Skip to main content

High-Throughput Electronic Band Structure Calculations for Hexaborides

  • Conference paper
  • First Online:
Intelligent Computing (CompCom 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 998))

Included in the following conference series:

  • 1732 Accesses

Abstract

Several specific physical properties of alloys can be determined by first-principles (typically via density functional theory, DFT) due to the enormous gain in high-performance computing over the last decades. This article is devoted to the discussion of the high-throughput approach to band structures calculations. We present the computational key for the auto-generation band structure on the high-throughput calculating platform. This method is based on a standard creation of k-point paths for band. This standardization is automatic and fully integrated for the 14 Bravais lattices, the conventional and primitive unit cells, and the coordinates of the high symmetry k-path in the Brillouin zones. Some band structures for transition metal doped Hexaborides are given as example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koinuma, H., Takeuchi, I.: Nat. Mater 3, 429 (2004)

    Article  Google Scholar 

  2. Spivack, J.L., Cawse, J.N., Whisenhunt, D.W., Johnson, B.F., Shalyaev, K.V., Male, J., Pressman, E.J., Ofori, J.Y., Solovrichik, G.L., Patel, B.P., Chuck, T.L., Smith, D.J., Jordan, T.M., Brennan, M.R., Kilmer, R.J., Williams, E.D.: App. Cata. A 5, 254 (2003)

    Google Scholar 

  3. Boussie, T.R., Diamond, G.M., Goh, C., Hall, K.A., LaPointe, A.M., Leclerc, M., Lund, C., Murphy, V., Shoemaker, J.A.W., Tracht, U., Turner, H., Zhang, J., Uno, T., Rosen, R.K., Stevens, J.C.: J. Am. Chem. Soc. 125, 4306 (2003)

    Article  Google Scholar 

  4. Potyrailo, R.A., Chisholm, B.J., Morris, W.G., Cawse, J.N., Flanagan, W.P., Hassib, L., Molaison, C.A., Ezbiansky, K., Medford, G., Reitz, H.: J. Comb. Chem. 5, 472 (2003)

    Article  Google Scholar 

  5. Potyrailo, R.A., Takeuchi, I.: Measure. Sci. Tech. 16, 1 (2005)

    Article  Google Scholar 

  6. Chiang, Y.-M., Sadoway, D.R., Aydinol, M.K., Jang, Y.-I., Huang, B., Ceder, G.: Nature 392, 472 (1998)

    Google Scholar 

  7. Jóhannesson, G.H., Bligaard, T., Ruban, A.V., Skriver, H.L., Jacobsen, K.W., Nørskov, J.K.: Phys. Rev. Lett. 88, 255506 (2002)

    Article  Google Scholar 

  8. Stucke, D.P., Crespi, V.H.: Nano Lett. 3, 1183 (2003)

    Article  Google Scholar 

  9. http://www.materialsgenome.org

  10. Yu, L., Zunger, A.: Phys. Rev. Lett. 108, 068701 (2012)

    Article  Google Scholar 

  11. Hasan, M.Z., Kane, C.L.: Rev. Mod. Phys. 82, 3045 (2010)

    Article  Google Scholar 

  12. Madsen, G.K.H.: J. Am. Chem. Soc. 128, 12140 (2006)

    Article  Google Scholar 

  13. Maier, W.F., Stöwe, K., Sieg, S.: Angew. Chem. Int. Ed. 46, 6016 (2007)

    Article  Google Scholar 

  14. Taylor, R.H., Curtarolo, S., Hart, G.L.W.: Phys. Rev. B 84, 084101 (2011)

    Article  Google Scholar 

  15. Kolmogorov, A.N., Shah, S., Margine, E.R., Bialon, A.F., Hammerschmidt, T., Drautz, R.: Phys. Rev. Lett. 105, 217003 (2010)

    Article  Google Scholar 

  16. Nakamura, E., Sato, K.: Nat. Mater. 10, 158 (2011)

    Article  Google Scholar 

  17. Yuasa, S., Djayaprawira, D.D.: J. Phys. D 40, R337 (2007)

    Article  Google Scholar 

  18. Tian, N., Zhou, Z.Y., Sun, S.G., Ding, Y., Wang, Z.L.: Science 316, 732 (2007)

    Article  Google Scholar 

  19. Chepulskii, R.V., Curtarolo, S.: ACS Nano 5, 247 (2011)

    Article  Google Scholar 

  20. Niu, H., Wang, J., Chen, X., Li, D., Li, Y., Lazar, P., Podloucky, R., Kolmogorov, A.N.: Phys. Rev. B 85, 144116 (2012)

    Article  Google Scholar 

  21. Setyawan, W., Curtarolo, S.: Comput. Mater. Sci. 49, 299 (2010)

    Article  Google Scholar 

  22. Jain, A., Hautier, G., Moore, C.J., Ong, S.P., Fischer, C.C., Mueller, T., Persson, K.A., Ceder, G.: Comput. Mater. Sci. 50, 2295 (2011)

    Article  Google Scholar 

  23. Ong, S.P., Jain, A., Hautier, G., Kang, B., Ceder, G.: Electrochem. Commun. 12, 427 (2010)

    Article  Google Scholar 

  24. Kim, J.C., Moore, C.J., Kang, B., Hautier, G., Jain, A., Ceder, G.: J. Electrochem. Soc. 158, A309 (2011)

    Article  Google Scholar 

  25. Ong, S.P., Chlia, S., Jain, A., Brafman, M., Gunter, D., Ceder, G., Persson, K.A.: Comput. Mater. Sci. 97, 209 (2015)

    Article  Google Scholar 

  26. http://www.qmip.org/qmip.org/Welcome.html

  27. Hachmann, J., Olivares-Amaya, R., Atahan-Evrenk, S., Amador-Bedolla, C., Sánchez-Carrera, R.S., Gold-Parker, A., Vogt, L., Brockway, A.M., Aspuru-Guzik, A.: J. Phys. Chem. Lett. 2, 2241 (2011)

    Article  Google Scholar 

  28. Gonze, X., Beuken, J.-M., Caracas, R., Detraux, F., Fuchs, M., Rignanese, G.-M., Sindic, L., Verstaete, M., Zérah, G., Jollet, F.: Comput. Mater. Sci. 25, 478 (2002)

    Google Scholar 

  29. Torrent, M., Jollet, F., Bottin, F., ZérahX, G., Gonze, X.: Comput. Mater. Sci. 42, 337 (2008)

    Article  Google Scholar 

  30. http://www.abinit.org

  31. Blöchl, P.: Phys. Rev. B 50, 17953 (1994)

    Article  Google Scholar 

  32. Dresselhaus, M.S., Dresselhaus, G., Jorio, A.: Group Theory: Applications to the Physics of Condensed Matter. Springer, Berlin (2008)

    MATH  Google Scholar 

  33. Degiorgi, L., Felder, E., Ott, H.R., Sarrao, J.L., Fisk, Z.: Phys. Rev. Lett. 79, 5134 (1997)

    Article  Google Scholar 

  34. Süllow, S., Prasad, I., Aronson, M.C., Bogdanovich, S., Sarrao, J.L., Fisk, Z.: Phys. Rev. B 62, 11626 (2000)

    Article  Google Scholar 

  35. Broderick, S., Ruzicka, B., Degiorgi, L., Ott, H.R.: Phys. Rev. B 65, 121102(R) (2002)

    Article  Google Scholar 

  36. Jun, J., Jiang, B., Lemin, L.: ACTA Phys-Chem. Sinic 24, 1 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liutao Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pan, Z., Pan, Y., Jiang, J., Zhao, L. (2019). High-Throughput Electronic Band Structure Calculations for Hexaborides. In: Arai, K., Bhatia, R., Kapoor, S. (eds) Intelligent Computing. CompCom 2019. Advances in Intelligent Systems and Computing, vol 998. Springer, Cham. https://doi.org/10.1007/978-3-030-22868-2_29

Download citation

Publish with us

Policies and ethics