Advertisement

How Do We Study Pedestrian Interaction with Automated Vehicles? Preliminary Findings from the European interACT Project

  • Natasha MeratEmail author
  • Yee Mun Lee
  • Gustav Markkula
  • Jim Uttley
  • Fanta Camara
  • Charles Fox
  • André Dietrich
  • Florian Weber
  • Anna Schieben
Conference paper
Part of the Lecture Notes in Mobility book series (LNMOB)

Abstract

This paper provides an overview of a set of behavioural studies, conducted as part of the European project interACT, to understand road user behaviour in current urban settings. The paper reports on a number of methodologies used to understand how humans currently interact in urban traffic, in order to establish what information would be useful for the design of future AVs, when interacting with other road users, especially pedestrians. In addition to summarising the results from a number of observation studies, we report on preliminary results from Virtual Reality studies, investigating if, in the absence of a human vehicle controller, externally presented interfaces can be used for communication between AVs and pedestrians. Finally, an overview of the mathematical and computational modelling techniques used to understand how AV and pedestrian behaviour can be both cooperative, and effective is provided. The hope is that future AVs can be designed with an understanding of how humans cooperate and communicate in mixed traffic, promoting good traffic flow, user acceptance and user trust.

References

  1. 1.
    Merat, N., Louw, T., Madigan, R., Wilbrink, M., Schieben, A.: What externally presented information do VRUs require when interacting with fully automated road transport systems in shared space? Accid. Anal. Prev. 118, 244–252 (2018).  https://doi.org/10.1016/j.aap.2018.03.018CrossRefGoogle Scholar
  2. 2.
    Lee, Y.M., Madigan, R., Giles, O., Garach-Morcillo, L., Markkula, G., Fox, C., Camara, F., Rothmueller, M., Vendelbo-Larsen, S.A., Rasmussen, P.H., Dietrich, A., Nathanael, D., Portouli, V., Schieben, A., Merat, N.: What can we learn from current communication and interactions by European road users: a contribution to external interface design for future Automated Vehicles (submitted)Google Scholar
  3. 3.
    International Standards Organisation committee TC22/WC 39Google Scholar
  4. 4.
    Dietrich, A., Ruenz, J.: Observing traffic–utilizing a ground based LiDAR and observation protocols at a T-junction in Germany. In: Bagnara, S., Tartaglia, R., Albolino, S., Alexander, T., Fujita, Y. (eds.) Proceedings of the 20th Congress of the International Ergonomics Association, IEA 2018. Advances in Intelligent Systems and Computing, 823. Springer, Cham (2019).  https://doi.org/10.1007/978-3-319-96074-6_56Google Scholar
  5. 5.
    Dietrich, A., Bengler, K., Portouli, E., Dimitris, N., Johannes, R., Jingyuan, W., Merat, N., Madigan, R., Lee, Y.M., Markkula, G., Giles, O., Fox, C., Camara, F.: interACT D.2.1. Preliminary description of psychological models on human-human interaction in traffic (2018) https://www.interact-roadautomation.eu/wp-content/uploads/interACT_WP2_D2.1-_PsychologicalModels_v1.0_uploadwebsite-1.pdf
  6. 6.
    Dietrich, A., Willrodt, J.-H., Wagner, K., Bengler, K.: Projection-based external human machine interfaces–enabling interaction between automated vehicles and pedestrians. In: Proceedings of the DSC 2018 Europe VR, Driving Simulation & Virtual Reality Conference & Exhibition, pp. 43–50 (2018)Google Scholar
  7. 7.
    Risto, M., Emmenegger, C., Vickhuyzen, E., Cefkin, M., Hollan, J.: Human-vehicle interfaces: the power of vehicle movement gestures in human road user coordination. In: Proceedings of the 9th International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, pp. 186–192 (2017)Google Scholar
  8. 8.
    Schieben, A., Wilbrink, M., Kettwich, C., Madigan, R., Louw, T., Merat, N.: Designing the interaction of automated vehicles with other traffic participants: design considerations based on human needs and expectations. Cogn. Technol. Work 109, 1–17 (2018)Google Scholar
  9. 9.
    Sucha, M., Dostal, D., Risser, R.: Pedestrian-driver communication and decision strategies at marked crossings. Accid. Anal. Prev. 102, 41–50 (2017)CrossRefGoogle Scholar
  10. 10.
    Dey, D., Terken, J.: Pedestrian interaction with vehicles: roles of explicit and implicit communication. In: Proceedings of the 9th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (Au-tomotiveUI’17), pp. 109–113 (2017). http://doi.org/10.1145/3122986.3123009
  11. 11.
    Lagstorm, T., Lundgren, V.M.: AVIP-autonomous vehicles interaction with pedestrians. Master’s thesis, Chalmers University of Technology, Gothenborg, Sweden (2015)Google Scholar
  12. 12.
    Clamann, M., Aubert, M., Cummings, M.L.: Evaluation of vehicle-to-pedestrian communication displays for autonomous vehicles. Technical report (2017)Google Scholar
  13. 13.
    Habibovic, A., Andersson, J., Nilsson, M., Lundgren, V.M., Nilsson, J.: Evaluating interactions with non-existing automated vehicles: three Wizard of Oz approaches. In: IEEE Intelligent Vehicles Symposium (IV), Gothenburg, pp. 32–37 (2016).  https://doi.org/10.1109/IVS.2016.7535360
  14. 14.
    Deb, S., Strawderman, L.J., Carruth, D.W.: Investigating pedestrian suggestions for external features on fully autonomous vehicles: a virtual reality experiment. Transp. Res. Part F 59, 135–149 (2018)CrossRefGoogle Scholar
  15. 15.
    Sorokin, L., Chadowitz, R., Kauffmann, N.A.: Change of perspective: designing the automated vehicle as a new social actor in a public space. In: CHI’19 Extended Abstracts, Glasgow, Scotland, UK, 4–9 May 2019.  https://doi.org/10.1145/3290607.3299044
  16. 16.
    Lee, Y.M., Uttley, J., Solernou, A., Giles, O., Markkula, G., Romano, R., Merat, N.: Investigating pedestrians’ crossing behaviour during car deceleration using wireless head mounted display: an application towards the evaluation of eHMI of automated vehicles, New Mexico, Driving Assessment (2019)Google Scholar
  17. 17.
    Lundgren, V.M. Habibovic, A., Andersson, J., Lagström, T., Nilsson, M., Sirkka, A., Fagerlönn, J., Fredriksson, R., Edgren, C., Krupenia, S., Saluäär, D.: Will there be new communication needs when introducing automated vehicles to the urban context? In: Stanton, N., Landry, S., Di Bucchianico, G., Vallicelli, A. (eds.) Advances in Human Aspects of Transportation, Advances in Intelligent Systems and Computing, 484, Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-41682-3_41Google Scholar
  18. 18.
    Zhou, R., Horrey, W.J., Yu, R.: The effect of conformity tendency on pedestrians’ road-crossing intentions in China: an application of the theory of planned behaviour. Accid. Anal. Prev. 41(3), 491–497 (2009)CrossRefGoogle Scholar
  19. 19.
    Velasco, J.P., Lee, Y.M., Uttley, J., Solernou, A., Farah, H., van Arem, B., Hagenzieker, M., Merat, N.: Interactions with automated vehicles: the effect of drivers’ attentiveness and presence on pedestrians’ road crossing behaviour. In: Road Safety and Simulation Conferences, University of Iowa (2019, submitted)Google Scholar
  20. 20.
    Dietrich, A., Tondera, M., Bengler, K.: Automated vehicles in urban traffic: the effects of kinematics and eHMI on pedestrian crossing behaviour. In: Road Safety and Simulation Conferences, Universty of Iowa (2019, submitted)Google Scholar
  21. 21.
    Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73(4), 1067–1141 (2011).  https://doi.org/10.1103/RevModPhys.73.1067MathSciNetCrossRefGoogle Scholar
  22. 22.
    Casas, J., Perarnau, J., Torday, A.: The need to combine different traffic modelling levels for effectively tackling large-scale projects adding a hybrid meso/micro approach. Procedia Soc. Behav. Sci. 20, 251–262 (2011)CrossRefGoogle Scholar
  23. 23.
    Ratcliff, R., Smith, P.L., Brown, S.D., McKoon, G.: Diffusion decision model: current issues and history. Trends Cogn. Sci. 20(4), 260–281 (2016)CrossRefGoogle Scholar
  24. 24.
    Rinke, N., Schiermeyer, C., Pascucci, F., Berkhahn, V., Friedrich, B.: A multi-layer social force approach to model interactions in shared spaces using collision prediction. Transp. Res. Procedia 25, 1249–1267 (2017)CrossRefGoogle Scholar
  25. 25.
    Anvari, B., Bell, M.G., Sivakumar, A., Ochieng, W.Y.: Modelling shared space users via rule-based social force model. Transp. Res. Part C: Emerg. Technol. 51, 83–103 (2015)CrossRefGoogle Scholar
  26. 26.
    Behbahani, F., Shiarlis, K., Chen, X., Kurin, V., Kasewa, S., Stirbu, C., Gomes, J., Paul, S., Oliehoek, F.A., Messias, J., Whiteson, S.: Learning from demonstration in the wild (2018). arXiv preprint arXiv:1811.03516
  27. 27.
    Cheng, H., Sester, M.: Mixed traffic trajectory prediction using LSTM–based models in shared space. In: The Annual International Conference on Geographic Information Science, pp. 309–325 (2018)Google Scholar
  28. 28.
    Chen, B., Zhao, D., Peng, H.: Evaluation of automated vehicles encountering pedestrians at signalized crossings. In: 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 1679–1685, June 2017Google Scholar
  29. 29.
    Markkula, G., Boer, E., Romano, R., Merat, N.: Sustained sensorimotor control as intermittent decisions about prediction errors: computational framework and application to ground vehicle steering. Biol. Cybern. 112(3), 181–207 (2018)CrossRefGoogle Scholar
  30. 30.
    Purcell, B.A., Heitz, R.P., Cohen, J.Y., Schall, J.D., Logan, G.D., Palmeri, T.J.: Neurally constrained modeling of perceptual decision making. Psychol. Rev. 117(4), 1113–1143 (2010)CrossRefGoogle Scholar
  31. 31.
    Markkula, G., Romano, R., Madigan, R., Fox, C.W., Giles, O.T., Merat, N.: Models of human decision-making as tools for estimating and optimizing impacts of vehicle automation. Transp. Res. Rec. (2018).  https://doi.org/10.1177/0361198118792131CrossRefGoogle Scholar
  32. 32.
    Fox, C., Camara, F., Markkula, G., Romano, R.A., Madigan, R., Merat, N.: When should the chicken cross the road? Game theory for autonomous vehicle-human interactions. In: Proceedings of the 4th International Conference on Vehicle Technology and Intelligent Transport Systems (VEHITS), Funchal, Madeira, 16–18 March 2018Google Scholar
  33. 33.
    Camara, F., Romano, R., Markkula, G., Madigan, R., Merat, N., Fox, C.: Empirical game theory of pedestrian interaction for autonomous vehicles. In: Proceedings of the Measuring Behaviour 2018: International Conference on Methods and Techniques in Behavioural Research (2018)Google Scholar
  34. 34.
    Automated Vehicles: Summary of the preliminary consultation paper. https://www.lawcom.gov.uk/project/automated-vehicles/consultation
  35. 35.
    Camara, F., Giles, O., Madigan, R., Rothmueller, M., Rasmussen, P.H., Vendel-bo-Larsen, A., Markkula, G., Lee, Y.M., Merat, N., Fox, C.W.: Predicting pedestrian road-crossing assertiveness for autonomous vehicle control. In: Proceedings of the 21st IEEE International Conference on Intelligent Transportation Systems (2018)Google Scholar
  36. 36.
    Camara, F., Giles, O., Madigan, R., Rothmuller, M., Rasmussen, P.H., Vendel-bo-Larsen, S.A., Markkula, G., Lee, Y.M., Garach-Morcillo, L., Merat, N., Fox, C.: Filtration analysis of pedestrian-vehicle interactions for autonomous vehicle control. In: 15th International Conference on Intelligent Autonomous Systems, Baden-Baden, Germany, 11–15 June 2018Google Scholar
  37. 37.
    Sullivan, J.M., Flannagan, M.J., Pradhan, A.K., Bao, S.: Literature review of behavioural adaptation to advanced driver assistance systems. AAA Foundation for Traffic Safety, Washington, DC (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Natasha Merat
    • 1
    Email author
  • Yee Mun Lee
    • 1
  • Gustav Markkula
    • 1
  • Jim Uttley
    • 1
  • Fanta Camara
    • 1
    • 2
  • Charles Fox
    • 2
  • André Dietrich
    • 3
  • Florian Weber
    • 4
  • Anna Schieben
    • 5
  1. 1.Institute for Transport StudiesUniversity of LeedsLeedsUK
  2. 2.School of Computer ScienceUniversity of LincolnLincolnUK
  3. 3.Department of Engineering, Chair of ErgonomicsTechnical University of MunichGarching, MunichGermany
  4. 4.Innovations BMW GroupMunichGermany
  5. 5.DLR e.V. - German Aerospace CentreBraunschweigGermany

Personalised recommendations