Advertisement

III–V Solar Cells and Concentrator Arrays

  • Zh. I. AlferovEmail author
  • V. M. Andreev
  • M. Z. Shvarts
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 140)

Abstract

Semiconductor heterostructures allow solving the problems of controlling the fundamental parameters of semiconductor devices owing to the possibility of change in the electronic band structure, bandgaps and refractive indices of a material itself during epitaxial growth, as well as effective masses and mobilities of charge carriers in it.

References

  1. 1.
    W. Shockley, Circuit Element Utilizing Semiconductor Material. U.S. Patent 2269347, September 25, 1951Google Scholar
  2. 2.
    A.I. Gubanov, Theory of the contact between two semiconductors with different types of conduction. Zh. Tekh. Fiz. 20, 1287 (1950)Google Scholar
  3. 3.
    H. Kroemer, Theory of a wide-gap emitter for transistors. Proc. IRE 45(11), 1535–1537 (1957)CrossRefGoogle Scholar
  4. 4.
    Zh.I. Alferov, The double heterostructure: concept and its applications in physics, electronics and technology (Norstedts Tryckeri, Stockholm, Les prix Nobel, 2001), pp. 65–93Google Scholar
  5. 5.
    H. Kroemer, A proposed class of heterojunction injection lasers. Proc. IEEE 51(12), 1782–1783 (1963)CrossRefGoogle Scholar
  6. 6.
    Zh. I. Alferov, V.B. Khalfin, R.F. Kazarinov, A characteristic feature of injection into heterojunctions. Fiz. Tverd. Tela 8, 3102–3105 (1966) [Sov. Phys. Solid State 8, 2480 (1967)]Google Scholar
  7. 7.
    Z.I. Alferov, Possible development of a rectifier for very high current densities on the bases of a p-i-n (p-n-n, n-p-p) structure with heterojunctions. Fiz. Tekh. Poluprovodn. 1, 436–438 (1966) [Sov. Phys. Semicond. 1, 358–361 (1967)]Google Scholar
  8. 8.
    R.L. Anderson, Germanium-gallium arsenide heterojunctions. IBM J. Res. Dev. 4(3), 283–287 (1960)CrossRefGoogle Scholar
  9. 9.
    Z.I. Alferov, V.M. Andreev, V.I. Korol’kov, D.N. Tret’yakov, V.M. Tuchkevich, High-voltage p-n junctions in GaxAl1−x crystals. Fiz. Tekh. Poluprovodn. 1, 1579–1581(1967) [Sov. Phys. Semicond. 1, 1313–1314 (1968)]Google Scholar
  10. 10.
    H.S. Rupprecht, J.M. Woodall, G.D. Pettit, Efficient visible electroluminescence at 300 K from Ga1−xAlxAs p-n junctions grown by liquid-phase epitaxy. Appl. Phys. Lett. 11(3), 81–83 (1967)CrossRefADSGoogle Scholar
  11. 11.
    Z.I. Alferov, V.M. Andreev, V.I. Korol’kov, E.L. Portnoi, D.N. Tret’yakov, Injection properties of n–AlxGa1−xAs-p-GaAs heterojunctions. Fiz. Tekh. Poluprovodn. 2, 1016–1017 (1968) [Sov. Phys. Semicond. 2, 843–844 (1969)]Google Scholar
  12. 12.
    Z.I. Alferov, V.M. Andreev, V.I. Korol’kov, E.L. Portnoy, D.N. Tret’yakov, Coherent radiation of epitaxial heterojunction structures in the AlAs–GaAs system. Fiz. Tekh. Poluprovodn. 2, 1545–1547 (1968) [Sov. Phys. Semicond. 2, 1289–1291 (1969)]Google Scholar
  13. 13.
    Z.I. Alferov, V.M. Andreev, V.I. Korol’kov, E.L. Portnoi, D.N. Tret’yakov, Recombination radiation in epitaxial structures in the AlAs–GaAs system, in Proceedings of IX International Conference on the Physics of Semiconductors, Moscow, vol. 1 (Nauka, Leningrad, 1968), pp. 504–510Google Scholar
  14. 14.
    Z.I. Alferov, V.M. Andreev, E.L. Portnoy, M.K. Trukan, AlAs–GaAs heterojunctions injection lasers with a low room-temperature threshold. Fiz. Tekh. Poluprovodn. 3, 1328–1332 (1969) [Sov. Phys. Semicond. 3, 1107–1110 (1970)]Google Scholar
  15. 15.
    I. Hayashi, Heterostructure lasers. IEEE Trans. Electr. Devices 31(11), 1630–1642 (1984)CrossRefADSGoogle Scholar
  16. 16.
    Z.I. Alferov, V.M. Andreev, D.Z. Garbuzov, Y.V. Zhilyaev, E.P. Morozov, E.L. Portnoi, V.G. Trofim, Investigation of the influence of the AlAs–GaAs heterostructure parameters on the laser threshold current and the realization of continuous emission at the room temperature. Fiz. Tekh. Poluprovodn. 4, 1826–1829 (1970) [Sov. Phys. Semicond. 4, 1573–1575 (1971)]Google Scholar
  17. 17.
    I. Hayashi, M.B. Panish, P.W. Foy, S. Sumski, Junction lasers which operate continuously at room temperature. Appl. Phys. Lett. 17, 109–111 (1970)CrossRefADSGoogle Scholar
  18. 18.
    Z.I. Alferov, V.M. Andreev, V.I. Korol’kov, E.L. Portnoi, A.A. Yakovenko, Spontaneous radiation sources based on structures with AlAs–GaAs heterojunctions. Fiz. Tekh. Poluprovodn. 3, 930–933 (1969) [Sov. Phys. Semicond. 3, 785–787 (1970)]Google Scholar
  19. 19.
    Z.I. Alferov, V.M. Andreev, M.B. Kagan, I.I. Protasov, V.G. Trofim, Solar-energy converters based on p-n AlxGa1−xAs-GaAs heterojunctions. Fiz. Tekh. Poluprovodn. 4, 2378–2379 (1970) [Sov. Phys. Semicond. 4, 2047–2048 (1971)]Google Scholar
  20. 20.
    Z.I. Alferov, F.A. Ahmedov, V.I. Korol’kov, V.G. Nikitin, Phototransistor utilizing a GaAs–AlAs heterojunction. Fiz. Tekn. Poluprovodn. 7, 1159–1163 (1973) [Sov. Phys. Semicond. 7, 780–782 (1973)]Google Scholar
  21. 21.
    Z.I. Alferov, V.M. Andreev, V.I. Korol’kov, V.G. Nikitin, A.A. Yakovenko, p-n-p-n structures based on GaAs and on AlxGa1−xAs solid solutions. Fiz. Tekn. Poluprovodn. 4, 578–581 (1970) [Sov. Phys. Semicond. 4, 481–483 (1971)]Google Scholar
  22. 22.
    Z.I. Alferov, V.M. Andreev, S.G. Konnikov, V.G. Nikitin, D.N. Tret’yakov, Heterojunctions on the base of III–V semiconducting and of their solid solutions, in Proceedings of International Conference Physical Chemical Semiconductors Heterojunctions and Layer Structures, Budapest, 1970, vol. 1, ed. by G. Szigeti (Academiai Kiado, Budapest, 1971), pp. 93–106Google Scholar
  23. 23.
    G.A. Antipas, R.L. Moon, L.W. James, J. Edgecumbe, R.L. Bell, in Gallium Arsenide and Related Compounds, vol. 17. 1972 Conference Series IOP, London: Institute of Physics, 1973, p. 48Google Scholar
  24. 24.
    A.P. Bogatov, L.M. Dolginov, L.V. Druzhinina, P.G. Eliseev, L.N. Sverdlova, E.G. Shevchenko, Heterolasers on the base of solid solutions GaxIn1−xAsyP1−y and AlxGa1−xSbyAs1−y. Kvantovaya Electron. 1, 2294 (1974) [Sov. J. Quant. Electr. 1, 1281, 1974]Google Scholar
  25. 25.
    Zh. I. Alferov, I.N. Arsent’ev, D.Z. Garbuzov, S.G. Konnikov, V.D. Rumyantsev. Generation of coherent radiation in nGa0.5In0.5P-pGax~0.55In1−xAsy~0.10P1−y—nGa0.5In0.5P. Pisma Zh. Tech. Fiz. 1, 305–310, 1975 [Sov. Phys.-Tech. Phys. Lett. 1, 147–148, 1975]Google Scholar
  26. 26.
    D. Flood, H. Brandhorst, Space solar cells, in Current Topics in Photovoltaics, vol. 2, ed. by T.J. Coutts, J.D. Meakin (Academic Press, New York, 1987, London), pp. 143–202Google Scholar
  27. 27.
    S.G. Bailey, D.J. Flood, Space photovoltaics. Prog. Photovolt. Res. Appl. 6(1), 1–14 (1998)CrossRefGoogle Scholar
  28. 28.
    V.M. Andreev, V.A. Grilikhes, V.D. Rumyantsev, Photovoltaic conversion of concentrated sunlight (Wiley & Sons Ltd., New York, 1997)Google Scholar
  29. 29.
    H.J. Hovel, J.M. Woodall, High-efficiency AlGaAs-GaAs solar cells. Appl. Phys. Lett. 21, 379–381 (1972)CrossRefADSGoogle Scholar
  30. 30.
    V.M. Andreev, T.M. Golovner, M.B. Kagan, N.S. Koroleva, T.A. Lubochevskaya, T.A. Nuller, D.N. Tret’yakov, Investigation of high efficiency AlGaAs-GaAs solar cells. Sov. Phys. Semicond. 7(12) (1973)Google Scholar
  31. 31.
    Zh.I. Alferov, V.M. Andreev, G.S. Daletskii, M.B. Kagan, N.S. Lidorenko, V.M. Tuchkevich. Investigation of high efficiency AlAs-GaAs heteroconverters, in Proceedings of World Electrotechnology, Congress, Moscow, 1977, Section 5A, report 04Google Scholar
  32. 32.
    H.J. Hovel, Solar cells, in Semiconductors and Semimetals, ed. by R.K. Willardson, A.C. Beer, vol. 11 (New York, London: Acad. Press, 1975)Google Scholar
  33. 33.
    V.M. Andreev, III–V heterostructure photovoltaics in Russia, in Proceedings of the 17th European Photovoltaic Solar Energy Conference, Munich, 2001, pp. xxxi–xxxii (2001)Google Scholar
  34. 34.
    J.M. Woodall, H.J. Hovel, An isothermal etchback-regrowth method for high efficiency Ga1-xAlxAs-GaAs solar cells. Appl. Phys. Lett. 30, 492–493 (1977)CrossRefADSGoogle Scholar
  35. 35.
    V.M. Andreev, V.R. Larionov, V.D. Rumyantsev, O.M. Fedorova, Sh.Sh. Shamukhamedov, P AlGaAs-pGaAs-nGaAs solar cells with efficiencies of 19% at AM0 and 24% at AM1.5. Sov. Tech. Phys. Lett. 9(10), 537–538 (1983)Google Scholar
  36. 36.
    H.J. Hovel, Novel materials and devices for sunlight concentrating systems. IBM J. Res. Develop. 22, 112–121 (1978)CrossRefGoogle Scholar
  37. 37.
    E. Fanetti, C. Flores, G. Guarini, F. Paletta, D. Passoni, High efficiency 1.43 and 1.69 eV band gap Ga1-x AlxAs-GaAs solar cells for multicolor applications. Solar cells 3, 187–194 (1981)CrossRefADSGoogle Scholar
  38. 38.
    R.C. Knechtly, R.Y. Loo, G.S. Kamath, High-efficiency GaAs solar cells. IEEE Trans. Electron Devices 31(5), 577–588 (1984)CrossRefADSGoogle Scholar
  39. 39.
    H.S. Rauschenbach, Solar cell array design handbook (Litton Educational Publishing Inc, The principles and technology of photovoltaic energy conversion. New York, 1980)CrossRefGoogle Scholar
  40. 40.
    A. Luque, G. LAraujo. Solar cells and optics for photovoltaic concentration. Bristol-Philadelphia: Adam Hilger, 1989, 531 pGoogle Scholar
  41. 41.
    L.D. Partain (ed.), Solar Cells and Their Application (New York: Wiley, 1995)Google Scholar
  42. 42.
    P.A. Iles, Future of Photovoltaic for Space Applications. Prog. Photovoltaics Res. Appl. 8, 39–51 (2000)CrossRefGoogle Scholar
  43. 43.
    V.M. Andreev, A.B. Kazantsev, V.P. Khvostikov, E.V. Paleeva, V.D. Rumyantsev, M.Z. Shvarts. High-efficiency (24.6%, AM0) LPE Grown AlGaAs/GaAs concentrator solar cells and modules. In Conference Record of the First World Conference on Photovoltaic Energy Conversion (WCPEC) (Waikoloa, Hawaii, 1994), pp. 2096–2099Google Scholar
  44. 44.
    V.M. Andreev, V.D. Rumyantsev, A3B5 based solar cells and concentrating optical elements for space PV modules. Sol. Energy Mater. Sol. Cells 44, 319–332 (1996)CrossRefGoogle Scholar
  45. 45.
    R.D. Dupuis, P.D. Dapkus, R.D. Vingling, L.A. Moundy, High-efficiency GaAlAs/GaAs heterostructure solar cells grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 31, 201–203 (1977)CrossRefADSGoogle Scholar
  46. 46.
    N.J. Nelson, K.K. Jonson, R.L. Moon, H.A. Vander Plas, L.W. James, Organometallic-sourced VPE AlGaAs/GaAs concentrator solar cells having conversion efficiencies of 19%. Appl. Phys. Lett. 33. 26–27 (1978)Google Scholar
  47. 47.
    J.G. Werthen, G.F. Virshup, C.W. Ford, C.R. Lewis, H.C. Hamaker, 21% (one sun, air mass zero) 4 cm2 GaAs space solar cells. Appl. Phys. Lett. 48, 74–75 (1986)CrossRefADSGoogle Scholar
  48. 48.
    S.P. Tobin, S.M. Vernon, S.J. Woitczuk, C. Baigar, M.M. Sanfacon, T.M. Dixon. Advanced in high-efficiency GaAs solar cells, in Conference Record of the 21st IEEE Photovoltaic Specialists Conference (PVSC), Kissimimee, pp. 158–162 (1990)Google Scholar
  49. 49.
    S.P. Tobin, S.M. Vernon, M.M. Sanfacon, A. Mastrovito, Enhanced light absorption in GaAs solar cells with internal Bragg reflector, in Conference Record of the 22nd IEEE Photovoltaic Specialists Conference, pp. 147–152 (1991)Google Scholar
  50. 50.
    V.M. Andreev, V.V. Komin, I.V. Kochnev, V.M. Lantratov, M.Z. Shvarts, High-efficiency AlGaAs-GaAs solar cells with internal Bragg reflector, in Conference Record of the First World Conference on Photovoltaic Energy Conversion (WCPEC) (Waikoloa, Hawaii, 1994), pp. 1894–1897Google Scholar
  51. 51.
    M.Z. Shvarts, O.I. Chosta, I.V. Kochnev, V.M. Lantratov, V.M. Andreev, Radiation resistant AlGaAs/GaAs concentrator solar cells with internal Bragg reflector. Sol. Energy Mater. Sol. Cells 68, 105–122 (2001)CrossRefGoogle Scholar
  52. 52.
    M. Yamaguchi, Space solar cell R&D activities in Japan, in Proceedings of the 15th Space Photovoltaic Research and Technology Conference, pp. 1–10 (1997)Google Scholar
  53. 53.
    C.C. Fan, B.-Y. Tsaur, B.J. Palm, Optimal design of high-efficiency tandem cells, in Conference Record of the 16th IEEE Photovoltaic Specialists Conf. (PVSC), pp. 692–698 (1982)Google Scholar
  54. 54.
    M.A. Green, Solar Cells (Prentice-Hall Inc., New Jersey, 1982)Google Scholar
  55. 55.
    M.F. Lamorte, D.H. Abbott, Computer modeling of a two-junction, monolithic cascade solar cell. IEEE Trans. Electron Devices 27, 231–249 (1980)CrossRefADSGoogle Scholar
  56. 56.
    M.B. Spitzer, C.C. Fan, Multijunction cells for space applications. Solar Cells 29, 183–203 (1990)CrossRefGoogle Scholar
  57. 57.
    L. Fraas, B. Daniels, Han-Xiang Huang, J. Avery, C. Chu, P. Iles, M. Piszczor, Over 30% efficient InGaP/GaAs/GaSb cell-interconnected-circuits for line-focus concentrator arrays, in Proceedings of the 28th IEEE Photovoltaic Specialists Conference (PVSC) (Anhorage, Alaska, 2000), pp. 1150–1153Google Scholar
  58. 58.
    L. Fraas, J. Avery, D. Scheiman, AM0 calibration of 34% efficient mechanically stacked GaInP/GaAsGaSb circuits, in Proceedings of the 29th IEEE Photovoltaic Specialists Conference (PVSC) (New Orleans, 2002), pp. 912–915Google Scholar
  59. 59.
    M.Z. Shvarts, P.Y. Gazaryan, V.P. Khvostikov, V.M. Lantratov, N.K. Timoshina, InGaP/GaAs-GaSb and InGaP/GaAs/Ge-InGaAsSb hybrid monolithic/stacked tandem concentrator solar cells, in Proceedings of the 21st European Photovoltaic Solar Energy Conference (Dresden, 2006), pp. 133–136Google Scholar
  60. 60.
    I. Mathews, D. O’Mahony, K. Thomas, B. Corbett, A.P. Morrison, Adhesive bonding for mechanically stacked solar cells. Prog. Photovolt. Res. Appl. 23(9), 1080–1090 (2015)CrossRefGoogle Scholar
  61. 61.
    J.D. McCambridge, M.A. Steiner, B.A. Unger, K.A. Emery, E.L. Christensen, M.W. Wanlass, A.L. Gray, L. Takacs, R. Buelow, T.A. McCollum, J.W. Ashmead, G.R. Schmidt, A.W. Haas, J.R. Wilcox, J.V. Meter, J.L. Gray, D.T. Moore, A.M. Barnett, R.J. Schwartz, Compact spectrum splitting photovoltaic module with high efficiency. Prog. Photovoltaics Res. Appl. 19, 352–360 (2011)CrossRefGoogle Scholar
  62. 62.
    M.A. Green, M.J. Keevers, I. Thomas, J.B. Lasich, K. Emery, R.R. King, 40% efficient sunlight to electricity conversion. Prog. Photovoltaics Res. Appl. 23(6), 685–691 (2015)CrossRefGoogle Scholar
  63. 63.
    M.A. Green, K. Emery, D.L. King, Y. Nishikawa, W. Warta, E.D. Dunlop, D.H. Levi, A.W.Y. Ho-Baillie, Solar cell efficiency tables (version 49). Prog. Photovoltaics Res. Appl. 25, 3–13 (2017)Google Scholar
  64. 64.
    B.M. Kayes, L. Zhang, R. Twist, I.K. Ding, G.S. Higashi, Flexible thin-film tandem solar cells with >30% efficiency. IEEE Journal of Photovoltaics 4, 729–733 (2014)CrossRefGoogle Scholar
  65. 65.
    I. Garcia, I. Rey-Stolle, B. Gallana, C. Algora, A 32.6% efficient lattice-matched dual-junction solar cell working at 1000 suns. Appl. Phys. Lett. 94(5), 053509 (2009)Google Scholar
  66. 66.
    J. Ohlmann, D. Lackner, J.F. Sanchez, M. Zedda, A. Wekkeli, M. Steiner, A. Fallisch, F. Dimroth, 35.1% efficient dual-junction solar cells optimized for direct hydrogen generation, in Proceedings of the 44th IEEE Photovoltaic Specialists Conference (PVSC), Washington (2017)Google Scholar
  67. 67.
    R.R. King, D.C. Law, K.M. Edmondson, C.M. Fetzer, G.S. Kinsey, H. Yoon, R.A. Sherif, N.H. Karam, 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl. Phys. Lett. 90, 183516 (2007)CrossRefADSGoogle Scholar
  68. 68.
    W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A.W. Bett, F. Dimroth, Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight. Appl. Phys. Lett. 94(22), 223504–223506 (2009)Google Scholar
  69. 69.
    R.R. King, A. Boca, W. Hong, X.-Q. Liu, D. Bhusari, D. Larrabee, K.M. Edmondson, D.C. Law, C.M. Fetzer, S. Mesropian, N.H. Karam, Band-Gap engineered architectures for high-efficiency multijunction concentrator solar cells, in Proceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg (2009), pp 55–61Google Scholar
  70. 70.
    M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, Anita W.Y. Ho-Baillie, Solar cell efficiency tables (version 51). Prog. Photovoltaics Res. Appl. 26, 3–12 (2018)Google Scholar
  71. 71.
    V. Sabnis, H. Yuen, M. Wiemer, High-efficiency multijunction solar cells employing dilute nitrides. AIP Conf. Proc. 1477, 14–19 (2012)CrossRefADSGoogle Scholar
  72. 72.
    P. Chiu, S. Wojtczuk, X. Zhang, C. Harris, D. Pulver, M. Timmons, 42.3% efficient InGaP/GaAs/InGaAs concentrators using bifacial epigrowth, in Proceedings of the 37th IEEE Photovoltaic Specialists Conference (PVSC), Seattle (2011), pp. 771–774Google Scholar
  73. 73.
    Press release, Sharp Corporation, 31 May 2012. Accessed at http://www.sharp-world.com/corporate/news/120531.html
  74. 74.
    A. Yoshida, T. Agui, N. Katsuya, K. Murasawa, H. Juso, K. Sasaki, T. Takamoto, Development of InGaP/GaAs/InGaAs inverted triple junction solar cells for concentrator application, in Proceedings of the 21st International Photovoltaic Science and Engineering Conference (PVSEC-21), Fukuoka (2011)Google Scholar
  75. 75.
    P.T. Chiu, D.L. Law, R.L. Woo, S. Singer, D. Bhusari, W.D. Hong, A. Zakaria, J.C. Boisvert, S. Mesropian, R.R. King, N.H. Karam, 35.8% space and 38.8% terrestrial 5J direct bonded cells, in Proceedings of the 40th IEEE Photovoltaic Specialists Conference (PVSC), Denver, Colorado, pp. 11–13Google Scholar
  76. 76.
    F. Dimroth, T.N.D. Tibbits, M. Niemeyer et al., Four-junction wafer-bonded concentrator solar cells. IEEE Journal of Photovoltaics 6, 343–349 (2016)CrossRefGoogle Scholar
  77. 77.
  78. 78.
    R. Cariou, J. Benick, P. Beutel et al., Monolithic two-terminal III–V//Si triple-junction solar cells with 30.2% efficiency under 1-Sun AM1.5g. IEEE J. Photovoltaics 7(1), 367–373 (2017)CrossRefGoogle Scholar
  79. 79.
    A.P. Kirk, High efficacy thinned four-junction solar cell. Semicond. Sci. Technol. 26(12), 125013 (2011)CrossRefADSGoogle Scholar
  80. 80.
    D. Aiken, E. Dons, S.-S. Je, N. Miller, F. Newman, P. Patel, J. Spann, Lattice matched solar cells with 40% average efficiency in pilot production and a roadmap to 50%. IEEE J. Photovoltaics 3(1), 542–547 (2013)CrossRefGoogle Scholar
  81. 81.
    M. Ochoa, I. García, I. Lombardero et al., Advances towards 4J lattice-matched including dilute nitride subcell for terrestrial and space applications, in Proceedings of the IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, 2016, pp. 0052–0057Google Scholar
  82. 82.
    R. Roucka, A. Clark, B. Landini, Si-Ge-Sn Alloys with 1.0 eV Gap for CPV Multijunction Solar Cells. AIP Conf. Proc. 1679, 040008–040008 (2015)CrossRefGoogle Scholar
  83. 83.
    T. Wilson, T. Thomas, M. Führer, N.J. Ekins-Daukes, R. Roucka, A. Clark, A. Johnson, R. Hoffman, D. Begarney, Single and multi-junction solar cells utilizing a 1.0 eV SiGeSn junction, in AIP Conference Proceedings, vol. 1766 (2016), pp. 060006Google Scholar
  84. 84.
    C. Algora, E. Ortiz, I. Rey-Stolle, V. Diaz, P. Pena, V.M. Andreev, V.P. Khvostikov, V.D. Rumyantsev, A GaAs solar cell with efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns. IEEE Trans. Electron Devices 48(5), 840–844 (2001)CrossRefADSGoogle Scholar
  85. 85.
    V.M. Andreev, V.P. Khvostikov, V.R. Larionov, V.D. Rumyantsev, E.V. Paleeva, M.Z. Shvarts, C. Algora, 5800 Suns AlGaAs/GaAs concentrator solar cells, in Proceedings of Technical Digest of the International Photovoltaic Science and Engineering Conference, Sapporo (1999), pp. 147–148Google Scholar
  86. 86.
    V.M. Andreev, I.V. Kochnev, V.M. Lantratov, S.A. Mintairov, V.D. Rumyantsev, M.Z. Shvarts, Ultra-violet sensitive infra-red reflective AlGaAs/GaAs solar cells with two Bragg reflectors, in Proceedings of the 16th European Photovoltaic Solar Energy Conference, Glasgow (2000), pp. 1019–1021Google Scholar
  87. 87.
    I. García, J. Geisz, M. Steiner, J. Olson, D. Friedman, S. Kurtz, Design of semiconductor-based back reflectors for high voc monolithic multijunction solar cells, in Preprint Presented at the IEEE Photovoltaic Specialists Conference, Austin, 2012Google Scholar
  88. 88.
    R. Campesato, G. Gori, M. Casale, G. Gabetta, G. Muthusamy, Sankaran, P. Suresh, E.R. Uma, Radiation effects on advanced multi junction solar cells for space missions, in Proceedings of the 32nd European Photovoltaic Solar Energy Conference and Exhibition, Munich (2016), pp. 1411–1414Google Scholar
  89. 89.
    L.M. Fraas, J.E. Avery, J. Martin, V.S. Sundaram, G. Giard, V.T. Dinh, T.M. Davenport, J.W. Yerkes, M.J. O’Neil, Over 35-percent efficient GaAs/GaSb tandem solar cells. IEEE Trans. Electron Devices 37(2), 443–449 (1990)CrossRefADSGoogle Scholar
  90. 90.
    M.W. Wanlass, J.S. Ward, K.A. Emery, T.A. Gessert, C.R. Osterwald, T.J. Coutts, High performance concentrator tandem solar cells based on IR-sensitive bottom cells. Solar cells 30(1–4), 363–371 (1991)CrossRefGoogle Scholar
  91. 91.
    B.-C. Chung, G.F. Virshup, S. Hikido, N.R. Kaminar, 27.6% efficiency (1 sun, air mass 1.5) monolithic Al0.37Ga0.63As/GaAs two junction cascade solar cell with prismatic cover glass. Appl. Phys. Lett. 55, 1741–1743 (1989)CrossRefADSGoogle Scholar
  92. 92.
    V.M. Andreev, V.P. Khvostikov, E.V. Paleeva, V.D. Rumyantsev, S.V. Sorokina, M.Z. Shvarts, V.I. Vasilev, Tandem solar cells based on AlGaAs/GaAs and GaSb structures, in Proceedings of the 23rd International Symposium on Compound Semiconductors (St. Petersburg, Russia, 1996), pp. 425–428Google Scholar
  93. 93.
    D.J. Friedman, S.R. Kurtz, K.A. Bertness, A.E. Kibbler, C. Kramer, J.M. Olson, D.L. King, B.R. Hansen, J.K. Snyder, GaInP/GaAs monolithic tandem concentrator cells, in Proceedings of the 1st World Conference on Photovoltaic Energy Conversion (WCPEC) (Waikoloa, Hawaii, 1994), pp. 1829–1832Google Scholar
  94. 94.
    R.R. King, D.C. Law, C.M. Fetzer, R.A. Sherif, K.M. Edmondson, S. Kurtz, G.S. Kinsey, H.L. Cotal, D.D. Krut, J.H. Ermer, N.H. Karam, Pathways to 40%-efficient concentration photovoltaics, in Proceedings of the 20th European International Photovoltaic Science and Engineering Conference (PVSEC-20), Barcelona (2005), pp. 6–10Google Scholar
  95. 95.
    F. Dimroth, R. Beckert, M. Meusel, U. Schubert, A.W. Bett, Metamorphic GayIn1−yP/Ga1−xInxAs tandem solar cells for space and for terrestrial concentrator applications at C > 1000 suns. Prog. Photovoltaics Res. Appl. 9(3), 165–178 (2001)CrossRefGoogle Scholar
  96. 96.
    D.J. Aiken, M.A. Stan, S.P. Endicter, G. Girard, P.R. Sharps, A loss analysis for a 28% efficient 520× concentrator module, in Proceedings of the IEEE 4th World Conference on Photovoltaic Energy Conversion(WCPEC), Hawaii (2006), pp. 686–689Google Scholar
  97. 97.
    M. Yamaguchi, Y. Okada, A. Yamamoto, T. Takamoto, K. Araki, Y. Ohshita, Novel materials and structures for high efficiency multi-junction solar cells, in Proceedings of the 21st European Photovoltaic Solar Energy Conference, Dresden (2006), pp. 53–56Google Scholar
  98. 98.
    A.W. Bett, S.P. Philipps, S. Essig, S. Heckelmann, R. Kellenbenz, V. Klinger, M. Niemeyer, D. Lackner, F. Dimroth, Overview about technology perspectives for high efficiency solar cells for space and terrestrial applications, in Proceedings of the 28th European International Photovoltaic Science and Engineering Conference (PVSEC-28) (2013), pp. 1–6Google Scholar
  99. 99.
    S.A. Ringel, J. Carlin, C. Andre, M. Hudait, M. Gonzalez, D. Wilt, E.B. Clark, P. Jenkins, D. Scheiman, A. Allerman, E.A. Fitzgerald, C.W. Leitz, Single-junction InGaP/GaAs solar cells grown on Si substrates with SiGe buffer layers. Prog. Photovoltaics Res. Appl. 10(6), 417–426 (2002)CrossRefGoogle Scholar
  100. 100.
    K. Derendorf, S. Essig, E. Oliva, V. Klinger, T. Roesener, S.P. Philipps, J. Benick, M. Hermle, M. Schachtner, G. Siefer, W. Jäger, F. Dimroth, Fabrication of GaInP/GaAs//Si solar cells by surface activated direct wafer bonding. IEEE J. Photovoltaics 3(4), 1423–1428 (2013)CrossRefGoogle Scholar
  101. 101.
    F. Dimroth, T. Roesener, S. Essig, C. Weuffen, A. Wekkeli, E. Oliva, G. Siefer, K. Volz, T. Hannappel, D. Häussler, W. Jäger, A.W. Bett, Comparison of direct growth and wafer bonding for the fabrication of beam GaInP/GaAs dual-junction solar cells on silicon. IEEE J. Photovoltaics 4(2), 620–625 (2014)CrossRefGoogle Scholar
  102. 102.
    J.M. Zahler, K. Tanabe, C. Ladous, T. Pinnington, F.D. Newman, H. Atwater, High efficiency InGaAs solar cells on Si by InP layer transfer. Appl. Phys. Lett. 91(1), 012108 (2007)Google Scholar
  103. 103.
    M.J. Archer, D.C. Law, S. Mesropian, M. Haddad, C.M. Fetzer, A.C. Ackerman, C. Ladous, R.R. King, H.A. Atwater, GaInP/GaAs dual junction solar cells on Ge/Si epitaxial templates. Appl. Phys. Lett. 92, 103503–103503 (2008)CrossRefADSGoogle Scholar
  104. 104.
    P. Patel, D. Aiken, A. Boca, B. Cho, D. Chumney, M.B. Clevenger, A. Cornfeld, N. Fatemi, Y. Lin, J. McCarty, F. Newman, P. Sharps, J. Spann, M. Stan, J. Steinfeldt, C. Strautin, T. Varghese, Experimental results from performance improvement and radiation hardening of inverted metamorphic multijunction solar cells. IEEE J. Photovoltaics 2, 377–381 (2012)CrossRefGoogle Scholar
  105. 105.
    D. Jackrel, S. Bank, H. Yuen, M. Wistey, J. Harris, A. Ptak, S. Johnston, D. Friedman, S. Kurtz, Dilute nitride GaInNAs and GaInNAsSb solar cells by molecular beam epitaxy. J. Appl. Phys. 101, 114916 (2007)CrossRefADSGoogle Scholar
  106. 106.
    A.B. Cornfeld, M. Stan, T. Varghese et al. Development of a large area inverted metamorphic multi-junction (IMM) highly efficient AM0 solar cell, in Proceedings of the 33rd IEEE Photovoltaic Specialists Conference (PVSC), San Diego, CA (2008), pp 88–92Google Scholar
  107. 107.
    J.F. Geisz, D.J. Friedman, J.S. Ward et al., 40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions. Appl. Phys. Lett. 93, 123505 (2008)CrossRefADSGoogle Scholar
  108. 108.
    R.M. France, J.F. Geisz, M.A. Steiner, D.J. Friedman, J.S. Ward, J.M. Olson, W. Olavarria, M. Young, A. Duda, Pushing inverted metamorphic multijunction solar cells toward higher efficiency at realistic operating conditions. IEEE J. Photovoltaics 3, 893–898 (2013)CrossRefGoogle Scholar
  109. 109.
    C. Youtsey, J. Adams, R. Chan, V. Elarde, G. Hillier, M. Osowski, D. McCallum, H. Miyamoto, N. Pan, C. Stender, R. Tatavarti, F. Tuminello, A. Wibowo, Epitaxial lift-off of large-area GaAs thin-film multi-junction solar cells, in Proceedings of the CS MANTECH Conference, Boston, Massachusetts (2012), on CDGoogle Scholar
  110. 110.
    H. Moriceau, F. Rieutord, F. Fournel, Y. Le Tice, L. Di Cioccio, C. Morales, A.M. Charvet, C. Deguet, Overview of recent direct wafer bonding advances and applications, in Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 1 (2010), p. 043004Google Scholar
  111. 111.
    Q.-Y. Tong, U. Gosele, Semiconductor Wafer Bonding: Science and Technology (Electrochemical Society, N.Y., 1999)Google Scholar
  112. 112.
    D.C. Law, D.M. Bhusari, S. Mesropian, J.C. Boisvert, W.D. Hong, A. Boca, D.C. Larrabee, C.M. Fetzer, R. R. King, N.H. Karam, Semiconductor-bonded III–V multijunction space solar cells, in Proceedings of the 34th IEEE Photovoltaic Specialists Conference (PVSC), Philadelphia, PA (2009), pp 2237–2239Google Scholar
  113. 113.
    J. Boisvert, D. Law, R. King, D. Bhusari, X. Liu, A. Zakaria, W. Hong, S. Mesropian, D. Larrabee, R. Woo, A. Boca, K. Edmondson, D. Krut, D. Peterson, K. Rouhani, B. Benedikt, N. H. Karam, Development of advanced space solar cells at Spectrolab, in Proceedings of the 35th IEEE Photovoltaic Specialists Conference (PVSC), Honolulu, HI (2010), pp 123–127Google Scholar
  114. 114.
    Handbook of Photovoltaic Science and Engineering. 2nd edn. A. Luque, S. Hegedus ed. by John Wiley & Sons, Ltd. (2011)Google Scholar
  115. 115.
    Terrestrial concentrator solar cell systems, in Solar Cells and Their Applications, 2nd edn., Part III, ed. by L.M. Fraas, L.D. Partain (Hoboken, New Jersey: John Wiley & Sons, Inc., 2010)Google Scholar
  116. 116.
    Handbook on Concentrator Photovoltaic Technology, ed. by A. Carlos, Rey-Stolle Ignacio. (John Wiley & Sons, Ltd. 2016)Google Scholar
  117. 117.
    M.A. Green, K. Emery, D. L. King, Y. Nishikawa, W. Warta, Solar cell efficiency tables (version 29), in Progress in Photovoltaics: Research and Applications, vol. 15, pp. 35–40 (2007)Google Scholar
  118. 118.
    L.W. Fraas, W.E. Daniels, H.X. Huang, L.E. Minkin, J.E. Avery, M.J. O’Neill, A.J. McDanal, M.F. Piszczor, 34% efficient InGaP/GaAs/GaSb cell-interconnected-circuits for line-focus concentrator arrays, in Proceedings of the 17th European Photovoltaic Solar Energy Conference, Munich (2001), pp. 2300–2303Google Scholar
  119. 119.
    Zh.I. Alferov, V.M. Andreev, V.D. Rumyantsev, III–V heterostructures in photovoltaics, in Concentrator Photovoltaics, vol. 130, ed. by A. Luque, V. Andreev (New York: Springer Series in Optical Sciences, 2007), pp. 25–50Google Scholar
  120. 120.
    B.M. Kayes, H. Nie, R. Twist, S.G. Spruytte, F. Reinhardt, I.C. Kizilyalli, S. Gregg, Higashi, 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination, in Proceedings of the 37th IEEE Photovoltaic Specialists Conference (PVSC), Seattle (2011), pp. 4–8Google Scholar
  121. 121.
    K. Sasaki, T. Agui, K. Nakaido, N. Takahashi, R. Onitsuka, T. Takamoto, “Development of InGaP/GaAs/InGaAs inverted triple junction concentrator solar cells». AIP Conf. Proc. 1556, 22–25 (2013)CrossRefADSGoogle Scholar
  122. 122.
    J.F. Geisz, A. Duda, R.M. France, D.J. Friedman, I. Garcia, W. Olavarria, J.M. Olson, M.A. Steiner, J.S. Ward, M. Young, Optimization of 3-junction inverted metamorphic solar cells for high-temperature and high-concentration operation, in 9th International Conference on Concentrator Photovoltaic Systems, ed. by J. Mendiguren Olaeta, B. Rolfe, E. Atzema, D. Hanselman, L. Galdos Errasti, P. Hodgson, M. Weiss, AIP Conference Proceedings, vol. 1477 (2013), pp. 44–48Google Scholar
  123. 123.
    F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T.N.D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A.W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, K. Schwarzburg, Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency. Prog. Photovoltaics Res. Appl. 22(3), 277–282 (2014)CrossRefGoogle Scholar
  124. 124.
    R.M. France, J.F. Geisz, I. Garcia, M.A. Steiner, W.E. McMahon, D.J. Friedman, T.E. Moriarty, C. Osterwald, J. Scott Ward, A. Duda, M. Young, W.J. Olavarria, Quadruple-junction inverted metamorphic concentrator devices. IEEE J. Photovoltaics 5(1), 432–437 (2015)Google Scholar
  125. 125.
    Essig, S. et al., Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions. Nat. Energy, 2, article number 17144 (2017)Google Scholar
  126. 126.
    V.M. Andreev, E.A. Ionova, V.R. Larionov, V.D. Rumyantsev, M.Z. Shvarts, G. Glenn, Tunnel diode revealing peculiarities at I–V measurements in multijunction III–V solar cells, in Proceedings of the IEEE 4th World Conference on Photovoltaic Energy Conversion (WCPEC), Hawaii (2006), pp. 799–802Google Scholar
  127. 127.
    G. Sala, A. Luque, Past experiences and new challenges of PV concentrators, in Concentrator Photovoltaics, vol. 130, ed. by A. Luque, V. Andreev. New York: Springer Series in Optical Sciences (2007), pp. 1–24Google Scholar
  128. 128.
    V.D. Rumyantsev, Terrestrial concentrator PV systems in Concentrator Photovoltaics, vol. 130, ed. by A. Luque and V. Andreev. New York: Springer Series in Optical Sciences (2007), pp. 151–174Google Scholar
  129. 129.
    Zh.I. Alferov, V.M. Andreev, Kh.K. Aripov, V.R. Larionov, V.D. Rumyantsev, Pattern of autonomal solar installation with heterostructure solar cells and concentrators. Geliotechnica, 2, 3–6 (1981) [Appl. Solar Energy 2, 1981]Google Scholar
  130. 130.
    Zh.I. Alferov, V.M. Andreev, Kh.K. Aripov, V.R. Larionov, V.D. Rumyantsev, Solar photovoltaic installation with 200 Watt output based on AlGaAs-heterophotocells and reflective concentrators, Geliotechnika, 6, 3–6 (1981) [Appl. Solar Energy 6, 1981]Google Scholar
  131. 131.
    A.A. Vodnev, A.V. Maslov, V.D. Rumyantsev, Sh.Sh. Shamukhamedov, Experience on creation of the solar installations based on AlGaAs/GaAs-photocells with concentrators, in Sunlight Concentrators for Photovoltaic Power Installations, ed. by V.A. Grilikhes, Leningrad: Energoatomizdat (1986), pp. 25–29 (in Russian)Google Scholar
  132. 132.
    V.M. Andreev, A.A. Alaev, A,B. Guchmazov, V.S. Kalinovsky, V.R. Larionov, K.Ya. Rasulov, V. D. Rumyantsev, High-efficiency AlGaAs-heterophotocells operating with lens panels as the solar energy concentrators, in Proceedings of the all-Union Conference “Photovoltaic phenomena in semiconductors”, Tashkent, 1989, pp. 305–306 (in Russian)Google Scholar
  133. 133.
    M.Z. Shvarts, V.D. Rumyantsev, V.A. Grilikhes, A.A. Soluyanov, Investigation of a Fresnel lens concentrator photovoltaic module. Appl. Solar Energy 36(4), 19–28 (2000)Google Scholar
  134. 134.
    Project: INTAS96–1887, 1997-2000 years, “Photovoltaic installation with sunlight concentrators”, Final Report (2000)Google Scholar
  135. 135.
    V.D. Rumyantsev, M. Hein, V.M. Andreev, A.W. Bett, F. Dimroth, G. Lange, G. Letay, M.Z. Shvarts, O.V. Sulima, Concentrator array based on GaAs cells and Fresnel lens concentrators, in Proceedings of the 16th European Photovoltaic Solar Energy Conference and Exhibition, Glasgow (2000), pp. 2312–2315Google Scholar
  136. 136.
    V.D. Rumyantsev, V.M. Andreev, A.W. Bett, F. Dimroth, M. Hein, G. Lange, M.Z. Shvarts, O.V. Sulima, Progress in development of all-glass terrestrial concentrator modules based on composite Fresnel lenses and III–V solar cells, in Proceedings of the 28th IEEE Photovoltaic Specialists Conference (PVSC), Anhorage, Alaska (2000), pp. 1169–1172Google Scholar
  137. 137.
    A.W. Bett, C. Baur, F. Dimroth, G. Lange, M. Meusel, S. van Riesen, G. Siefer, V.M. Andreev, V.D. Rumyantsev, N.A. Sadchikov, FLATCONTM–modules: technology and characterization, in Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion (WCPEC), Osaka (2003), pp. 634–637Google Scholar
  138. 138.
    V.D. Rumyantsev, Solar concentrator modules with silicone-on-glass Fresnel lens panels and multijunction cells. Optics Express 18(S1), 17–A24 (2010)Google Scholar
  139. 139.
    V.M. Andreev, N.Y. Davidyuk, E.A. Ionova, P.V. Pokrovskii, V.D. Rumyantsev, N.A. Sadchikov, Parameter optimization of solar modules based on lens concentrators of radiation and cascade photovoltaic converters. Tech. Phys. 55(2), 277–284 (2010)CrossRefGoogle Scholar
  140. 140.
    NYu. Davidyuk, E.A. Ionova, D.A. Malevskii, V.D. Rumyantsev, N.A. Sadchikov, Effect of secondary lens concentrators on the output parameters of solar modules with cascade photovoltaic converters. Tech. Phys. 55(7), 1003–1008 (2010)CrossRefGoogle Scholar
  141. 141.
    V.D. Rumyantsev, Yu.V. Ashcheulov, N.Yu. Davidyuk, E.A. Ionova, P.V. Pokrovskiy, N.A. Sadchikov, V.M. Andreev, CPV modules based on lens panels, in Proceedings of the 5th Forum on New Materials, CIMTEC 2010–12 International Ceramics Congress and 5th Forum on New Materials, Montecatini Terme, Italy. Advances Science Technology, vol. 74 (2010), pp. 211–218Google Scholar
  142. 142.
    V.D. Rumyantsev, N.Yu. Davidyuk, E.A. Ionova, D.A. Malevskiy, P.V. Pokrovskiy, N.A. Sadchikov, M. Sturm, HCPV modules with primary and secondary minilens panels, in Proceedings of the 6th International Conference on Concentrating Photovoltaic Systems, Freiburg, 2010, AIP Conference Proceedings, vol. 1277 (2010), pp. 97–100Google Scholar
  143. 143.
    V.M. Andreev, V.D. Rumyantsev, N.Yu. Davidyuk, E.A. Ionova, V.R. Larionov, D.A. Malevskiy, A.O. Monastyrenko, P.V. Pokrovsky, N.A. Sadchikov, Concentrator PV installations based on modules with Fresnel minilens parquets, in Proceedings of the 25th European Photovoltaic Solar Energy Conference and Exhibition/5th World Conference on Photovoltaic Energy Conversion(WCPEC), Valencia (2010), pp. 102–107Google Scholar
  144. 144.
    V.D. Rumyantsev, V.M. Andreev, A.V. Chekalin, NYu. Davidyuk, O.A. Im, E.V. Khazova, N.A. Sadchikov, Progress in developing HCPV modules of SMALFOC-design. AIP Conf. Proc. 1556, 185–188 (2013)CrossRefADSGoogle Scholar
  145. 145.
    V.M. Andreev, N.Y. Davidyuk, E.A. Ionova, V.D. Rumyantsev, Photovoltaic modules with cylindrical waveguides in a system for the secondary concentration of solar radiation. Tech. Phys. 58(9), 1323–1328 (2013)CrossRefGoogle Scholar
  146. 146.
    V.M. Andreev, N.Yu. Davidyuk, D.A. Malevski, A.N. Pan’chak, V.D. Rumyantsev, N.A. Sadchikov, A.V. Chekalin, A. Luque, New-generation concentrator modules based on cascade solar cells: design and optical and thermal properties. Tech. Phys. 59(11), 1650–1657 (2014)Google Scholar
  147. 147.
    V.D. Rumyantsev, V.M. Andreev, A.V. Chekalin, N.Yu. Davidyuk, N.A. Sadchikov, HCPV modules of SMALFOC Design in Versions for PV and PV/T Operation, in Proceedings of the 40th IEEE Photovoltaic Specialists Conference (PVSC), Denver, Colorado (2014), pp. 2720–2723Google Scholar
  148. 148.
    V. Grilikhes, V. Rumyantsev, M. Shvarts, Indoor and outdoor testing of space concentrator AlGaAs/GaAs photovoltaic modules with Fresnel lenses, in Proceedings of the 25th IEEE Photovoltaic Specialists Conference (PVSC), Washington (1996), pp 345–348Google Scholar
  149. 149.
    R. Leutz, A. Suzuki, A. Akisawa, T. Kashiwagi, Developments and designs of solar engineering Fresnel lenses, in Proceedings of Symposium on Energy Engineering in the 21st Century (SEE2000), vol.2, 2000, pp. 759–765Google Scholar
  150. 150.
    V.D.Rumyantsev, O.I.Chosta, V.A.Grilikhes, N.A.Sadchikov, A.A.Soluyanov, M.Z.Shvarts, V.M.Andreev. “Terrestrial and space concentrator PV modules with composite (glass-silicone) Fresnel lenses” in Proc. of the 29th IEEE Photovoltaic Specialists Conference (PVSC), New Orleans, 2002, pp. 1596–1599Google Scholar
  151. 151.
    H. Cotal, R. Sherif, The effects of chromatic aberration on the performance of GaInP/GaAs/Ge concentrator solar cells from fresnel optics, in Proceedings of the 31 st IEEE PV Specialists Conference(PVSC), Lake Buena Vista, USA (2005), pp. 747–750Google Scholar
  152. 152.
    V.D. Rumyantsev, N.A. Sadchikov, A.E. Chalov, E.A. Ionova, D.J. Friedman, G. Glenn, Terrestrial concentrator PV modules based on GaInP/GaAs/Ge TJ cells and minilens panels, in Proceedings of the 4th World Conference on Photovoltaic Energy Conversion (WCPEC), Hawaii (2006), pp. 632–635Google Scholar
  153. 153.
    E.V. Bobkova, V.A. Grilikhes, A.A. Soluyanov, M.Z. Shvarts, Effect of chromatic aberration on the concentration of solar radiation by fresnel lenses. Tech. Phys. Lett. 32(12), 1039–1042 (2006)CrossRefADSGoogle Scholar
  154. 154.
    E. Bobkova, V. Grilikhes, A. Soluyanov, M. Shvarts, The method for choosing the optimal parameters of flat-plane Fresnel lenses, intended for sunlight concentration. Geliotekhnica, vol. 3, pp. 50–57 (2006) [Translated into English in Applied Solar Energy]Google Scholar
  155. 155.
    V. Weinberg, Optical in the solar power plants (Oborongiz, Leningrad, 1959), p. 256Google Scholar
  156. 156.
    V.A. Grilikhes, M.Z. Shvarts, A.A. Soluyanov, E.V. Vlasova, V.M. Andreev, The new approach to design of Fresnel lens sunlight concentrator, in Proceedings of the Forth International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen, El Escorial, Spain (2007), pp. 49–52Google Scholar
  157. 157.
    L. James, Effects of concentrator chromatic aberrations on multi-junction cells, in Conference Record of the First World Conference on Photovoltaic Energy Conversion (WCPEC), Waikoloa, Hawaii (1994), pp. 1799–1802Google Scholar
  158. 158.
    S. Kurtz, D. Friedman, J. Olson. The effect of chromatic aberrations on two-junction, two-terminal devices in a concentrator system, in Conference Record of the First World Conference on Photovoltaic Energy Conversion (WCPEC), Waikoloa, Hawaii (1994), pp. 1791–1794Google Scholar
  159. 159.
    S. Kurtz, M. O’Neill, Estimating and controlling chromatic aberration losses for two-junction, two-terminal devices in refractive concentration systems, in Proceedings of the 25th IEEE PV Specialists Conference(PVSC), Washingon, DC (1996), pp. 361–364Google Scholar
  160. 160.
    K. Araki, M. Yamaguchi, Improvement of mismatching in concentrator modules using III–V cells, in Proceedings of the 17th European Photovoltaic Solar Energy Conference, Munich, 2001, pp. 2187–2190Google Scholar
  161. 161.
    M.J. O’Neill, Color-mixing lens for solar concentrator system and methods of manufacture and opreation thereof, U.S. Patent 6031179 (2000)Google Scholar
  162. 162.
    K. Nishioka, T. Takamoto, W. Nakajima, T. Agui, M. Kaneiwa, Y. Uraoka, T. Fuyuki, Analysis of triple-junction solar cell under concentration by spice, in Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion(WCPEC), Osaka (2003), pp. 869–872Google Scholar
  163. 163.
    A. Yoshida, H. Juso, T. Agui, K. Nakamura, K. Sasaki, T. Takamoto, M. Tanaka, M. Kaneiwa, K. Okamoto, Characteristics of concentrator triple junction cell optimized for current matching, in Proceedings of the 4th World Conference on Photovoltaic Energy Conversion (WCPEC), Hawaii (2006), pp. 757–759Google Scholar
  164. 164.
    M.Z. Shvarts, V.A. Grilikhes, N.H. Timoshina, A.A. Soluyanov, E.V. Vlasova, Weakening of the chromatic aberration negative effect on the performance of concentrator multi-junction solar cells, in Proceedings of the 22nd European Photovoltaic Solar Energy Conference, Milan (2007), pp. 126–131Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Zh. I. Alferov
    • 1
    Email author
  • V. M. Andreev
    • 2
  • M. Z. Shvarts
    • 2
  1. 1.St Petersburg Academic UniversitySt.-PetersburgRussia
  2. 2.Ioffe InstituteSt.-PetersburgRussia

Personalised recommendations