Plant Biotechnology and Periwinkle

  • Mohamed Ramadan Rady


Catharanthus roseus is one of the most extensively investigated medicinal plants, which can produce more than 130 alkaloids, including the powerful antitumor drugs vinblastine and vincristine which are used in the treatment of cancer. Alkaloids are one of the most important secondary metabolites known to play a vital role in various pharmaceutical applications leading to an increased commercial importance in recent years. An overview of recent studies which have been used using various approaches of plant tissue, organ culture, regeneration, cryopreservation, and transformation of C. roseus is presented in this chapter. One of the most effective strategies for enhancing the biotechnological production of alkaloid compounds is elicitation. This chapter summarizes the recent research work of various in vitro cultures, abiotic, biotic elicitors, and precursor feeding applied to C. roseus cultural system and their stimulating effects on the accumulation of TIAs.


Catharanthus roseus Biosynthesis Cell and callus culture Regeneration Cryopreservation Transformation Hairy root cultures Elicitation Alkaloids 


  1. Abdel-Rahman TM, Kapiel TYS, Ibrahiem DM, Ali EAM (2010) Elicitation of alkaloids by biotic and abiotic stress factors in Catharanthus roseus. Egypt J Bot Special Volume:207–224Google Scholar
  2. Abnosi MH, Amirjani M, Mahdiyeh M, Moradipoor H (2015) Biochemical and cellular response of Catharanthus roseus callus cells to cadmium toxicity. J Genet Resour 1(2):101–114Google Scholar
  3. Abou Dahab TAM, Abd El-Aziz GN (2006) Physiological effect of diphenylamine and tryptophan on the growth and chemical constituents of Phylodendron erubescens plants. World J Agric Sci 2:75–81Google Scholar
  4. Al Khateeb E, Alani NK, Jabar BA (2009) Different parameters for alkaloid detection in Catharanthus roseus tissue culture. Ibn Al-Haitham J Pure Appl Sci 22(2):44–50Google Scholar
  5. Alam P, Khan ZA, Abdin MZ, Khan JA, Ahmad P, Elkholy SF, Sharaf-Eldin MA (2017) Efficient regeneration and improved sonication-assisted Agrobacterium transformation (SAAT) method for Catharanthus roseus. 3 Biotech 7:26PubMedPubMedCentralCrossRefGoogle Scholar
  6. Al-Khateeb E, Alani NK, Jabar BA (2009) Different parameters for alkaloid detection in Catharanthus roseus tissue culture. Ibn Al-Haitham J Pure Appl Sci 22(2):1–7Google Scholar
  7. Almagro L, López Perez AJ, Pedreño MA (2010) New method to enhance ajmalicine production in Catharanthus roseus cell cultures based on the use of cyclodextrins. Biotechnol Lett 33(2):381–385PubMedCrossRefPubMedCentralGoogle Scholar
  8. Al-Oubaidi HKM, Amin ASM (2014) Effect of benzyl adenine on multiplication of Catharanthus roseus L. in vitro. World J Pharm Pharm Sci 3(6):2101–2107Google Scholar
  9. Al-Zuhairi EMA, Ghanm NS (2017) Effect of jasmonic acid (JA) and glutamine on callus induction of Madagascar periwinkle plant (Catharanthus roseus L. cv. Nirvana Pink Blush) by in vitro culture. Int J Curr Microbiol App Sci 6(5):1415–1422CrossRefGoogle Scholar
  10. Angelova Z, Georgiev S, Roos W (2006) Elicitation of plants. Biotechnol Biotechnol Equip 20:72–83CrossRefGoogle Scholar
  11. Asada M, Shuler ML (1989) Stimulation of ajmalicine production and excretion from Catharanthus roseus: effects of adsorption in situ, elicitors and alginate immobilization. Appl Microbiol Biotechnol 30:475–481CrossRefGoogle Scholar
  12. Aslam J, Khan SH, Siddiqui ZH, Fatima Z, Maqsood M, Bhat MA, Nasim SA, Ilah A, Ahmad IZ, Khan SA, Mujib A, Sharma MP (2010) Catharanthus roseus (L.) G. Don. An important drug: its application and production. Pharm Glob IJCP 4:12Google Scholar
  13. Aslam J, Mujib A, Nasim SA, Sharma MP (2009) Screening of vincristine yield in ex vitro and in vitro somatic embryos derived plantlets of Catharanthus roseus L. (G) Don. Sci Hortic 119:325–329CrossRefGoogle Scholar
  14. Aslam J, Mujib A, Sharma MP (2014) Somatic embryos in Catharanthus roseus: a scanning electron microscopic study. Not Sci Biol 6(2):167–172CrossRefGoogle Scholar
  15. Ataei-Azimi A, Hashemloian BD, Ebrahimzadeh H, Majd A (2008) High in vitro production of ant-canceric indole alkaloids from periwinkle (Catharanthus roseus) tissue culture. Afr J Biotechnol 7(16):2834–2839Google Scholar
  16. Bachiri Y, Gazeau C, Hansz J, Morisset C, Dereuddre J (1995) Successful cryopreservation of suspension cells by encapsulation dehydration. Plant Cell Tissue Organ Cult 43:241–248Google Scholar
  17. Baenas N, Garcia-Viguera C, Moreno DA (2014) Elicitation: a tool for enriching the bioactive composition of foods. Molecules 19(9):13541–13563PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bailey CM, Nicholson H (1990) Optimal temperature control for structured model of plant cell culture. Biotechnol Bioeng 35:252–258PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bakrudeen AAA, Shanthi GS, Gouthaman T, Kavitha MS, Rao MV (2011) In vitro micropropagation of Catharanthus roseus – an anticancer medicinal plant. Acta Bot Hungar 53(1–2):197–209CrossRefGoogle Scholar
  20. Batra J, Dutta A, Singh D, Kumar S, Sen J (2004) Growth and terpenoid indole alkaloid production in Catharanthus roseus hairy root clones in relation to left-and right-termini-linked Ri T-DNA gene integration. Plant Cell Rep 23:148–154PubMedCrossRefPubMedCentralGoogle Scholar
  21. Begum T, Mathur M (2014) In vitro regeneration of Catharanthus roseus and Bacopa monnieri and their survey around Jaipur District. Int J Pure App Biosci 2(4):210–221Google Scholar
  22. Benyammi R, Paris C, Khelifi-Slaoui M, Zaoui D, Belabbassi O, Bakiri N, Aci MM, Harfi B, Malik S, Makhzoum A, Desobry S, Khelifi L (2016) Screening and kinetic studies of catharanthine and ajmalicine accumulation and their correlation with growth biomass in Catharanthus roseus hairy roots. Pharm Biol 54(10):2033–2043. Scholar
  23. Binder BYK, Peebles CAM, Shanks JV, San KY (2009) The effects of UV-B stress on the production of terpenoid indole alkaloids in Catharanthus roseus hairy roots. Biotechnol Prog 25(3):861–865PubMedCrossRefPubMedCentralGoogle Scholar
  24. Blom TJM, Sierra M, Van Vliet TB, Franke-Van Dijk MEI, De Koning P, Van Iren F, Verpoorte R, Libbenga KR (1991) Uptake and accumulation of ajmalicine into isolated vacuoles of cultured cells of Catharanthus roseus (L.) G. Don and its conversion into serpentine. Planta 183:170–177PubMedCrossRefPubMedCentralGoogle Scholar
  25. Boller T (1995) Chemoperception of microbial signals in plant cells. Annu Rev Plant Physiol Plant Mol Biol 46:189–214CrossRefGoogle Scholar
  26. Brodelius P, Nilsson K (1983) Permeabilization of immobilized plant cells, resulting in release of intracellularly stored products with preserved cell viability. Eur J Appl Microbiol Biotechnol 17:275–280CrossRefGoogle Scholar
  27. Campos-Tamayo F, Hernandez-domiguez E, Vazquez-flota F (2008) Vindoline formation in shoot cultures of Catharanthus roseus is synchronously activated with morphogenesis through the last biosynthetic step. Ann Bot 102:409–415PubMedPubMedCentralCrossRefGoogle Scholar
  28. Canel C, Lopes-Cardoso MI, Whitmer S, Van der Fits L, Pasquali G, Van der Heijden R, Hoge JHC, Verpoorte R (1998) Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Planta 205:414–419PubMedCrossRefPubMedCentralGoogle Scholar
  29. Chen THH, Kartha KK, Constabel F, Gusta LV (1984a) Freezing characteristics of cultured Catharanthus roseus (L). G. Don cells treated with dimethylsulfoxide and sorbitol in relation to cryopreservation. Plant Physiol 75:720–725PubMedPubMedCentralCrossRefGoogle Scholar
  30. Chen THH, Kartha KK, Leung NL, Kurz WGW, Chatson KB, Constabel F (1984b) Cryopreservation of alkaloid-producing cell cultures of periwinkle (Catharanthus roseus). Plant Physiol 75:726–731PubMedPubMedCentralCrossRefGoogle Scholar
  31. Choi PS, Kim YD, Choi KM, Chung HJ, Choi DW, Liu JR (2004) Plant regeneration from hairy-root cultures transformed by infection with Agrobacterium rhizogenes in Catharanthus roseus. Plant Cell Rep 22:828–831PubMedCrossRefPubMedCentralGoogle Scholar
  32. Contin A, Van der Heijden R, Hens JG, Hoopen HJG, Verpoorte R (1998a) The inoculum size triggers tryptamine or secologanin biosynthesis in a Catharanthus roseus cell culture. Plant Sci 139:205–211CrossRefGoogle Scholar
  33. Contin A, Van der Heijden R, Lefeber AW, Verpoorte R (1998b) The iridoid glucoside secologanin is derived from the novel triose phosphate/pyruvate pathway in a Catharanthus roseus cell culture. FEBS Lett 434:413–416PubMedCrossRefPubMedCentralGoogle Scholar
  34. Contin A, Van der Heijden R, Verpoorte R (1999) Effects of alkaloid precursor feeding and elicitation on the accumulation of secologanin in a Catharanthus roseus cell suspension culture. Plant Cell Tissue Org Cult 56:111–119CrossRefGoogle Scholar
  35. Costa MMR, Hilliou F, Duarte P, Pereira LG, Almeida I, Leech M, Memelink J, Barcelo AR, Sottomayor M (2008) Molecular cloning and characterization of a vacuolar class III peroxidase involved in the metabolism of anticancer alkaloids in Catharanthus roseus. Plant Physiol 146:403–417PubMedPubMedCentralCrossRefGoogle Scholar
  36. De Luca V, Marineau C, Brisson N (1989) Molecular cloning and analysis of cDNA encoding a plant tryptophan decarboxylase: comparison with animal dopa decarboxylases. PNAS 86(8):2582–2586PubMedCrossRefPubMedCentralGoogle Scholar
  37. Decendit A, Liu D, Ouelhazi L, Doireau P, Merillon J, Rideau M (1992) Cytokinin-enhanced accumulation of indole alkaloids in Catharanthus roseus cell cultures-the factors affecting the cytokinin response. Plant Cell Rep 11:400–403PubMedCrossRefGoogle Scholar
  38. Dhandapani M, Kim DH, Hong SB (2008) Efficient plant regeneration via somatic embryogenesis and organogenesis from the explants of Catharanthus roseus. In Vitro Cell Dev Biol Plant 44:18–25CrossRefGoogle Scholar
  39. Eilert U, De Luca V, Constabel F, Kurz WGW (1987) Elicitor-mediated induction of tryptophan decarboxylase and strictosidine synthase activities in cell suspension cultures of Catharanthus roseus. Arch Biochem Biophys 254(2):491–497PubMedCrossRefPubMedCentralGoogle Scholar
  40. El-Sayed M, Verpoorte R (2002) Effect of phytohormones on growth and alkaloid accumulation by a Catharanthus roseus cell suspension cultures fed with alkaloid precursors tryptamine and loganin. Plant Cell Tissue Organ Cult 68:265–270CrossRefGoogle Scholar
  41. El-Sayed M, Verpoorte R (2007) Catharanthus terpenoid indole alkaloids: biosynthesis and regulation. Phytochem Rev 6:277–305CrossRefGoogle Scholar
  42. El-Sayed M, Choi YH, Frederich M, Roytrakul S, Verpoorte R (2004) Alkaloid accumulation in Catharanthus roseus cell suspension cultures fed with stemmadenine. Biotechnol Lett 26:793–798PubMedCrossRefPubMedCentralGoogle Scholar
  43. Faheem M, Singh S, Tanwer BS, Khan M, Shahzad A (2011) In vitro regeneration of multiplication shoots in Catharanthus roseus-an important medicinal plant. Adv Appl Sci Res 2(1):208–213Google Scholar
  44. Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci 87:7713–7716PubMedCrossRefPubMedCentralGoogle Scholar
  45. Fathalla MA, Abd-El Kawy AM, Taha HS (2011) Effect of heavy metal (HgCl2) on accumulation and production of total indole alkaloids, vinblastine and/or vincristine from Egyptian Catharanthus Roseus (L.) G. Don. calli cultures. J Appl Sci Res 7(4):542–549Google Scholar
  46. Fatima S, Mujib A, Nasim SA, Siddiqui ZH (2009) Cryopreservation of embryogenic cell suspensions of Catharanthus roseus L. (G) Don. Plant Cell Tissue Organ Cult 98:1–9CrossRefGoogle Scholar
  47. Fatima S, Mujib A, Dipti T (2015) NaCl amendment improves vinblastine and vincristine synthesis in Catharanthus roseus: a case of stress signalling as evidenced by antioxidant enzymes activities. Plant Cell Tissue Organ Cult 121(2):445–458CrossRefGoogle Scholar
  48. Fulzele DP, Heble MR (1994) Large-scale cultivation of Catharanthus roseus cells: production of ajmalicine in a 20-1 airlift bioreactor. J Biotechnol 35:1–7PubMedCrossRefPubMedCentralGoogle Scholar
  49. Gamborg OL, Shyluk JP (1981) Nutrition, media and characteristics of plant cell and tissue cultures. In: Thorpe TA (ed) Plant tissue culture: methods and applications in agriculture. Academic Press, New York, pp 21–44CrossRefGoogle Scholar
  50. Garnier F, Label P, Hallard D, Chenieux JC, Rideau M, Hamdi S (1996) Transgenic periwinkle tissues overproducing cytokinins do not accumulate enhanced levels of indole alkaloids. Plant Cell Tissue Organ Cult 45(3):223–230CrossRefGoogle Scholar
  51. Gaviraj EN, Veeresham C (2006) Effect of precursors and organic compounds on alkaloid production in transformed root cultures of Catharanthus roseus var. nirmal. Pharm Biol 44(5):371–377CrossRefGoogle Scholar
  52. Giri A, Narasu ML (2000) Transgenic hairy roots. Recent trends and applications. Biotechnol Adv 18:1–22PubMedCrossRefPubMedCentralGoogle Scholar
  53. Godoy-Hernandez GC, Loyola-Vargas VM (1991) Effect of fungal homogenates, enzyme inhibitors and osmotic stress on alkaloids content of Catharanthus roseus cell suspension cultures. Plant Cell Rep 10:537–540PubMedCrossRefPubMedCentralGoogle Scholar
  54. Godoy-Hernandez GC, Vazquez-Flota FA, Loyola-Vargas VM (2000) The exposure to trans-cinnamic acid of osmotically stressed Catharanthus roseus cells cultured in a 14-L bioreactor increases alkaloid accumulation. Biotechnol Lett 22(11):921–925CrossRefGoogle Scholar
  55. Goklany S, Loring RH, Glick J, Lee-Parsons CWT (2009) Assessing the limitations to terpenoid indole alkaloid biosynthesis in Catharanthus roseus hairy root cultures through gene expression profiling and precursor feeding. Biotechnol Prog 25(5):1289–1296PubMedCrossRefPubMedCentralGoogle Scholar
  56. Goldhaber-Pasillas GD, Mustafa NR, Verpoorte R (2014) Jasmonic acid effect on the fatty acid and terpenoid indole alkaloid accumulation in cell suspension cultures of Catharanthus roseus. Molecules 19:10242–10260PubMedPubMedCentralCrossRefGoogle Scholar
  57. Gorelick J, Bernstein N (2014) Chapter five—Elicitation: an underutilized tool in the development of medicinal plants as a source of therapeutic secondary metabolites. In: Sparks DL (ed) Advances in agronomy, vol 124. Elsevier, Amsterdam, The Netherlands, pp 201–230Google Scholar
  58. Guirimand G, Courdavault V, Lanoue A, Mahroug S, Guihur A, Blanc N, Giglioli-Guivarc’h N, St-Pierre B, Burlat V (2010) Strictosidine activation in apocynaceae: towards a “nuclear time bomb”? BMC Plant Biol 10:182–201PubMedPubMedCentralGoogle Scholar
  59. Guirimand G, Guihur A, Poutrain P, Héricourt F, Mahroug S, St-Pierre B, Burlat V, Courdavault V (2011) Spatial organization of the vindoline biosynthetic pathway in Catharanthus roseus. J Plant Physiol 168:549–557PubMedCrossRefPubMedCentralGoogle Scholar
  60. Hanafy MS, Matter MA, Asker MS, Rady MR (2016) Production of indole alkaloids in hairy root cultures of Catharanthus roseus L. and their antimicrobial activity. S Afr J Bot 105:9–18CrossRefGoogle Scholar
  61. He L, Yang LI, Tan R, Zhao S, Hu Z (2011) Enhancement of vindoline production in suspension culture of the Catharanthus roseus cell line C20hi by light and methyl jasmonate elicitation. Anal Sci 27:1243–1248PubMedCrossRefPubMedCentralGoogle Scholar
  62. He S, Zhu J, Zi J, Zhou P, Liang J, Yu R (2015) A novel terpenoid indole alkaloid derived from catharanthine via biotransformation by suspension-cultured cells of Catharanthus roseus. Biotechnol Lett 37:2481–2487PubMedCrossRefPubMedCentralGoogle Scholar
  63. Hernandez-Dominguez E, Campos-Tamayo F, Vazquez-Flota F (2004) Vindoline synthesis in in vitro shoot cultures of Catharanthus roseus. Biotechnol Lett 26:671–674PubMedCrossRefPubMedCentralGoogle Scholar
  64. Hirata K, Yamanaka A, Kurano N, Miyamoto K, Miura Y (1987) Production of indole alkaloids in multiple shoot culture of Catharanthus roseus (L). G. Don. Agric Biol Chem 51(5):1311–1317Google Scholar
  65. Ho CH, Shanks JV (1992) Effects of initial medium pH on growth and metabolism of Catharanthus roseus hairy root cultures: a study with 31P and 13C NMR spectroscopy. Biotechnol Lett 14(10):959–964CrossRefGoogle Scholar
  66. Hong SB, Hughes EH, Shanks JV, San KY, Gibson SI (2003) Role of the non-mevalonate pathway in indole alkaloid production by Catharanthus roseus hairy roots. Biotechnol Prog 19:1105–1108PubMedCrossRefPubMedCentralGoogle Scholar
  67. Hoopen HJG, Gulik WM, Schlatmann JE, Moreno PRH, Vinke JL, Heijnen JJ, Verpoorte R (1994) Ajmalicine production by cell cultures of Catharanthus roseus: from shake flask to bioreactor. Plant Cell Tissue Organ Cult 38:85–91CrossRefGoogle Scholar
  68. Hughes EH, Shanks JV (2002) Metabolic engineering of plants for alkaloid production. Metab Eng 4(1):41–48PubMedCrossRefPubMedCentralGoogle Scholar
  69. Iwase A, Aoyagi H, Ohme-takagi M, Tanaka H (2005) Development of a novel system for producing ajmalicine and serpentine using direct culture of leaves in catharanthus roseus intact plant. J Biosci Bioeng 99(3):208–215PubMedCrossRefPubMedCentralGoogle Scholar
  70. Jeong CS, Chakrabarty D, Hahn EJ, Lee HL, Paek KY (2006) Effects of oxygen, carbon dioxide and ethylene on growth and bioactive compound production in bioreactor culture of ginseng adventitious roots. Biochem Eng J 27:252–263CrossRefGoogle Scholar
  71. Junaid A, Mujib A, Bhat MA, Sharma MP (2006) Somatic embryo proliferation, maturation and germination in Catharanthus roseus. Plant Cell, Tissue Organ Cult 84:325–332CrossRefGoogle Scholar
  72. Junaid A, Mujib A, Bhat MA, Sharma MP, Šamaj J (2007) Somatic embryogenesis and plant regeneration in Catharanthus roseus. Biol Plant 51(4):641–646CrossRefGoogle Scholar
  73. Junaid A, Mujib A, Sharma MP (2011) Influence of freezing and non-freezing temperature on somatic embryogenesis and vinblastine production in Catharanthus roseus (L.) G. Don. Acta Physiol Plant 33:473–480CrossRefGoogle Scholar
  74. Jung KH, Kwak SS, Kim SW, Lee H, Choi CY, Liu JR (1992) Improvement of the catharanthine productivity in hairy root cultures of Catharanthus roseus by using monosaccharides as a carbon source. Biotechnol Lett 14(8):695–700CrossRefGoogle Scholar
  75. Kalidass C, Mohan VR, Daniel A (2010) Effect of auxin and cytokinin on vincristine production by callus cultures of Catharanthus roseus L. (Apocynaceae). Trop Subtrop Agroecosyst 12:283–288Google Scholar
  76. Kartha KK (1981) Meristem culture and cryopreservation methods and applications. In: Thorpe TA (ed) Plant tissue culture: methods and applications in agriculture. Academic Press, New York, pp 181–211CrossRefGoogle Scholar
  77. Kartha KK, Leung NL, Gaudet-LaPrarire P, Constable F (1982) Cryopreservation of periwinkle, Catharanthus roseus cells cultured in vitro. Plant Cell Rep 1(4):135–138PubMedCrossRefPubMedCentralGoogle Scholar
  78. Kashyab S, Kale RD (2015) In vitro tissue culture of Catharanthus roseus using vermicompost extract and coelomic fluid-an innovative and novel approach. Int J Curr Res 7(12):24679–24683Google Scholar
  79. Keasling JD (2008) Synthetic biology for synthetic chemistry. ACS Chem Biol 3:64–76PubMedCrossRefPubMedCentralGoogle Scholar
  80. Khashan KT, Al-Athary MAH (2016) Vinblastine and vincristine alkaloids production from callus of Catharanthus roseus (L.) G. Don under some abiotic factors. Al-Kufa Univ J Biol 8(2):75–90Google Scholar
  81. Khashan KT, Husain MA (2015) Effect of biotic factors stresses on vinblastine and vincristine production from callus of Catharanthus roseus. Euphrates J Agric Sci 7(2):25–41Google Scholar
  82. Knobloch KH, Berlin J (1980) Influence of medium composition on the formation of secondary compounds in cell suspension cultures of Catharanthus roseus (L.) G. Don. Z Naturforsch 35:551–556CrossRefGoogle Scholar
  83. Knobloch KH, Berlin J (1983) Influence of phosphate on the formation of the indole alkaloids and phenolic compounds in cell suspension cultures of Catharanthus roseus. I. Comparison of enzyme activities and product accumulation. Plant Cell Tissue Organ Cult 2:333–340CrossRefGoogle Scholar
  84. Kumar SR, Shilpashree HB, Nagegowda DA (2018) Terpene moiety enhancement by overexpression of geranyl (geranyl) diphosphate synthase and geraniol synthase elevates monomeric and dimeric monoterpene indole alkaloids in transgenic Catharanthus roseus. Front Plant Sci 9:942PubMedPubMedCentralCrossRefGoogle Scholar
  85. Kurz WGW, Chatson KB, Constabel F, Kutney JP, Choi LSL, Kolodziejczyk P, Sleigh SK, Stuart KL, Worth BR (1981) Alkaloid production in Catharanthus roseus cell cultures VIII. Planta Med 42(5):22–31PubMedCrossRefPubMedCentralGoogle Scholar
  86. Lee-Parsons CWT, Ertürk S, Tengtrakool J (2004) Enhancement of ajmalicine production in Catharanthus roseus cell cultures with methyl jasmonate is dependent on timing and dosage of elicitation. Biotechnol Lett 26:1595–1599PubMedCrossRefPubMedCentralGoogle Scholar
  87. Li M, Peebles CAM, Shanks JV, San KY (2011) Effect of sodium nitroprusside on growth and terpenoid indole alkaloid production in Catharanthus roseus hairy root cultures. Biotechnol Prog 27(3):625–630PubMedCrossRefPubMedCentralGoogle Scholar
  88. Liang C, Chen C, Zhou P, Xu L, Zhu J, Liang J, Zi J, Yu R (2018) Effect of Aspergillus flavus fungal elicitor on the production of terpenoid indole alkaloids in Catharanthus roseus cambial meristematic cells. Molecules 23(3276):1–16Google Scholar
  89. Limam F, Chahed K, Ouelhazi N, Ghrir R, Ouelhazi L (1998) Phytohormone regulation of isoperoxidases in Catharanthus roseus suspension cultures. Phytochemistry 49(5):1219–1225PubMedCrossRefPubMedCentralGoogle Scholar
  90. Lloyd G, McCown BH (1980) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Combi Proc Int Plant Propag Soc 30:421–427Google Scholar
  91. Makhzoum A, Bjelica A, Petit-Paly G, Mark A, Bernards MA (2015) Novel plant regeneration and transient gene expression in Catharanthus roseus. All Res J Biol 6:1–9Google Scholar
  92. Malabadi RB, Mulgund GS, Nataraja K (2009) Triacontanol induced somatic embryogenesis and plantlet regeneration in Catharanthus roseus. J Med Aromat Plant Sci 31:147–151Google Scholar
  93. Mandagi SJM, Pandiangan D, Tilaar W (2017) Content of ajmalicine on cultured callus Catharanthus roseus (L.) G. Don with tryptophan treatment. Int J Sci Res 6(5):1919–1922Google Scholar
  94. Mannonen L, Toivonen L, Kauppinen VC (1990) Effects of long term preservation on growth and productivity of Panax ginseng and Catharanthus roseus cell culture. Plant Cell Rep 9:173–177PubMedCrossRefPubMedCentralGoogle Scholar
  95. Maqsood M, Abdul M (2017) Yeast extract elicitation increases vinblastine and vincristine yield in protoplast derived tissues and plantlets in Catharanthus roseus. Braz J Pharmacogn 27:549–556CrossRefGoogle Scholar
  96. Marsh Z, Yang T, Nopo-Olazabal L, Wu S, Ingle T, Joshee N, Medina-Bolivar F (2014) Effect of light, methyl jasmonate and cyclodextrin on production of phenolic compounds in hairy root cultures of Scutellaria lateriflora. Phytochemistry 107:50–60PubMedCrossRefPubMedCentralGoogle Scholar
  97. Meijer AH, Lopes Cardoso ML, Voskuilen JT, De Waal A, Verpoorte R, Hoge JH (1993) Isolation and characterization of a cDNA clone from Catharanthus roseus encoding NADPH: cytochrome P-450 reductase, an enzyme essential for reactions catalysed by cytochrome P-450 mono-oxygenases in plants. Plant J 4:47–56PubMedCrossRefPubMedCentralGoogle Scholar
  98. Mekky H, Al-Sabahi J, Abdel-Kreem MFM (2018) Potentiating biosynthesis of the anticancer alkaloids vincristine and vinblastine in callus cultures of Catharanthus roseus. S Afr J Bot 114:29–31CrossRefGoogle Scholar
  99. Menke FLH, Parchmann S, Mueller MJ, Kijne JW, Memelink J (1999) Involvement of the octadecanoid pathway and protein phosphorylation in fungal elicitor induced expression of terpenoid indole alkaloid biosynthetic genes in Catharanthus roseus. Plant Physiol 119:1289–1296PubMedPubMedCentralCrossRefGoogle Scholar
  100. Mérillon JM, Doireau P, Guillot A, Chénieux JC, Rideau M (1986) Indole alkaloid accumulation and tryptophan decarboxylase activity in Catharanthus roseus cells cultured in three different media. Plant Cell Rep 1:23–26CrossRefGoogle Scholar
  101. Mishra MR, Srivastava RK, Akhtar N (2018a) Enhanced alkaloid production from cell culture system of Catharanthus roseus in combined effect of nutrient salts, sucrose and plant growth regulators. J Biotechnol Biomed Sci 1(4):14–34CrossRefGoogle Scholar
  102. Mishra MR, Srivastava RK, Akhtar N (2018b) Enhancing alkaloid production from cell culture system of Catharanthus roseus with different carbon sources. Eur J Biotechnol Biosci 6(5):12–20Google Scholar
  103. Mitra A, Khan BM, Rawal SK (1997) Photoautotrophic shoot culture-an economical alternative for the production of total alkaloid from Catharanthus roseus (l.) G. Don. Curr Sci 73(7):608–609Google Scholar
  104. Miura Y, Hirata K (1987) Isolation of vinblastine in callus culture with differentiated roots of Catharanthus roseus (L). G. Don. Agric Biol Chem 51(2):611–614Google Scholar
  105. Moghe S, Laud D, Dehankar B, Moghe R, Sadhu P, Ade G, Ishani B, Hadke A (2016) Effect of growth regulator combination on in-vitro regeneration of Catharanthus roseus. Int J Life Sci Special Issue A6:1–4Google Scholar
  106. Moreno PRH, Schlatmann JE, Van der Heijden R, Van Gulik WM, Hoopen HJT, Verpoorte R, Heijnen JJ (1993a) Induction of ajmalicine formation and related enzyme activities in Catharanthus roseus cells: effect of inoculum density. Appl Microbiol Biotechnol 39:42–47PubMedCrossRefPubMedCentralGoogle Scholar
  107. Moreno PRH, Van der Heijden R, Verpoote R (1993b) Effect of terpenoid precursor feeding and elicitation on formation of indole alkaloid in cell suspension cultures in Catharanthus roseus. Plant Cell Rep 12:702–705PubMedCrossRefPubMedCentralGoogle Scholar
  108. Moreno PRH, Van der Heijden R, Verpoorte R (1995) Cell and tissue cultures of Catharanthus roseus; a literature survey II. Updating from 1988-1993. Plant Cell Tissue Organ Cult 42:1–25CrossRefGoogle Scholar
  109. Morgan JA, Shanks JV (1999) Inhibitor studies of tabersonine metabolism in C. roseus hairy roots. Phytochemistry 51:61–68PubMedCrossRefPubMedCentralGoogle Scholar
  110. Morgan JA, Shanks JV (2000) Determination of metabolic rate-limitations by precursor feeding in Catharanthus roseus hairy root cultures. J Biotechnol 79:137–145PubMedCrossRefPubMedCentralGoogle Scholar
  111. Morgan JA, Barney CS, Penn AH, Shanks V (2000) Effects of buffered media upon growth and alkaloid production of Catharanthus roseus hairy roots. Appl Microbiol Biotechnol 53:262–265PubMedCrossRefPubMedCentralGoogle Scholar
  112. Morris P (1986) Regulation of product synthesis in cell cultures of Catharanthus roseus. Effect of culture temperature. Plant Cell Rep 5:427–429PubMedCrossRefPubMedCentralGoogle Scholar
  113. Mujib A, Ilah A, Aslam J, Fatima S, Siddiqui ZH, Maqsood M (2012) Catharanthus roseus alkaloids: application of biotechnology for improving yield. Plant Growth Regul 68:111–127CrossRefGoogle Scholar
  114. Mujib A, Ali M, Isah T, Tonk D (2014) Somatic embryo mediated mass production of Catharanthus roseus in culture vessel (bioreactor)–a comparative study. Saudi J Biol Sci 21:442–449PubMedPubMedCentralCrossRefGoogle Scholar
  115. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  116. Muthukumar B, Arochiasamy DI, Natarajan E (2004) Direct organogenesis in Datura metel L. from in vitro and in vivo nodal explants. Indian J Biotechnol 3:449–451Google Scholar
  117. Negi RS (2011) Fast in-vitro callus induction in Catharanthus roseus – a medicinally important plant used in cancer therapy. Res J Pharm Biol Chem Sci 2(4):597–603Google Scholar
  118. Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87PubMedCrossRefPubMedCentralGoogle Scholar
  119. Noormohammadi Z, Taban M, Farahani F (2018) The impact of gamma radiation on Tdc and Str gene expressions in Catharanthus roseus regenerated plantlets. Biodiversitas 19(5):1805–1810CrossRefGoogle Scholar
  120. Pan Q, Mustafa NR, Tang K, Choi YH, Verpoorte R (2016) Monoterpenoid indole alkaloids biosynthesis and its regulation in Catharanthus roseus: a literature review from genes to metabolites. Phytochem Rev 15:221–250CrossRefGoogle Scholar
  121. Pandiangan D, Nainggolan N (2006) The enhancement of catharanthine content in Catharanthus roseus callus culture treated with naphtalene acetic acid. Hayati 13(3):90–94CrossRefGoogle Scholar
  122. Pandiangan D, Tilaara W, Karyonob Esyantic RR, Subarnasb A (2010) The effect tryptophan feeding on growth, protein content and TDC activity of Catharanthus roseus (L) G. DON cell aggregate culture in the airlift bioreactor. In: Proceedings of the third international conference on mathematics and natural sciences (ICMNS 2010)Google Scholar
  123. Pandiangan D, Tilaar W, Nainggolan N (2013) Morphological changes of cell in relation to increased catharanthine content of Catharanthus roseus cell aggregate culture after tryptophan treatment. Int J Basic Appl Sci 13(1):45–51Google Scholar
  124. Pandiangan D, Tilaar W, Nainggolan N, Wahyudi L (2015) Relations between catharanthine content enhancement with the other associated secondary metabolites in Catharanthus roseus cell culture that treated tryptophan. Int J Sci Res 4(11):2208–2212Google Scholar
  125. Papon N, Bremer J, Vansiri A, Andreu F, Rideau M, Creche J (2005) Cytokinin and ethylene control indole alkaloid production at the level of the MEP/terpenoid pathway in Catharanthus roseus suspension cells. Planta Med 71:572–574PubMedCrossRefPubMedCentralGoogle Scholar
  126. Parr AJ, Peerless ACJ, Hamill JD, Walton NJ, Robins RJ, Rhodes MJC (1988) Alkaloid production by transformed root cultures of Catharanthus roseus. Plant Cell Rep 7:309–312PubMedCrossRefPubMedCentralGoogle Scholar
  127. Pasquali G, Goddijin OJM, De Wall A, Verpoorte R, Schilperoort RA, Hoge JHC (1992) Coordinated regulation of two indole alkaloid biosynthetic genes from Catharanthus roseus by auxin and elicitors. Plant Mol Biol 18:1121–1131PubMedCrossRefPubMedCentralGoogle Scholar
  128. Peebles CAM, Hong S, Gibson SI, Shanks JV (2006) Effects of terpenoid precursor feeding on Catharanthus roseus hairy roots over-expressing the alpha or the alpha and beta subunits of anthranilate synthase. Biotechnol Bioeng 93(3):534–540PubMedCrossRefPubMedCentralGoogle Scholar
  129. Peebles CAM, Hughes EH, Shanks JV, San KY (2009) Transcriptional response of the terpenoid indole alkaloid pathway to the overexpression of ORCA3 a long with jasmonic acid elicitation of Catharanthus roseus hairy roots over time. Metab Eng 11:76–86PubMedCrossRefPubMedCentralGoogle Scholar
  130. Perassolo M, Smith ME, Giulietti AM, Talou JR (2016) Synergistic effect of methyl jasmonate and cyclodextrins on anthraquinone accumulation in cell suspension cultures of Morinda citrifolia and Rubia tinctorum. Plant Cell Tissue Organ Cult 124(2):319–330CrossRefGoogle Scholar
  131. Pietrosiuk A, Furmanowa M, Łata B (2007) Catharanthus roseus: micropropagation and in vitro techniques. Phytochem Rev 6:459–473CrossRefGoogle Scholar
  132. Pliankong P, Suksa-Ard P, Wannakrairoj S (2018) Chitosan elicitation for enhancing of vincristine and vinblastine accumulation in cell culture of Catharanthus roseus (L.) G. Don. J Agric Sci 10(12):287–293Google Scholar
  133. Pomahacova B, Dusek J, Duskova J, Yazaki K, Roytrakul S, Verpoorte R (2009) Improved accumulation of ajmalicine and tetrahydroalstonine in Catharanthus cells expressing an ABC transporter. J Plant Physiol 166:1405–1412PubMedCrossRefPubMedCentralGoogle Scholar
  134. Rahmatzadeh S, Khara J, Kazemitabar SK (2014) The study of in vitro regeneration and growth parameters in Catharanthus roseus L. under application of tryptophan. J Sci Kharazmi Univ 14(3):249–260Google Scholar
  135. Ramani S, Chelliah J (2007) UV-B-induced signaling events leading to enhanced-production of catharanthine in Catharanthus roseus cell suspension cultures. BMC Plant Biol 7:61PubMedPubMedCentralCrossRefGoogle Scholar
  136. Raouf Fard F, Moieni A, Omidbaigi R (2008) Effects of different concentrations of α-naphthaleneacetic acid and 6-benzylaminopurine on shoot regeneration of Vinca minor L. J Agric Sci Technol 10:337–344Google Scholar
  137. Rashmi R, Trivedi MP (2015) Rapid in-vitro regeneration of an important medicinal and an ornamental plant (Catharanthus roseus L). Biochem Anal Biochem 4(4):1–6Google Scholar
  138. Ren AZ, Gao YB, Liu S (2002) Response of some protective enzymes in Brassica chinensis seedling to Pb++, Cd+ and Cr+++ stress. Chin J Appl Ecol 13:510–512Google Scholar
  139. Rijhwani SK, Shanks JV (1998) Effect of subculture cycle on growth and indole alkaloid production by Catharanthus roseus hairy root cultures. Enzym Microb Technol 22:606–611CrossRefGoogle Scholar
  140. Rizvi NF, Weaver JD, Cram EJ, Lee-Parsons CWT (2016) Silencing the transcriptional repressor, zct1, illustrates the tight regulation of terpenoid indole alkaloid biosynthesis in Catharanthus roseus hairy roots. PLoS One 11(7):1–17CrossRefGoogle Scholar
  141. Rodrigueza S, Compagnonb V, Crouchc NP, St-Pierred B, De Lucae V (2003) Jasmonate-induced epoxidation of tabersonine by a cytochrome P-450 in hairy root cultures of Catharanthus roseus. Phytochemistry 64:401–409CrossRefGoogle Scholar
  142. Ruiz-May E, Galaz-Avalos RM, Loyola-Vargas VM (2009) Differential secretion and accumulation of terpene indole alkaloids in hairy roots of Catharanthus roseus treated with methyl jasmonate. Mol Biotechnol 41:278–285PubMedCrossRefPubMedCentralGoogle Scholar
  143. Saifullah, Khan S (2011) Callus induction and cell suspension culture production of Catharanthus roseus for biotransformation studies of (−)- caryophyllene oxide. Pak J Bot 43(1):467–473Google Scholar
  144. Saiman MZ, Miettinen K, Mustafa NR, Choi YH, Verpoorte R, Schulte AE (2018) Metabolic alteration of Catharanthus roseus cell suspension cultures overexpressing geraniol synthase in the plastids or cytosol. Plant Cell Tissue Organ Cult 134:41–53PubMedPubMedCentralCrossRefGoogle Scholar
  145. Schiel O, Berlin J (1987) Large scale fermentation and alkaloid production of cell suspension cultures of Catharanthus roseus. Plant Cell Tissue Organ Cult 8:153–161CrossRefGoogle Scholar
  146. Senoussi MM, Crèche J, Rideau M (2007) Relation between hypoxia and alkaloid accumulation in Catharanthus roseus cell suspension. J Appl Sci Res 3(4):287–290Google Scholar
  147. Sharma A, Verma P, Mathur A, Mathur AK (2018) Genetic engineering approach using early Vinca alkaloid biosynthesis genes led to increased tryptamine and terpenoid indole alkaloids biosynthesis in differentiating cultures of Catharanthus roseus. Protoplasma 255:425–435PubMedCrossRefPubMedCentralGoogle Scholar
  148. Sharma A, Mathur AK, Ganpathy J, Joshi B, Patel P (2019) Effect of abiotic elicitation and pathway precursors feeding over terpenoid indole alkaloids production in multiple shoot and callus cultures of Catharanthus roseus. Biologia 74:1–11CrossRefGoogle Scholar
  149. Sim SJ, Chang HN, Liu JR, Jung KH (1994) Production and secretion of indole alkaloids in hairy root cultures of Catharanthus roseus: effects of in situ adsorption, fungal elicitation and permeabilization. J Ferment Bioeng 78(3):229–234CrossRefGoogle Scholar
  150. Singh M, Sharma R, Banerjee UC (2002) Biotechnological applications of cyclodextrins. Biotechnol Adv 20(5–6):341–359PubMedCrossRefPubMedCentralGoogle Scholar
  151. Singh R, Kharb P, Rani K (2011) Rapid micropropagation and callus induction of Catharanthus roseus in vitro using different explants. World J Agric Sci 7(6):699–704Google Scholar
  152. Sivakumar G (2006) Bioreactor technology: a novel industrial tool for high-tech production of bioactive molecules and biopharmaceuticals from plant roots. Biotechnol J 1:1419–1427PubMedCrossRefPubMedCentralGoogle Scholar
  153. Smeets K, Ruytinx J, Semane B, Belleghem F, Remans T, Sanden S, Vangronsvelda J, Cuypersa A (2008) Cadmium-induced transcriptional and enzymatic alterations related to oxidative stress. Environ Exp Bot 63:1–8CrossRefGoogle Scholar
  154. Srivastava S, Srivastava AK (2012) Strategies to overcome oxygen transfer limitations during hairy root cultivation of Azadirachta indica for enhanced azadirachtin production. Appl Biochem Biotechnol 167:1818–1830PubMedCrossRefPubMedCentralGoogle Scholar
  155. Sun J, Manmathan H, Sun C, Peebles CAM (2016) Examining the transcriptional response of overexpressing anthranilate synthase in the hairy roots of an important medicinal plant Catharanthus roseus by RNA-seq. BMC Plant Biol 16:108PubMedPubMedCentralCrossRefGoogle Scholar
  156. Swanberg A, Dai W (2008) Plant regeneration of periwinkle (Catharanthus roseus) via organogenesis. HortScience 43(3):832–836CrossRefGoogle Scholar
  157. Taha HS, El-Bahr MK, Seif-El-Nasr MM (2008) In Vitro studies on Egyptian Catharanthus Roseus (L.) G. Don.: 1-Calli production, direct shootlets regeneration and alkaloids determination. J Appl Sci Res 4(8):1017–1022Google Scholar
  158. Taha HS, El-Bahr MK, Seif-El-Nasr MM (2009) In vitro studies on Egyptian Catharanthus roseus (L.) G.Don. IV: manipulation of some amino acids as precursors for enhanced of indole alkaloids production in suspension cultures. Aust J Basic Appl Sci 3(4):3137–3144Google Scholar
  159. Taha HS, Shams KA, Nazif NM, Seif-El-Nasr MM (2014) In vitro studies on Egyptian Catharanthus roseus (L.) G.Don V: impact of stirred reactor physical factors on achievement of cells proliferation and vincristine and vinblastine accumulation. Res J Pharm Biol Chem Sci 5(2):330–340Google Scholar
  160. Tanabe S, Hayashi N, Nishizawa Y, Yamane H, Shibuya N, Minami E (2008) Elicitor and calatalse activity of conidia suspensions of various strains of Magnaporthe grisea in suspension-cultured cells of rice. Biosci Biotechnol Biochem 72:889–892PubMedCrossRefPubMedCentralGoogle Scholar
  161. Thakore D, Srivastava AK, Sinha AK (2013) Yield enhancement strategies for enhancement of indole alkaloids in hairy root cultures of Catharanthus roseus. Int J Chem Eng Appl 4(3):153–156Google Scholar
  162. Thakore D, Srivastava AK, Sinha AK (2015) Model based fed batch cultivation and elicitation for the overproduction of ajmalicine from hairy roots of Catharanthus roseus. Biochem Eng J 97:73–80CrossRefGoogle Scholar
  163. Thakore D, Srivastavaa AK, Sinhab AK (2017) Mass production of ajmalicine by bioreactor cultivation of hairy roots of Catharanthus roseus. Biochem Eng J 119:84–91CrossRefGoogle Scholar
  164. Tikhomiroff C, Allais S, Klvana M, Hisiger S, Mario Jolicoeur M (2002) Continuous selective extraction of secondary metabolites from Catharanthus roseus hairy roots with silicon oil in a two-liquid-phase bioreactor. Biotechnol Prog 18:1003–1009PubMedCrossRefPubMedCentralGoogle Scholar
  165. Toivonen L, Ojala M, Kauppinenb V (1991) Studies on the optimization of growth and lndole alkaloid production by hairy root cultures of Catharanthus roseus. Biotechnol Bioeng 37:673–680PubMedCrossRefGoogle Scholar
  166. Toivonen L, Laakso S, Rosenqvist H (1992) The effect of temperature on hairy root cultures of Catharanthus roseus: growth, indole alkaloid accumulation and membrane lipid composition. Plant Cell Rep 11:395–399PubMedGoogle Scholar
  167. Tonk D, Mujib A, Maqsood M, Ali M, Zafar N (2016) Aspergillus flavus fungus elicitation improves vincristine and vinblastine yield by augmenting callus biomass growth in Catharanthus roseus. Plant Cell Tissue Organ Cult 126:291–303CrossRefGoogle Scholar
  168. Van Der Heijden R, Jacobs DI, Snoeijer W, Hallard D, Verpoorte R (2004) The catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 11(5):607–628CrossRefGoogle Scholar
  169. Veerabathini S, Sarang S, Shalini S, Deepa Sankar P (2015) Standardization of friable callus development in Catharanthus roseus (Linn.) G. DON. Int J Pharm Pharm Sci 7(3):111–113Google Scholar
  170. Verma P, Mathur AK (2011a) Agrobacterium tumefaciens-mediated transgenic plant production via direct shoot bud organogenesis from pre-plasmolyzed leaf explants of Catharanthus roseus. Biotechnol Lett 33:1053–1060PubMedCrossRefPubMedCentralGoogle Scholar
  171. Verma P, Mathur AK (2011b) Direct shoot bud organogenesis and plant regeneration from pre plasmolysed leaf explants in Catharanthus roseus. Plant Cell Tissue Organ Cult 106:401–408CrossRefGoogle Scholar
  172. Verma AK, Singh RR, Singh S (2012) Improved alkaloid content in callus culture of Catharanthus roseus. Bot Serb 36(2):123–130Google Scholar
  173. Verma P, Khan SA, Mathur AK, Shanker K, Kalra A (2014) Fungal endophytes enhanced the growth and production kinetics of Vinca minor hairy roots and cell suspensions grown in bioreactor. Plant Cell Tissue Organ Cult 118:257–268CrossRefGoogle Scholar
  174. Verma P, Sharma A, Khan SA, Shanker K, Mathur AK (2015) Over-expression of Catharanthus roseus tryptophan decarboxylase and strictosidine synthase in rol gene integrated transgenic cell suspensions of Vinca minor. Protoplasma 252:373–381PubMedCrossRefPubMedCentralGoogle Scholar
  175. Verpoorte R, Van der Heijden R, Van Gulik WM, Ten Hoopen HJG (1991) Plant biotechnology for the production of alkaloids present status and prospects. In: Brossi A (ed) The alkaloids, vol 40. Academic Press, San Diego, pp 1–187Google Scholar
  176. Wang Q, Xing S, Pan Q, Yuan F, Zhao J, Tian Y, Chen Y, Wang G, Tang K (2012) Development of efficient Catharanthus roseus regeneration and transformation system using agrobacterium tumefaciens and hypocotyls as explants. BMC Biotechnol 12:34PubMedPubMedCentralCrossRefGoogle Scholar
  177. Whitmer S, Canel C, Hallard D, Goncalves C, Verpoorte R (1998) Influence of precursor availability on alkaloid accumulation by transgenic cell line of Catharanthus roseus. Plant Physiol 116:853–857PubMedPubMedCentralCrossRefGoogle Scholar
  178. Whitmer S, Van der Heijn R, Verpoorte R (2002) Effect of precursor feeding on alkaloid accumulation by a tryptophan decarboxylase over-expressing transgenic cell line T22 of Catharanthus roseus. J Biotechnol 96(2):193–203PubMedCrossRefPubMedCentralGoogle Scholar
  179. Whitmer S, Canel C, Van der Heijden R, Verpoorte R (2003) Long-term instability of alkaloid production by stably transformed cell lines of Catharanthus roseus. Plant Cell Tissue Organ Cult 74(1):73–80CrossRefGoogle Scholar
  180. Xiang BB, Zhu YR, Wang WJ, Bai YL, Wang Y (2011) Cell line screening of Catharanthus roseus for high yield production of ajmalicine. J Med Plant Res 5(3):420–424Google Scholar
  181. Yang L, Stöckigt J (2010) Trends for diverse production strategies of plant medicinal alkaloids. Nat Prod Rep 27(10):1469–1479PubMedCrossRefPubMedCentralGoogle Scholar
  182. Yuan F, Wang Q, Pan Q, Wang G, Zhao J, Tian Y, Tang K (2011) An efficient somatic embryogenesis based plant regeneration from the hypocotyl of Catharanthus roseus. Afr J Biotechnol 10(66):14786–14795Google Scholar
  183. Zargar M, Farahani F, Nabavi T (2010) Hairy roots production of transgenic Catharanthus roseus L. plants with Agrobacterium rhizogenes under in vitro conditions. J Med Plant Res 4(21):2199–2203Google Scholar
  184. Zhao J, Verpoorte R (2007) Manipulating indole alkaloid production by Catharanthus roseus cell cultures in bioreactors: from biochemical processing to metabolic engineering. Phytochem Rev 6:435–457CrossRefGoogle Scholar
  185. Zhao J, Zhu WH, Hu Q (2000) Enhanced ajmalicine production in Catharanthus roseus cell cultures by combined elicitor treatment: from shake-flask to 20-l airlift bioreactor. Biotechnol Lett 22:509–514CrossRefGoogle Scholar
  186. Zhao J, Hu Q, Guo YQ, Zhu WH (2001a) Effects of stress factors, bioregulators, and synthetic precursors on indole alkaloid production in compact callus clusters cultures of Catharanthus roseus. Appl Microbiol Biotechnol 55:693–698PubMedCrossRefPubMedCentralGoogle Scholar
  187. Zhao J, Zhu WH, Hu Q, Guo YQ (2001b) Compact callus cluster suspension cultures of Catharanthus roseus with enhanced indole alkaloid biosynthesis. In Vitro Cell Dev Biol Plant 37:68–72CrossRefGoogle Scholar
  188. Zhao J, Zheng B, Li Y, Shan T, Mou Y, Lu S, Li P, Zhou L (2011) Enhancement of diepoxin ζ production by yeast extract and its fractions in liquid culture of Berkleasmium-like endophytic fungus Dzf12 from Dioscorea zingiberensis. Molecules 16:847–856PubMedPubMedCentralCrossRefGoogle Scholar
  189. Zhao L, Sander GW, Shanks JV (2013) Perspectives of the metabolic engineering of terpenoid indole alkaloids in Catharanthus roseus hairy roots. Adv Biochem Eng Biotechnol 134:23–54PubMedPubMedCentralGoogle Scholar
  190. Zhen-Gui Z, Di L, Zhi-Bi H (1998) Comparison of cell growth and alkaloid production of Catharanthus roseus cells cultured in shake flask and in bioreactor. Acta Bot Sin 40(1):51–55Google Scholar
  191. Zhong JJ (2001) Biochemical engineering of the production of plant-specific secondary metabolites by cell suspension cultures. Adv Biochem Eng Biotechnol 72:1–26PubMedPubMedCentralGoogle Scholar
  192. Zhong JJ, Pan ZW, Wang ZY, Wu J, Chen YF, Takagi M, Yoshida T (2002) Effect of mixing time on taxoid production using suspension cultures of Taxus chinensis in a centrifugal impeller bioreactor. J Biosci Bioeng 94:244–250PubMedCrossRefPubMedCentralGoogle Scholar
  193. Zhou P, Yang J, Zhu J, He S, Zhang W, Yu R, Zi J, Song L, Huang X (2015) Effects of β-cyclodextrin and methyl jasmonate on the production of vindoline, catharanthine, and ajmalicine in Catharanthus roseus cambial meristematic cell cultures. Appl Microbiol Biotechnol 99(17):7035–7045PubMedCrossRefPubMedCentralGoogle Scholar
  194. Zhu X, Zeng X, Sun C, Shilin Chen S (2014) Biosynthetic pathway of terpenoid indole alkaloids in Catharanthus roseus. Front Med 8(3):285–293PubMedCrossRefPubMedCentralGoogle Scholar
  195. Zhu J, Wang M, Wen W, Yu R (2015) Biosynthesis and regulation of terpenoid indole alkaloids in Catharanthus roseus. Pharmacogn Rev 9:24–28PubMedPubMedCentralCrossRefGoogle Scholar
  196. Zulkepli AZ, Samad AA (2011) Optimization of sterilization method, callus and shoot induction of Catharanthus roseus explants. Int J Biosci 1(1):31–35Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohamed Ramadan Rady
    • 1
  1. 1.Department of Plant BiotechnologyNational Research CentreGizaEgypt

Personalised recommendations