Advertisement

Autonomous Monitoring of Air Quality Through an Unmanned Aerial Vehicle

  • Víctor H. AndaluzEmail author
  • Fernando A. Chicaiza
  • Geovanny CuzcoEmail author
  • Christian P. Carvajal
  • Jessica S. OrtizEmail author
  • José MoralesEmail author
  • Vicente MoralesEmail author
  • Darwin S. SarzosaEmail author
  • Jorge Mora-AguilarEmail author
  • Gabriela M. AndaluzEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11606)

Abstract

The monitoring of air quality allows to evaluate the amount of harmful particles for health that are being released. Under this paradigm and knowing the current methods to monitor these parameters, this work proposes the use of a UAV for commercial use and the construction of a card for gas measurement. Additionally and with the objective of having complete control over the vehicle, the article proposes the development of a library for the control and monitoring of the instrumentation of a commercial drone, through which the validation of control algorithms is proposed. As a result of this work, two real experiments on a rural environment and an urban environment are carried out to validate both the library created and the method of acquiring information on air quality.

Keywords

Air quality UAV Linear algebra Advanced controller 

Notes

Acknowledgements

The authors would like to thanks to the Corporación Ecuatoriana para el Desarrollo de la Investigación y Academia–CEDIA for the financing given to research, development, and innovation, through the CEPRA projects, especially the project CEPRA-XI-2017-06; Control Coordinado Multi-operador aplicado a un robot Manipulador Aéreo; also to Universidad de las Fuerzas Armadas ESPE, Universidad Técnica de Ambato, Escuela Superior Politécnica de Chimborazo, Universidad Nacional de Chimborazo, and Grupo de Investigación ARSI, for the support to develop this work.

References

  1. 1.
    Kumar, P., et al.: The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 75, 199–205 (2015)CrossRefGoogle Scholar
  2. 2.
    Strak, M., et al.: Long-term exposure to particulate matter, NO2 and the oxidative potential of particulates and diabetes prevalence in a large national health survey. Environ. Int. 108(2), 228–236 (2017)CrossRefGoogle Scholar
  3. 3.
    Honda, T., Pun, V.C., Manjourides, J., Suh, H.: Anemia prevalence and hemoglobin levels are associated with long-term exposure to air pollution in an older population. Environ. Int. 101, 125–132 (2017)CrossRefGoogle Scholar
  4. 4.
    Tziviana, L., et al.: Effect of long-term outdoor air pollution and noise on cognitive and psychological functions in adults. Int. J. Hyg. Environ. Health 216, 11 (2014)Google Scholar
  5. 5.
    Liu, L., et al.: Influence of exposure to coarse, fine and ultrafine urban particulate matter and their biological constituents on neural biomarkers in a randomized controlled crossover study. Environ. Int. 101, 89–95 (2017)CrossRefGoogle Scholar
  6. 6.
    Ortega-García, J.A., López-Hernández, F.A., Cárceles-Álvarez, A., Fuster-Soler, J.L., Sotomayor, D.I., Ramis, R.: Childhood cancer in small geographical areas and proximity to air-polluting industries. Environ. Res. 156(March), 63–73 (2017)CrossRefGoogle Scholar
  7. 7.
    Britton, A.J., Hewison, R.L., Mitchell, R.J., Riach, D.: Pollution and climate change drive long-term change in Scottish wetland vegetation composition. Biol. Conserv. 210(April), 72–79 (2017)CrossRefGoogle Scholar
  8. 8.
    Castell, N., et al.: Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ. Int. 99, 293–302 (2017)CrossRefGoogle Scholar
  9. 9.
    Honda, T., Pun, V.C., Manjourides, J., Suh, H.: Associations between long-term exposure to air pollution, glycosylated hemoglobin and diabetes. Int. J. Hyg. Environ. Health 220(7), 1124–1132 (2017)CrossRefGoogle Scholar
  10. 10.
    Ortiz, J.S., Zapata, C.F., Vega, A.D., Andaluz, V.H.: Path planning based on visual feedback between terrestrial and aerial robots cooperation. In: Zeghloul, S., Romdhane, L., Laribi, M.A. (eds.) Computational Kinematics. MMS, vol. 50, pp. 96–105. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-60867-9_12CrossRefGoogle Scholar
  11. 11.
    Andaluz, Víctor H., et al.: Nonlinear controller of quadcopters for agricultural monitoring. In: Bebis, G., et al. (eds.) ISVC 2015. LNCS, vol. 9474, pp. 476–487. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-27857-5_43CrossRefGoogle Scholar
  12. 12.
    Siebert, S., Teizer, D.J.: Mobile 3D mapping for surveying earthwork using an unmanned aerial vehicle (UAV). J. Chem. Inf. Model. 53(9), 1689–1699 (2013)Google Scholar
  13. 13.
    Pajares, G.: Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogram. Eng. Remote Sens. 81(4), 281–330 (2015)CrossRefGoogle Scholar
  14. 14.
    Szafranski, G., Czyba, R.: Different approaches of PID control UAV type quadrotor, pp. 70–75 (2011)Google Scholar
  15. 15.
    Kayacan, E., Maslim, R.: Type-2 fuzzy logic trajectory tracking control of quadrotor VTOL aircraft with elliptic membership functions. IEEE/ASME Trans. Mechatron. 22(1), 339–348 (2017)CrossRefGoogle Scholar
  16. 16.
    Chakravarty, P., Kelchtermans, K., Roussel, T., Wellens, S., Tuytelaars, T., Van Eycken, L.: CNN-based single image obstacle avoidance on a quadrotor, pp. 6369–6374 (2017)Google Scholar
  17. 17.
    Kahn, G., Villaflor, A., Pong, V., Abbeel, P., Levine, S.: Uncertainty-aware reinforcement learning for collision avoidance (2017)Google Scholar
  18. 18.
    Emam, M., Fakharian, A.: M. Emam 1, 4993Google Scholar
  19. 19.
    Abdurrohman, M.Q., et al.: A modified gain schedulling controller by considering the sparseness property of UAV quadrotors. J. Mechatron. Electr. Power Veh. Technol. 6(1), 9 (2015)CrossRefGoogle Scholar
  20. 20.
    Parhizkar, N.: Experimental investigation of rotational control of a constrained quadrotor using backstepping method, no. 1Google Scholar
  21. 21.
    Chen, F., Lei, W., Zhang, K., Tao, G., Jiang, B.: A novel nonlinear resilient control for a quadrotor UAV via backstepping control and nonlinear disturbance observer. Nonlinear Dyn. 85, 1281–1295 (2016)CrossRefGoogle Scholar
  22. 22.
    Xu, J., Wang, M., Qiao, L.: Dynamical sliding mode control for the trajectory tracking of underactuated unmanned underwater vehicles. Ocean Eng. 105, 54–63 (2015)CrossRefGoogle Scholar
  23. 23.
    Bonna, R., Camino, J.: Trajectory tracking control of a quadrotor using feedback linearization. In: Proceedings of XVII International Symposium on Dynamic Problems of Mechanics, no. 2013 (2015)Google Scholar
  24. 24.
    Andaluz, V.H., Carvajal, C.P., Pérez, J.A., Proaño, L.E.: Kinematic nonlinear control of aerial mobile manipulators. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds.) ICIRA 2017. LNCS (LNAI), vol. 10464, pp. 740–749. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-65298-6_66CrossRefGoogle Scholar
  25. 25.
    Andaluz, V.H., et al.: Robot nonlinear control for unmanned aerial vehicles’ multitasking. Assem. Autom. 38, 645–660 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universidad de las Fuerzas Armadas ESPESangolquíEcuador
  2. 2.Universidad Nacional de ChimborazoRiobambaEcuador
  3. 3.Escuela Superior Politécnica de ChimborazoRiobambaEcuador
  4. 4.Universidad Técnica de AmbatoAmbatoEcuador
  5. 5.Universidad Internacional del EcuadorQuitoEcuador

Personalised recommendations