Effective Embeddings for Pairs of Structures

  • Nikolay Bazhenov
  • Hristo Ganchev
  • Stefan VatevEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11558)


We study computable embeddings for pairs of structures, i.e. for classes containing precisely two non-isomorphic structures. We show that computable embeddings induce a non-trivial degree structure for two-element classes consisting of computable structures, in particular the pair of linear orders \(\{\omega , \omega ^\star \}\), which are the order types of the positive integers and the negative integers, respectively.


  1. 1.
    Ash, C.J., Knight, J.F.: Pairs of recursive structures. Ann. Pure Appl. Logic 46(3), 211–234 (1990). Scholar
  2. 2.
    Ash, C.J., Knight, J.F.: Computable Structures and the Hyperarithmetical Hierarchy. Studies in Logic and the Foundations of Mathematics, vol. 44. Elsevier Science B.V., Amsterdam (2000)zbMATHGoogle Scholar
  3. 3.
    Bazhenov, N.: Autostability spectra for decidable structures. Math. Struct. Comput. Sci. 28(3), 392–411 (2018). Scholar
  4. 4.
    Calvert, W., Cummins, D., Knight, J.F., Miller, S.: Comparing classes of finite structures. Algebra Logic 43(6), 374–392 (2004). Scholar
  5. 5.
    Chisholm, J., Knight, J.F., Miller, S.: Computable embeddings and strongly minimal theories. J. Symb. Log. 72(3), 1031–1040 (2007). Scholar
  6. 6.
    Ershov, Y.L., Puzarenko, V.G., Stukachev, A.I.: \(HF\)-Computability. In: Cooper, S.B., Sorbi, A. (eds.) Computability in Context, pp. 169–242. Imperial College Press, London (2011). Scholar
  7. 7.
    Fokina, E., Knight, J.F., Melnikov, A., Quinn, S.M., Safranski, C.: Classes of Ulm type and coding rank-homogeneous trees in other structures. J. Symb. Log. 76(3), 846–869 (2011). Scholar
  8. 8.
    Friedman, H., Stanley, L.: A Borel reducibility theory for classes of countable structures. J. Symb. Log. 54(3), 894–914 (1989). Scholar
  9. 9.
    Goncharov, S., Harizanov, V., Knight, J., McCoy, C., Miller, R., Solomon, R.: Enumerations in computable structure theory. Ann. Pure Appl. Logic 136(3), 219–246 (2005). Scholar
  10. 10.
    Harrison-Trainor, M., Melnikov, A., Miller, R., Montálban, A.: Computable functors and effective interpretability. J. Symb. Log. 82(1), 77–97 (2017). Scholar
  11. 11.
    Hirschfeldt, D.R., Khoussainov, B., Shore, R.A., Slinko, A.M.: Degree spectra and computable dimensions in algebraic structures. Ann. Pure Appl. Logic 115(1–3), 71–113 (2002). Scholar
  12. 12.
    Kalimullin, I.S.: Computable embeddings of classes of structures under enumeration and Turing operators. Lobachevskii J. Math. 39(1), 84–88 (2018). Scholar
  13. 13.
    Knight, J.F., Miller, S., Vanden Boom, M.: Turing computable embeddings. J. Symb. Log. 72(3), 901–918 (2007). Scholar
  14. 14.
    Miller, R.: Isomorphism and classification for countable structures. Computability (2018)., published onlineCrossRefGoogle Scholar
  15. 15.
    Miller, R., Poonen, B., Schoutens, H., Shlapentokh, A.: A computable functor from graphs to fields. J. Symb. Log. 83(1), 326–348 (2018). Scholar
  16. 16.
    Puzarenko, V.G.: A certain reducibility on admissible sets. Sib. Math. J. 50(2), 330–340 (2009). Scholar
  17. 17.
    Rosenstein, J.G.: Linear Orderings. Pure and Applied Mathematics, vol. 98. Academic Press, New York (1982)zbMATHGoogle Scholar
  18. 18.
    Rossegger, D.: On functors enumerating structures. Sib. Elektron. Mat. Izv. 14, 690–702 (2017). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nikolay Bazhenov
    • 1
    • 2
  • Hristo Ganchev
    • 3
  • Stefan Vatev
    • 3
    Email author
  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Faculty of Mathematics and InformaticsSofia UniversitySofiaBulgaria

Personalised recommendations