Advertisement

SMT-based Planning for Robots in Smart Factories

  • Arthur Bit-MonnotEmail author
  • Francesco Leofante
  • Luca Pulina
  • Armando Tacchella
Conference paper
  • 699 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11606)

Abstract

Smart factories are on the verge of becoming the new industrial paradigm, wherein optimization permeates all aspects of production, from concept generation to sales. To fully pursue this paradigm, flexibility in the production means as well as in their timely organization is of paramount importance. AI planning can play a major role in this transition, but the scenarios encountered in practice might be challenging for current tools. We explore the use of SMT at the core of planning techniques to deal with real-world scenarios in the emerging smart factory paradigm. We present special-purpose and general-purpose algorithms, based on current automated reasoning technology and designed to tackle complex application domains. We evaluate their effectiveness and respective merits on a logistic scenario, also extending the comparison to other state-of-the-art task planners.

Keywords

Temporal planning SMT Smart factories 

Notes

Acknowledgements

The research of Arthur Bit-Monnot and Luca Pulina has been funded by the EU Commission’s H2020 Program under grant agreement N.732105 (CERBERO project). The research of Luca Pulina has been also partially funded by the Sardinian Regional Project PROSSIMO (POR FESR 2014/20-ASSE I) and the FitOptiVis (ID: 783162) project.

References

  1. 1.
    Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Satisfiability (2009)Google Scholar
  2. 2.
    Benton, J., Coles, A., Coles, A.: Temporal planning with preferences and time-dependent continuous costs. In: ICAPS (2012)Google Scholar
  3. 3.
    Bit-Monnot, A.: Temporal and hierarchical models for planning and acting in robotics. Ph.D. thesis, Université de Toulouse (2016)Google Scholar
  4. 4.
    Bit-Monnot, A.: A constraint-based encoding for domain-independent temporal planning. In: Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 30–46. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-98334-9_3CrossRefGoogle Scholar
  5. 5.
    Bjørner, N., Phan, A.-D., Fleckenstein, L.: vZ - an optimizing SMT solver. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 194–199. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46681-0_14CrossRefGoogle Scholar
  6. 6.
    Cashmore, M., Fox, M., Long, D., Magazzeni, D.: A compilation of the full PDDL+ language into SMT. In: ICAPS (2016)Google Scholar
  7. 7.
    Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R., Stenico, C.: Satisfiability modulo the theory of costs: foundations and applications. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 99–113. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-12002-2_8CrossRefzbMATHGoogle Scholar
  8. 8.
    Cimatti, A., Griggio, A.: Software model checking via IC3. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 277–293. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31424-7_23CrossRefGoogle Scholar
  9. 9.
    Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93–107. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36742-7_7CrossRefzbMATHGoogle Scholar
  10. 10.
    Coles, A., Coles, A., Fox, M., Long, D.: Forward-chaining partial-order planning. In: ICAPS (2010)Google Scholar
  11. 11.
    Cushing, W., Kambhampati, S., Mausam, Weld, D.S.: When is temporal planning really temporal? In: IJCAI (2007)Google Scholar
  12. 12.
    Dvorák, F., Barták, R., Bit-Monnot, A., Ingrand, F., Ghallab, M.: Planning and acting with temporal and hierarchical decomposition models. In: ICTAI (2014)Google Scholar
  13. 13.
    Fox, M., Long, D.: PDDL2.1: an extension to PDDL for expressing temporal planning domains. JAIR 20, 61–124 (2003)CrossRefGoogle Scholar
  14. 14.
    Ghallab, M., Laruelle, H.: Representation and control in IxTeT, a temporal planner. In: AIPS (1994)Google Scholar
  15. 15.
    Ghallab, M., Nau, D.S., Traverso, P.: Automated Planning: Theory and Practice (2004)CrossRefGoogle Scholar
  16. 16.
    Howey, R., Long, D., Fox, M.: VAL: automatic plan validation, continuous effects and mixed initiative planning using PDDL. In: ICTAI (2004)Google Scholar
  17. 17.
    Kautz, H.A., Selman, B.: Planning as satisfiability. In: ECAI (1992)Google Scholar
  18. 18.
    Laborie, P., Rogerie, J.: Reasoning with conditional time-intervals. In: FLAIRS (2008)Google Scholar
  19. 19.
    Laborie, P., Rogerie, J., Shaw, P., Vilím, P.: Reasoning with conditional time-intervals. Part II: an algebraical model for resources. In: FLAIRS (2009)Google Scholar
  20. 20.
    Leofante, F., Ábrahám, E., Niemueller, T., Lakemeyer, G., Tacchella, A.: On the synthesis of guaranteed-quality plans for robot fleets in logistics scenarios via optimization modulo theories. In: IRI (2017)Google Scholar
  21. 21.
    Leofante, F., Ábrahám, E., Niemueller, T., Lakemeyer, G., Tacchella, A.: Integrated synthesis and execution of optimal plans for multi-robot systems in logistics. Inf. Syst. Front. 21, 87–107 (2018)CrossRefGoogle Scholar
  22. 22.
    Leofante, F., Ábrahám, E., Tacchella, A.: Task planning with OMT: an application to production logistics. In: Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS, vol. 11023, pp. 316–325. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-98938-9_18CrossRefGoogle Scholar
  23. 23.
    de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78800-3_24CrossRefGoogle Scholar
  24. 24.
    Niemueller, T., Karpas, E., Vaquero, T., Timmons, E.: Planning competition for logistics robots in simulation. In: PlanRob (2016)Google Scholar
  25. 25.
    Niemueller, T., Lakemeyer, G., Ferrein, A.: The RoboCup logistics league as a benchmark for planning in robotics. In: PlanRob (2015)Google Scholar
  26. 26.
    Smith, D.E., Frank, J., Cushing, W.: The ANML Language. In: ICAPS (2008)Google Scholar
  27. 27.
    Zhong, R.Y., Xu, X., Klotz, E., Newman, S.T.: Intelligent manufacturing in the context of industry 4.0: a review. Engineering 3(5), 616–630 (2017)CrossRefGoogle Scholar
  28. 28.
    Zwilling, F., Niemueller, T., Lakemeyer, G.: Simulation for the RoboCup logistics league with real-world environment agency and multi-level abstraction. In: Bianchi, R.A.C., Akin, H.L., Ramamoorthy, S., Sugiura, K. (eds.) RoboCup 2014. LNCS (LNAI), vol. 8992, pp. 220–232. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18615-3_18CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Arthur Bit-Monnot
    • 1
    Email author
  • Francesco Leofante
    • 1
    • 2
    • 3
  • Luca Pulina
    • 1
  • Armando Tacchella
    • 3
  1. 1.University of SassariSassariItaly
  2. 2.RWTH Aachen UniversityAachenGermany
  3. 3.University of GenoaGenoaItaly

Personalised recommendations