cucumber powdery mildew (Spharoetheca fuligenia) by the mycoparasites verticillum lecanii and Sporothrix rugulosa. Biological Control, 6, 353–360.CrossRefGoogle Scholar
  177. Wang, C., & St. Leger, R. J. (2006). A collagenous protective coat enables Metarhizium anisopliae to evade insect immune responses. Proceedings of the National Academy of Sciences of the United States of America, 103, 6647–6652.Google Scholar
  178. Wang, C., & St Leger, R. J. (2007a). The MAD1 adhesion of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects and the MAD2 adhesion enables attachment to plants. Eukaryotic Cell, 6, 808–816.PubMedPubMedCentralCrossRefGoogle Scholar
  179. Wang, C., & St Leger, R. J. (2007b). The Metarhizium anisopliae perilipin homology MPL1 regulates lipid metabolism, appressorial turgor pressure and virulence. Journal of Biological Chemistry, 282, 21110–21115.PubMedCrossRefPubMedCentralGoogle Scholar
  180. Wang, C., Duan, Z., & St Leger, R. J. (2008). MOS1 osmosensor of Metarhizium anisopliae is required for adaptation to insect host hemolymph. Eukaryotic Cell, 7, 302–309.PubMedCrossRefPubMedCentralGoogle Scholar
  181. Wang, S., Fang, W., Wang, C., Leger, S., & J, R. (2011). Insertion of an esterase gene into a specific locust pathogen (Metarhizium acridum) enables it to infect caterpillars. PLoS Pathogens, 7, e1002097.PubMedPubMedCentralCrossRefGoogle Scholar
  182. Wang, B., Kang, Q., Lu, Y., Bai, L., & Wang, C. (2012). Unveiling the biosynthetic puzzle of destruxins in Metarhizium species. Proceedings of the National Academy of Science of the United States of America, 109, 1287–1292.CrossRefGoogle Scholar
  183. Whipps, J. M. (1993). A review of white rust (Puccinia horiana Henn.) disease on Chrysanthemum and the potential for its biological control with verticillum lecanii (Zimm.) viegas. Annals of Applied Biology, 122, 173–187.CrossRefGoogle Scholar
  184. Wraight, S. P., Carruthers., R. I., Jaronski, S. T., Bradley, C. J. Garza, C. A. & Galaini-Wraight, S. (2000). Evaluation of the entomopathogenic fungi Beauveria bassiana and Paecilomyces fumosoroseus for microbial control of the silverleaf whitefly, Bemisia argentifolii. Biological Control, 17, 203–217.Google Scholar
  185. Wraight, S. P., Jackson, M. A., & de Kock, S. L. (2001). Production, stabilization and formulation of fungal biocontrol agents. In T. M. Butt, C. Jackson, & N. Magan (Eds.), Fungi as biocontrol agents: Progress, problems and potential (pp. 253–287). Wallingford: CAB International.CrossRefGoogle Scholar
  186. Xiao, G., Ying, S. H., Zheng, P., Wang, Z. L., Zhang, S., Xie, X. Q., Shang, y., St Leger, R. J., Zhao, G. P., Wang, C., & Feng, M. G. (2012). Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Scientific Reports, 2, 483.PubMedPubMedCentralCrossRefGoogle Scholar
  187. Xu, C., Zhang, X., Qian, Y., Chen, X., Liu, R., Zeng, G., Zhao, H., & Fang, W. (2014). A high-throughput gene disruption methodology for the entomopathogenic fungus Metarhizium robertsii. PLoSOne, 9, e107657.CrossRefGoogle Scholar
  188. Yang, L., Keyhani, N. O., Tang, G., Tian, C., Lu, R., Wang, X., Pei, Y., & Fan, Y. (2014). Expression of a toll signaling regulator serpin in a mycoinsecticide for increased virulence. Applied and Environmental Microbiology, 80, 4531–4539.PubMedPubMedCentralCrossRefGoogle Scholar
  189. Ye, M. Z., Han, G. V., Fu, C. L., & Bao, J. E. (1993). Insecticidal toxin produced by the entomogenous fungus Nomuraea rileyi. Acta Agriculturaw Universitatis Zhejiangeusis, 19, 76–79.Google Scholar
  190. Yeo, H. (2000). Myco insecticides for aphid management: A biorational approach. PhD thesis, University of Nottingham.Google Scholar
  191. Ying, S. H., & Feng, M. G. (2011). Integration of Escherichia coli thioredoxin (trxA) into Beauveria bassiana enhances the fungal tolerance to the stresses of oxidation, heat and UV-B irradiation. Biological Control, 59, 255–260.CrossRefGoogle Scholar
  192. Zhao, H., Xu, C., Lu, H. L., Chen, X., St. Leger, R. J., & Fang, W. (2014). Hostto- pathogen gene transfer facilitated infection of insects by a pathogenic fungus. PLoS Pathogens, 10, e1004009.PubMedPubMedCentralCrossRefGoogle Scholar
  193. Zhao, H., Lovett, B., & Fang, W. (2016a). Genetically engineering entomopathogenic fungi. Advances in Genetics, 94, 137–163.PubMedCrossRefPubMedCentralGoogle Scholar
  194. Zhao, J., Yao, R., Wei, Y., Huang, S., Keyhani, N. O., & Huang, Z. (2016b). Screening of Metarhizium anisopliae UV-induced mutants for faster growth yields a hyper-virulent isolate with greater UV and thermal tolerances. Applied Microbiology and Biotechnology, 100, 9217–9228.PubMedCrossRefPubMedCentralGoogle Scholar
  195. Zhen, H., Yongfen, H., Tianni, G., Yu, H., Shunxiang, R., & Nemat, O. (2016). The Ifchit chitinase gene acts as avirulence factor in the insect pathogenic fungus Isaria fumosorosea. Applied Microbiology and Biotechnology, 100(12), 5491.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tariq Ahmad
    • 1
    • 2
    Email author
  • Ajaz Rasool
    • 2
  • Shaziya Gull
    • 2
  • Dietrich Stephan
    • 1
  • Shabnum Nabi
    • 3
  1. 1.Federal Research Centre for Cultivated Plants, Institute for Biological ControlJulius Kühn InstituteDarmstadtGermany
  2. 2.Entomology Research Laboratory, Postgraduate Department of ZoologyUniversity of KashmirSrinagarIndia
  3. 3.Interdisciplinary Brain Research Centre, J. N. Medical CollegeAligarh Muslim UniversityAligarhIndia

Personalised recommendations