Advertisement

A Taxonomy of Event Prediction Methods

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11606)

Abstract

Most of existing event prediction approaches consider event prediction problems within a specific application domain while event prediction is naturally a cross-disciplinary problem. This paper introduces a generic taxonomy of event prediction approaches. The proposed taxonomy, which oversteps the application domain, enables a better understanding of event prediction problems and allows conceiving and developing advanced and context-independent event prediction techniques.

Keywords

Time series Event prediction Taxonomy Data mining 

References

  1. 1.
    Akbar, A., Khan, A., Carrez, F., Moessner, K.: Predictive analytics for complex IoT data streams. IEEE Internet Things J. 4(5), 1571–1582 (2017)Google Scholar
  2. 2.
    Alaka, H., Oyedele, L., Owolabi, H., Ajayi, S., Bilal, M., Akinade, O.: Methodological approach of construction business failure prediction studies: a review. Constr. Manag. Econ. 34(11), 808–842 (2016)Google Scholar
  3. 3.
    Austin, P., Lee, D., Steyerberg, E., Tu, J.: Regression trees for predicting mortality in patients with cardiovascular disease: what improvement is achieved by using ensemble-based methods? Biometrical J. 54(5), 657–673 (2012)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Aydin, I., Karakose, M., Akin, E.: The prediction algorithm based on fuzzy logic using time series data mining method. World Acad. Sci. Eng. Technol. 51(27), 91–98 (2009)Google Scholar
  5. 5.
    Balcaen, S., Ooghe, H.: 35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems. Br. Acc. Rev. 38, 63–93 (2006)Google Scholar
  6. 6.
    Baldoni, R., Montanari, L., Rizzuto, M.: On-line failure prediction in safety-critical systems. Future Gener. Comput. Syst. 45, 123–132 (2015)Google Scholar
  7. 7.
    Barbot, S., Lapusta, N., Avouac, J.P.: Under the hood of the earthquake machine: toward predictive modeling of the seismic cycle. Science 336(6082), 707–710 (2012)Google Scholar
  8. 8.
    Batal, I., Cooper, G., Fradkin, D., Harrison Jr., J., Moerchen, F., Hauskrecht, M.: An efficient pattern mining approach for event detection in multivariate temporal data. Knowl. Inf. Syst. 46(1), 115–150 (2015)Google Scholar
  9. 9.
    Bergstrom, S.: Development and application of a conceptual runoff model for Scandinavian catchments. Techncial report, SMHI RHO 7 (1976)Google Scholar
  10. 10.
    Blazkov, S., Beven, K.: Flood frequency prediction for data limited catchments in the Czech Republic using a stochastic rainfall model and topmodel. J. Hydrol. 195(1–4), 256–278 (1997)Google Scholar
  11. 11.
    Bosse, T., Sharpanskykh, A., Treur, J.: Integrating agent models and dynamical systems. In: Baldoni, M., Son, T.C., van Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2007. LNCS (LNAI), vol. 4897, pp. 50–68. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-77564-5_4CrossRefGoogle Scholar
  12. 12.
    Brunner, G.: HEC-RAS river analysis system hydraulic reference manual. version 5.0. Technical report, Hydrologic Engineering Center, Davis, CA (2016)Google Scholar
  13. 13.
    Cabedo, J., Tirado, J.: Rough sets and discriminant analysis techniques for business default forecasting. Fuzzy Econ. Rev. 20(1), 3–37 (2015)Google Scholar
  14. 14.
    Casulli, V., Stelling, G.: Numerical simulation of 3D quasi-hydrostatic, free-surface flows. J. Hydraul. Eng. 124(7), 678–686 (1998)Google Scholar
  15. 15.
    Cheng, M.Y., Hoang, N.D.: Evaluating contractor financial status using a hybrid fuzzy instance based classifier: case study in the construction industry. IEEE Trans. Eng. Manag. 62(2), 184–192 (2015)Google Scholar
  16. 16.
    Damle, C., Yalcin, A.: Flood prediction using time series data mining. J. Hydrol. 333, 305–316 (2006)Google Scholar
  17. 17.
    Denny, M., Hunt, L., Miller, L., Harley, C.: On the prediction of extreme ecological events. Ecol. Monogr. 93(3), 397–421 (2009)Google Scholar
  18. 18.
    Dodig-Crnkovic, G., Giovagnoli, R.: Computing nature-a network of networks of concurrent information processes. In: Dodig-Crnkovic, G., Giovagnoli, R. (eds.) Computing Nature, vol. 7, pp. 1–22. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37225-4_1CrossRefGoogle Scholar
  19. 19.
    du Jardin, P.: Bankruptcy prediction using terminal failure processes. Eur. J. Oper. Res. 242(1), 286–303 (2015)MathSciNetzbMATHGoogle Scholar
  20. 20.
    du Jardin, P., Séverin, E.: Predicting corporate bankruptcy using a self-organizing map: an empirical study to improve the forecasting horizon of a financial failure model. Decis. Support Syst. 51(3), 701–711 (2011)Google Scholar
  21. 21.
    Epstein, J.: Generative Social Science: Studies in Agent-Based Computational Modeling. Princeton University Press, Princeton (2006)zbMATHGoogle Scholar
  22. 22.
    Florido, E., Martínez-Álvarez, F., Morales-Esteban, A., Reyes, J., Aznarte-Mellado, J.: Detecting precursory patterns to enhance earthquake prediction in Chile. Comput. Geosci. 76, 112–120 (2015)Google Scholar
  23. 23.
    Franz, K., Hartmann, H., Sorooshian, S., Bales, R.: Verification of national weather service ensemble streamflow predictions for water supply forecasting in the colorado river basin. J. Hydrometeorol. 4(6), 1105–1118 (2003)Google Scholar
  24. 24.
    Fülöp, L., Beszédes, A., Tóth, G., Demeter, H., Vidács, L., Farkas, L.: Predictive complex event processing: a conceptual framework for combining complex event processing and predictive analytics. In: Proceedings of the Fifth Balkan Conference in Informatics, BCI 2012, pp. 26–31. ACM, New York (2012)Google Scholar
  25. 25.
    Ghil, M., et al.: Extreme events: dynamics, statistics and prediction. Nonlinear Process. Geophys. 18, 295–350 (2011)Google Scholar
  26. 26.
    Gmati, F.E., Chakhar, S., Lajoued Chaari, W., Chen, H.: A rough set approach to events prediction in multiple time series. In: Mouhoub, M., Sadaoui, S., Ait Mohamed, O., Ali, M. (eds.) IEA/AIE 2018. LNCS (LNAI), vol. 10868, pp. 796–807. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-92058-0_77CrossRefGoogle Scholar
  27. 27.
    Hamerly, G., Elkan, C.: Bayesian approaches to failure prediction for disk drives. In: Proceedings of the Eighteenth International Conference on Machine Learning, ICML 2001, pp. 202–209. Morgan Kaufmann Publishers Inc., San Francisco (2001)Google Scholar
  28. 28.
    Hull, T.: A deterministic scenario approach to risk management. In: Enterprise Risk Management Symposium, Society of Actuaries, April edn, Chicago, IL, pp. 1–7 (2010)Google Scholar
  29. 29.
    Iturriaga, F., Sanz, I.: Bankruptcy visualization and prediction using neural networks: a study of U.S. commercial banks. Expert Syst. Appl. 42(6), 2857–2869 (2015)Google Scholar
  30. 30.
    Devia, G.K., Ganasri, B., Dwarakish, G.: A review on hydrological models. Aquatic Procedia 4, 1001–1007 (2015)Google Scholar
  31. 31.
    Li, Y., Lawley, M.A., Siscovick, D.S., Zhang, D., Pagán, J.A.: Agent-based modeling of chronic diseases: a narrative review and future research directions. Preventing Chronic Dis. 13 (2016).  https://doi.org/10.5888/pcd13.150561
  32. 32.
    Lin, W.Y., Hu, Y., Tsai, C.F.: Machine learning in financial crisis prediction: a survey. IEEE Trans. Syst. Man Cybern. 42(4), 421–436 (2012)Google Scholar
  33. 33.
    Hopson, T.M., Webster, P.: A 1–10-day ensemble forecasting scheme for the major river basins of Bangladesh: forecasting severe floods of 2003–07. J. Hydrometeorol. 11(3), 618–641 (2010)Google Scholar
  34. 34.
    Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event sequences. Data Min. Knowl. Discov. 1(3), 259–289 (1997)Google Scholar
  35. 35.
    Martínez-Álvarez, F., Troncoso, A., Morales-Esteban, A., Riquelme, J.: Computational intelligence techniques for predicting earthquakes. In: International Conference on Hybrid Artificial Intelligence Systems, pp. 287–294 (2011)Google Scholar
  36. 36.
    Mdhaffar, A., Rodriguez, I., Charfi, K., Abid, L., Freisleben, B.: CEP4HFP: complex event processing for heart failure prediction. IEEE Trans. NanoBiosci. 16(8), 708–717 (2017)Google Scholar
  37. 37.
    Merkuryeva, G., Merkuryev, Y., Sokolov, B., Potryasaev, S., Zelentsov, V., Lektauers, A.: Advanced river flood monitoring, modelling and forecasting. J. Comput. Sci. 10, 77–85 (2014)Google Scholar
  38. 38.
    Meyers, R.: Extreme Environmental Events: Complexity in Forecasting and Early Warning. Springer, New York (2010)zbMATHGoogle Scholar
  39. 39.
    Mitsa, T.: Temporal Data Mining. CRC Press, Boca Raton (2010)zbMATHGoogle Scholar
  40. 40.
    Morales-Esteban, A., Martínez-Álvarez, F., Troncoso, A., Justo, J., Rubio-Escudero, C.: Pattern recognition to forecast seismic time series. Expert Syst. Appl. 37, 8333–8342 (2010)Google Scholar
  41. 41.
    Morchen, F., Ultsch, A.: Discovering temporal knowledge in multivariate time series. In: Weihs, C., Gaul, W. (eds.) Classification - The Ubiquitous Challenge, pp. 272–279. Springer, Heidelberg (2005).  https://doi.org/10.1007/3-540-28084-7_30CrossRefGoogle Scholar
  42. 42.
    Nwogugu, M.: Decision-making, risk and corporate governance: new dynamic models/algorithms and optimization for bankruptcy decisions. Appl. Math. Comput. 179(1), 386–401 (2006)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Povinelli, R.: Time series data mining: identifying temporal patterns for characterization and prediction of time series events. Ph.D. thesis, Marquette University, Milwaukee, WI (1999)Google Scholar
  44. 44.
    Povinelli, R.J.: Identifying temporal patterns for characterization and prediction of financial time series events. In: Roddick, J.F., Hornsby, K. (eds.) TSDM 2000. LNCS (LNAI), vol. 2007, pp. 46–61. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45244-3_5CrossRefzbMATHGoogle Scholar
  45. 45.
    Povinelli, R., Feng, X.: A new temporal pattern identification method for characterization and prediction of complex time series events. IEEE Trans. Knowl. Data Eng. 15(2), 339–352 (2003)Google Scholar
  46. 46.
    Preston, D., Protopapas, P., Brodley, C.: Event discovery in time series. In: Apte, C., Park, H., Wang, K., Zaki, M. (eds.) Proceedings of the 2009 SIAM International Conference on Data Mining, pp. 61–72. SIAM (2009).  https://doi.org/10.1137/1.9781611972795.6
  47. 47.
    Rafiei, M., Adeli, H.: NEEWS: a novel earthquake early warning model using neural dynamic classification and neural dynamic optimization. Soil Dyn. Earthq. Eng. 100, 417–427 (2017)Google Scholar
  48. 48.
    Razmi, A., Golian, S., Zahmatkesh, Z.: Non-stationary frequency analysis of extreme water level: application of annual maximum series and peak-over threshold approaches. Water Resour. Manag. 31(7), 2065–2083 (2017)Google Scholar
  49. 49.
    Sahoo, R., et al.: Critical event prediction for proactive management in large-scale computer clusters. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 426–435. ACM, New York (2003)Google Scholar
  50. 50.
    Samuel, O., Grace, G., Sangaiah, A., Fang, P., Li, G.: An integrated decision support system based on ANN and Fuzzy\(\_\)AHP for heart failure risk prediction. Expert Syst. Appl. 68, 163–172 (2017)Google Scholar
  51. 51.
    Tak-chung, F.: A review on time series data mining. Eng. Appl. Artif. Intell. 24(1), 164–181 (2011)Google Scholar
  52. 52.
    Tamari, M.: Financial ratios as a means of forecasting bankruptcy. Manag. Int. Rev. 6(4), 15–21 (1966)Google Scholar
  53. 53.
    Thielen, J., Bartholmes, J., Ramos, M.H., de Roo, A.: The European flood alert system-part 1: concept and development. Hydrol. Earth Syst. Sci. 13(2), 125–140 (2009)Google Scholar
  54. 54.
    Vilalta, R., Apte, C., Hellerstein, J., Ma, S., Weiss, S.: Predictive algorithms in the management of computer systems. IBM Syst. J. 41(3), 461–474 (2002)Google Scholar
  55. 55.
    Vrugt, J., ter Braak, C., Clark, M., Hyman, J.M., Robinson, B.: Treatment of input uncertainty in hydrologic modeling: doing hydrology backward with Markov chain Monte Carlo simulation. Water Resour. Res. 44(12) (2008).  https://doi.org/10.1029/2007WR006720
  56. 56.
    Wang, C., Vo, H., Ni, P.: An IoT application for fault diagnosis and prediction. In: 2015 IEEE International Conference on Data Science and Data Intensive Systems, pp. 726–731. IEEE (2015)Google Scholar
  57. 57.
    Wang, S.: Online monitoring and prediction of complex time series events from nonstationary time series data. Ph.D. thesis, Rutgers University-Graduate School-New Brunswick (2012)Google Scholar
  58. 58.
    Wang, Y., Gao, H., Chen, G.: Predictive complex event processing based on evolving Bayesian networks. Pattern Recogn. Lett. 105, 207–216 (2018)Google Scholar
  59. 59.
    Weiss, G., Hirsh, H.: Learning to predict rare events in categorical time-series data. Techncal report, AAAI (1998). www.aaai.org
  60. 60.
    Yan, X.B., Lu, T., Li, Y.J., Cui, G.B.: Research on event prediction in time-series data. In: Proceedings of International Conference on Machine Learning and Cybernetics, Shanghai, vol. 5, pp. 2874–2878, August 2004Google Scholar
  61. 61.
    Yue, S., Ouarda, T., Bobee, B., Legendre, P., Bruneau, P.: The Gumbel mixed model for flood frequency analysis. J. Hydrol. 226, 88–100 (1999)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.COSMOS, National School of Computer SciencesUniversity of ManoubaManoubaTunisia
  2. 2.Portsmouth Business SchoolUniversity of PortsmouthPortsmouthUK
  3. 3.CORLUniversity of PortsmouthPortsmouthUK

Personalised recommendations