Perovskite Photovoltaics: From Laboratory to Industry

  • D. ForgacsEmail author
  • K. Wojciechowski
  • O. Malinkiewicz
Part of the Springer Series in Optical Sciences book series (SSOS, volume 140)


The following pages of this book will discuss the current state-of-the-art of ‘perovskite’ photovoltaic technology, that has been awe-inspiring in the last decade. Since the first edition of HELC-PV, perovskite solar cells appeared and have been the dominating research topic in photovoltaics, attracting tremendous scientific and public interest. The technology advanced rapidly, and now in 2018, there are already several companies existing with the aim of bringing this technology to the market. As such, it has been a pleasure and an honour for Saule Technologies to be approached by the editors to review the advancement of this swiftly developing field. While the fabrication of P1 R10 high record efficiencies with record high efficiencies has been achieved already, there are still open questions regarding fundamental physical and chemical processes taking place in such a device. There are a vast number of publications available that scrutinize the accumulated knowledge and observations regarding this unique class of materials. As such, it is a challenging—yet rewarding task to write a chapter that gives an objective perspective on the topic. Our aim was to create something that provides the readers with a valuable overview that will stay relevant even when the current state-of-the art will be outdated. We intended to describe the basic principles that guide the characteristics of perovskites, and then connect them with their function in solar cells and the related scientific discoveries. We hope that this chapter will provide the reader with a basic framework of knowledge that can be referred to when reading future works dealing with perovskites. We hope that you will find this work helpful, and in case you do so—please do not hesitate to recommend it to your colleagues, friends and acquaintances.


  1. 1.
    Q. Chen et al., Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 10, 355–396 (2015)CrossRefGoogle Scholar
  2. 2.
    D.B. Mitzi, C.A. Feild, Z. Schlesinger, R.B. Laibowitz, Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3. J. Solid State Chem. 114, 159–163 (1995)Google Scholar
  3. 3.
    S. Wang, D.B. Mitzi, C.A. Feild, A. Guloys, Synthesis and characterization of [NH2C(I) = NH2]3MI5 (M = Sn, Pb): stereochemical activity in divalent tin and lead halides containing single (110) perovskite sheets. J. Am. Chem. Soc. 117, 5297–5302 (1995)Google Scholar
  4. 4.
    D.B. Mitzi, Solution-processed inorganic semiconductors. J. Mater. Chem. 14, 2355 (2004)CrossRefGoogle Scholar
  5. 5.
    A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)CrossRefGoogle Scholar
  6. 6.
    J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, 6.5% Efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088 (2011)Google Scholar
  7. 7.
    I. Chung, B. Lee, J. He, R.P.H. Chang, M.G. Kanatzidis, All-solid-state dye-sensitized solar cells with high efficiency. Nature 485, 486–489 (2012)CrossRefADSGoogle Scholar
  8. 8.
    H.-S. Kim et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012)CrossRefGoogle Scholar
  9. 9.
    M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science (80-.). 338, 643–647 (2012)Google Scholar
  10. 10.
    S.D. Stranks, et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science (80-.). 342, 341–344 (2013)Google Scholar
  11. 11.
    L.M. Fraas, Low-Cost Solar Electric Power. Low-Cost Solar Electric Power 9783319075, (Springer International Publishing, 2014)Google Scholar
  12. 12.
    S.D. Stranks, H.J. Snaith, Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391–402 (2015)CrossRefADSGoogle Scholar
  13. 13.
    N.-G. Park, M. Grätzel, T. Miyasaka, K. Zhu, K. Emery, Towards stable and commercially available perovskite solar cells. Nat. Energy 1, 16152 (2016)CrossRefADSGoogle Scholar
  14. 14.
    V.M. Goldschmidt, Die Gesetze der Krystallochemie. Naturwissenschaften 14, 477–485 (1926)CrossRefADSGoogle Scholar
  15. 15.
    W. Travis, E.N.K. Glover, H. Bronstein, D.O. Scanlon, R.G. Palgrave, On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chem. Sci. 7, 4548–4556 (2016)CrossRefGoogle Scholar
  16. 16.
    K. Wu et al., Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. Phys. Chem. Chem. Phys. 16, 22476–22481 (2014)CrossRefGoogle Scholar
  17. 17.
    M.A. Green et al., Solar cell efficiency tables (version 51). Prog. Photovolt. Res. Appl. 26, 3–12 (2018)CrossRefGoogle Scholar
  18. 18.
    U.K. Mishra, J. Singh, Semiconductor Device Physics and Design 28–91 (Springer Netherlands, 2008).
  19. 19.
    A.S. Lin, et al., High mechanical strength thin HIT solar cells with graphene back contact. IEEE Photonics J. 9, (2017)Google Scholar
  20. 20.
    K. Yoshikawa, et al., Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, (2017)Google Scholar
  21. 21.
    W.-J. Yin, J.-H. Yang, J. Kang, Y. Yan, S.-H. Wei, Halide perovskite materials for solar cells: a theoretical review. J. Mater. Chem. A 00, 1–17 (2015)ADSGoogle Scholar
  22. 22.
    P. Umari, E. Mosconi, F. De Angelis, Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci. Rep. 4, 4467 (2015)CrossRefGoogle Scholar
  23. 23.
    M. Kot, K. Wojciechowski, H. Snaith, D. Schmeißer, Evidence of nitrogen contribution to the electronic structure of the CH3NH3PbI3 perovskite. Chem. A Eur. J. 24, 3539–3544 (2018)CrossRefGoogle Scholar
  24. 24.
    W. Tress, Perovskite solar cells on the way to their radiative efficiency limit—insights into a success story of high open-circuit voltage and low recombination. Adv. Energy Mater. 7, 1602358 (2017)CrossRefGoogle Scholar
  25. 25.
    P. Gao, M. Grätzel, M.K. Nazeeruddin, Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 7, 2448–2463 (2014)CrossRefGoogle Scholar
  26. 26.
    S. A. Kulkarni, et al., Band-gap tuning of lead halide perovskites using a sequential deposition process. J. Mater. Chem. A 2, 9221 (2014)Google Scholar
  27. 27.
    G.E. Eperon et al., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982 (2014)CrossRefGoogle Scholar
  28. 28.
    J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I Seok, Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013)Google Scholar
  29. 29.
    A.R. Denton, N.W. Ashcroft, Vegard’s law. Phys. Rev. A 43, 3161–3164 (1991)CrossRefADSGoogle Scholar
  30. 30.
    D.J. Slotcavage, H.I. Karunadasa, M.D. McGehee, Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett. 1, 1199–1205 (2016)CrossRefGoogle Scholar
  31. 31.
    K. Yan et al., Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency. J. Am. Chem. Soc. 137, 4460–4468 (2015)CrossRefGoogle Scholar
  32. 32.
    T.M. Koh et al., Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells. J. Phys. Chem. C 118, 16458–16462 (2014)CrossRefGoogle Scholar
  33. 33.
    N.J. Jeon et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015)CrossRefADSGoogle Scholar
  34. 34.
    M. Saliba, et al., Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science (80-.) 354, 206–209 (2016)Google Scholar
  35. 35.
    M. Abdi-Jalebi et al., Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018)CrossRefADSGoogle Scholar
  36. 36.
    G.E. Eperon et al., Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 3, 19688–19695 (2015)CrossRefGoogle Scholar
  37. 37.
    M. Saliba et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016)CrossRefGoogle Scholar
  38. 38.
    P. Gratia et al., The many faces of mixed ion perovskites: unraveling and understanding the crystallization process. ACS Energy Lett. 2, 2686–2693 (2017)CrossRefGoogle Scholar
  39. 39.
    J. Liang, et al., CsPb0. 9Sn0. 1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability. J. Am. Chem. Soc. 139, 14009–14012 (2017)Google Scholar
  40. 40.
    H. Chen et al., Inorganic perovskite solar cells: a rapidly growing field. Sol. RRL 2, 1700188 (2018)CrossRefGoogle Scholar
  41. 41.
    B. Brunetti, C. Cavallo, A. Ciccioli, G. Gigli, A. Latini, on the thermal and thermodynamic (in) stability of methylammonium lead halide perovskites. Sci. Rep. 6, (2016)Google Scholar
  42. 42.
    B. Conings, Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. (2015)Google Scholar
  43. 43.
    C.C. Stoumpos et al., Ruddlesden-popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28, 2852–2867 (2016)CrossRefGoogle Scholar
  44. 44.
    H. Tsai et al., High-efficiency two-dimensional ruddlesden-popper perovskite solar cells. Nature 536, 312–316 (2016)CrossRefADSGoogle Scholar
  45. 45.
    I.C. Smith, E.T. Hoke, D. Solis-Ibarra, M.D. McGehee, H.I. Karunadasa, A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. 53, 11232–11235 (2014)CrossRefGoogle Scholar
  46. 46.
    G. Grancini et al., One-year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 8, 15684 (2017)CrossRefADSGoogle Scholar
  47. 47.
    P.K. Nayak et al., Mechanism for rapid growth of organic–inorganic halide perovskite crystals. Nat. Commun. 7, 13303 (2016)CrossRefADSGoogle Scholar
  48. 48.
    A. Dubey et al., Strategic review on processing routes towards highly efficient perovskite solar cells. J. Mater. Chem. A (2018). Scholar
  49. 49.
    Z. Song et al., A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques. Energy Environ. Sci. 10, 1297–1305 (2017)CrossRefGoogle Scholar
  50. 50.
    D.P. McMeekin, et al., Crystallization kinetics and morphology control of formamidinium–cesium mixed-cation lead mixed-halide perovskite via tunability of the colloidal precursor solution. Adv. Mater. 29, (2017)Google Scholar
  51. 51.
    S.I. Seok, M. Grätzel, N.-G. Park, Methodologies toward highly efficient perovskite solar cells. Small 1704177 (2018)Google Scholar
  52. 52.
    J.S. Manser, M.I. Saidaminov, J.A. Christians, O.M. Bakr, P.V. Kamat, Making and breaking of lead halide perovskites. Acc. Chem. Res. 49, 330–338 (2016)CrossRefGoogle Scholar
  53. 53.
    J.C. Hamill, J. Schwartz, Y.-L. Loo, Influence of solvent coordination on hybrid organic-inorganic perovskite formation. ACS Energy Lett. 3, 92–97 (2018)CrossRefGoogle Scholar
  54. 54.
    X. Cao et al., Elucidating the key role of a lewis base solvent in the formation of perovskite films fabricated from the lewis adduct approach. ACS Appl. Mater. Interfaces. 9, 32868–32875 (2017)CrossRefGoogle Scholar
  55. 55.
    L. Etgar et al., Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells. J. Am. Chem. Soc. 134, 17396–17399 (2012)CrossRefGoogle Scholar
  56. 56.
    Y.-J. Jeon et al., Planar heterojunction perovskite solar cells with superior reproducibility. Sci. Rep. 4, 6953 (2014)CrossRefGoogle Scholar
  57. 57.
    M. Yang et al., Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nat. Energy 2, 17038 (2017)CrossRefADSGoogle Scholar
  58. 58.
    D.T. Moore, et al., Crystallization kinetics of organic–inorganic trihalide perovskites and the role of the lead anion in crystal growth. J. Am. Chem. Soc. 150209140709004 (2015).
  59. 59.
    Y. Wu et al., Retarding the crystallization of PbI 2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci. 7, 2934–2938 (2014)CrossRefGoogle Scholar
  60. 60.
    C.-C. Chueh et al., The roles of alkyl halide additives in enhancing perovskite solar cell performance. J. Mater. Chem. A 3, 9058–9062 (2015)CrossRefGoogle Scholar
  61. 61.
    P.-W. Liang et al., Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv. Mater. 26, 3748–3754 (2014)CrossRefGoogle Scholar
  62. 62.
    S.D. Stranks, P.K. Nayak, W. Zhang, T. Stergiopoulos, H.J. Snaith, Formation of thin films of organic-inorganic perovskites for high-efficiency solar cells. Angew. Chem. Int. Ed. 54, 3240–3248 (2015)CrossRefGoogle Scholar
  63. 63.
    S. Colella et al., MAPbI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties. Chem. Mater. 25, 4613 (2013)CrossRefGoogle Scholar
  64. 64.
    A.R. Pascoe et al., Directing nucleation and growth kinetics in solution-processed hybrid perovskite thin-films. Sci. China Mater. 60, 617–628 (2017)CrossRefGoogle Scholar
  65. 65.
    C. Bi et al., Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 6, 1–7 (2015)Google Scholar
  66. 66.
    N.J. Jeon et al., Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13, 1–7 (2014)CrossRefADSGoogle Scholar
  67. 67.
    M. Xiao et al., A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. Int. Ed. 53, 9898–9903 (2014)CrossRefGoogle Scholar
  68. 68.
    H. Zhang et al., Understanding the effect of delay time of solvent washing on the performances of perovskite solar cells. ACS Omega 2, 7666–7671 (2017)CrossRefGoogle Scholar
  69. 69.
    T. Jesper Jacobsson, et al., Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells. Energy Environ. Sci. 9, 1706–1724 (2016)Google Scholar
  70. 70.
    J.P. Correa-Baena, et al., Unbroken perovskite: interplay of morphology, electro-optical properties, and ionic movement. Adv. Mater. 5031–5037 (2016).
  71. 71.
    K. Liang, D.B. Mitzi, M.T. Prikas, Synthesis and characterization of organic − inorganic perovskite thin films prepared using a versatile two-step dipping technique. Chem. Mater. 10, 403–411 (1998)CrossRefGoogle Scholar
  72. 72.
    J. Burschka et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013)CrossRefADSGoogle Scholar
  73. 73.
    H. Chen, Two-step sequential deposition of organometal halide perovskite for photovoltaic application. Adv. Funct. Mater. 27, 1605654 (2017)CrossRefGoogle Scholar
  74. 74.
    X. Cao et al., Control of the morphology of PbI 2 films for efficient perovskite solar cells by strong Lewis base additives. J. Mater. Chem. C 5, 7458–7464 (2017)CrossRefGoogle Scholar
  75. 75.
    W.S. Yang, et al., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science (80-.) 348, 1234–1237 (2015)Google Scholar
  76. 76.
    M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013)CrossRefADSGoogle Scholar
  77. 77.
    O. Malinkiewicz et al., Perovskite solar cells employing organic charge-transport layers. Nat. Photonics 8, 128–132 (2014)CrossRefADSGoogle Scholar
  78. 78.
    C. Momblona et al., Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers. Energy Environ. Sci. 9, 3456–3463 (2016)CrossRefGoogle Scholar
  79. 79.
    Q. Chen et al., Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136, 622–625 (2014)CrossRefGoogle Scholar
  80. 80.
    Y.H. Chiang, H.M. Cheng, M.H. Li, T.F. Guo, P. Chen, Low-pressure vapor-assisted solution process for thiocyanate-based pseudohalide perovskite solar cells. Chemsuschem 9, 2620–2627 (2016)CrossRefGoogle Scholar
  81. 81.
    H. Snaith, Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623–3630 (2013)CrossRefGoogle Scholar
  82. 82.
    U. Wurfel, A. Cuevas, P. Wurfel, Charge carrier separation in solar cells. IEEE J. Photovolt. 5, 461–469 (2015)CrossRefGoogle Scholar
  83. 83.
    Z. Guo, L. Gao, C. Zhang, Z. Xu, T. Ma, Low-temperature processed non-TiO 2 electron selective layers for perovskite solar cells. J. Mater. Chem. A 6, 4572–4589 (2018)CrossRefGoogle Scholar
  84. 84.
    Z. Song, S.C. Watthage, A.B. Phillips, M.J. Heben, Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. J. Photonics Energy 6, 22001 (2016)CrossRefGoogle Scholar
  85. 85.
    W.S. Yang, et al., Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science (80-.) 356, (2017)Google Scholar
  86. 86.
    J.M. Ball, M.M. Lee, A. Hey, H.J. Snaith, Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 6, 1739 (2013)CrossRefGoogle Scholar
  87. 87.
    R.W. Johnson, A. Hultqvist, S.F. Bent, A brief review of atomic layer deposition: from fundamentals to applications. Mater. Today 17, 236–246 (2014)CrossRefGoogle Scholar
  88. 88.
    Y. Xiao, G. Han, H. Zhou, J. Wu, An efficient titanium foil based perovskite solar cell: using a titanium dioxide nanowire array anode and transparent poly(3,4-ethylenedioxythiophene) electrode. RSC Adv. 6, 2778–2784 (2016)CrossRefGoogle Scholar
  89. 89.
    L. Calió, S. Kazim, M. Grätzel, S. Ahmad, Hole-transport materials for perovskite solar cells. Angew. Chem. Int. Ed. 55, 14522–14545 (2016)CrossRefGoogle Scholar
  90. 90.
    I. Lee, J.H. Yun, H.J. Son, T.S. Kim, Accelerated degradation due to weakened adhesion from Li-TFSI additives in perovskite solar cells. ACS Appl. Mater. Interfaces. 9, 7029–7035 (2017)CrossRefGoogle Scholar
  91. 91.
    M. Saliba et al., A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nat. Energy 1, 15017 (2016)CrossRefADSGoogle Scholar
  92. 92.
    Chen, J. & Park, N.-G. Inorganic Hole Transporting Materials for Stable and High Efficiency Perovskite Solar Cells. J. Phys. Chem. C acs.jpcc.8b01177 (2018).
  93. 93.
    J.-Y. Jeng et al., CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 25, 3727–3732 (2013)CrossRefGoogle Scholar
  94. 94.
    J.C. Yu et al., Highly efficient and stable inverted perovskite solar cell employing PEDOT:GO composite layer as a hole transport layer. Sci. Rep. 8, 1070 (2018)CrossRefADSGoogle Scholar
  95. 95.
    Y. Fang, C. Bi, D. Wang, J. Huang, The functions of fullerenes in hybrid perovskite solar cells. ACS Energy Lett. 2, 782–794 (2017)CrossRefGoogle Scholar
  96. 96.
    K.A. Bush, et al., 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017)Google Scholar
  97. 97.
    A. Guchhait, et al., Over 20% efficient CIGS–perovskite tandem solar cells. ACS Energy Lett. 807–812 (2017).
  98. 98.
    De A. Vos, Detailed balance limit of the efficiency of tandem solar cells. J. Phys. D. Appl. Phys. 13, 839–846 (1980)Google Scholar
  99. 99.
    G.E. Eperon, et al. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science (80-.). 354, 861–865 (2016)Google Scholar
  100. 100.
    F. Hao, C.C. Stoumpos, R.P.H. Chang, M.G. Kanatzidis, Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 136, 8094–8099 (2014)CrossRefGoogle Scholar
  101. 101.
    G.E. Eperon, M.T. Hörantner, H.J. Snaith, Metal halide perovskite tandem and multiple-junction photovoltaics. Nat. Rev. Chem. 1, 0095 (2017)CrossRefGoogle Scholar
  102. 102.
    E.T. Hoke et al., Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015)CrossRefGoogle Scholar
  103. 103.
    C.S. Ponseca et al., Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. J. Am. Chem. Soc. 136, 5189–5192 (2014)CrossRefGoogle Scholar
  104. 104.
    G.D. Scholes, G. Rumbles, Excitons in nanoscale systems. Nat. Mater. 5, 683–696 (2006)CrossRefADSGoogle Scholar
  105. 105.
    V. D’Innocenzo et al., Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 3586 (2014)CrossRefADSGoogle Scholar
  106. 106.
    E.J. Juarez-Perez et al., Photoinduced giant dielectric constant in lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 2390–2394 (2014)CrossRefGoogle Scholar
  107. 107.
    Q. Lin, A. Armin, R.C.R. Nagiri, P.L. Burn, P. Meredith, Electro-optics of perovskite solar cells. Nat. Photonics 9, 106–112 (2015)CrossRefADSGoogle Scholar
  108. 108.
    G. Xing, et al., Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science (80-.). 342, 344–347 (2013)Google Scholar
  109. 109.
    O.D. Miller, E. Yablonovitch, S.R. Kurtz, Intense internal and external fluorescence as solar cell approach the SQ efficiency limit. Photovolt. IEEE J. 2, 1–27 (2012)CrossRefGoogle Scholar
  110. 110.
    T.S. Sherkar et al., Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions. ACS Energy Lett. 2, 1214–1222 (2017)CrossRefGoogle Scholar
  111. 111.
    D. Meggiolaro et al., Iodine chemistry determines the defect tolerance of lead-halide perovskites. Energy Environ. Sci. 11, 702–713 (2018)CrossRefGoogle Scholar
  112. 112.
    J.S. Yun et al., Critical role of grain boundaries for ion migration in formamidinium and methylammonium lead halide perovskite solar cells. Adv. Energy Mater. 6, 1–8 (2016)CrossRefADSGoogle Scholar
  113. 113.
    R. Brenes et al., Metal halide perovskite polycrystalline films exhibiting properties of single crystals. Joule 1, 155–167 (2017)CrossRefGoogle Scholar
  114. 114.
    W.J. Yin, T. Shi, Y. Yan, Unusual defect physics in CH3NH3PbI3perovskite solar cell absorber. Appl. Phys. Lett. 104, (2014)Google Scholar
  115. 115.
    D. Meggiolaro, et al., Iodine chemistry determines the defect tolerance of lead-halide perovskites. Energy Environ. Sci. 0–30 (2018).
  116. 116.
    C. Li et al., Iodine migration and its effect on hysteresis in perovskite solar cells. Adv. Mater. 28, 2446–2454 (2016)CrossRefADSGoogle Scholar
  117. 117.
    T. Niu et al., Stable high-performance perovskite solar cells via grain boundary passivation. Adv. Mater. 30, 1706576 (2018)CrossRefGoogle Scholar
  118. 118.
    H.J. Snaith et al., Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014)CrossRefGoogle Scholar
  119. 119.
    W. Tress, et al., Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Environ. Sci. 995–1004 (2015).
  120. 120.
    W. Tress, Metal halide perovskites as mixed electronic-ionic conductors: challenges and opportunities—from hysteresis to memristivity. J. Phys. Chem. Lett. 8, 3106–3114 (2017)CrossRefGoogle Scholar
  121. 121.
    E.L. Unger et al., Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci. 7, 3690–3698 (2014)CrossRefGoogle Scholar
  122. 122.
    K. Domanski, E.A. Alharbi, A. Hagfeldt, M. Grätzel, W. Tress, Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nat. Energy 3, 61–67 (2018)CrossRefADSGoogle Scholar
  123. 123.
    J.-P. Correa-Baena et al., The rapid evolution of highly efficient perovskite solar cells. Energy Environ. Sci. 10, 710–727 (2017)CrossRefGoogle Scholar
  124. 124.
    J.-S. Park, H. Chae, H.K. Chung, S.I. Lee, Thin film encapsulation for flexible AM-OLED: a review. Semicond. Sci. Technol. 26, 034001 (2011)CrossRefADSGoogle Scholar
  125. 125.
    A. Guerrero et al., Interfacial degradation of planar lead halide perovskite solar cells. ACS Nano 10, 218–224 (2016)CrossRefGoogle Scholar
  126. 126.
    E. Bi et al., Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells. Nat. Commun. 8, 15330 (2017)CrossRefADSGoogle Scholar
  127. 127.
    A. Babayigit et al., Assessing the toxicity of Pb-and Sn-based perovskite solar cells in model organism Danio rerio. Sci. Rep. 6, 1–11 (2016)CrossRefGoogle Scholar
  128. 128.
    A. Abate, Perovskite solar cells go lead free. Joule 1, 659–664 (2017)CrossRefGoogle Scholar
  129. 129.
    M. Konstantakou, T. Stergiopoulos, A critical review on tin halide perovskite solar cells. J. Mater. Chem. A 5, 11518–11549 (2017)CrossRefGoogle Scholar
  130. 130.
    S.J. Lee et al., Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF2-pyrazine complex. J. Am. Chem. Soc. 138, 3974–3977 (2016)CrossRefGoogle Scholar
  131. 131.
    S. Nagane et al., Lead-free perovskite semiconductors based on germanium-tin solid solutions: structural and optoelectronic properties. J. Phys. Chem. C 122, 5940–5947 (2018)CrossRefGoogle Scholar
  132. 132.
    C. Wu et al., The dawn of lead-free perovskite solar cell: highly stable double perovskite Cs2AgBiBr6 film. Adv. Sci. 5, 1700759 (2018)CrossRefGoogle Scholar
  133. 133.
    X. Zhao et al., Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J. Am. Chem. Soc. 139, 2630–2638 (2017)CrossRefGoogle Scholar
  134. 134.
    G. Volonakis et al., Cs2InAgCl6: a new lead-free halide double perovskite with direct band gap. J. Phys. Chem. Lett. 8, 772–778 (2017)CrossRefGoogle Scholar
  135. 135.
    M. Cai, et al., Cost-performance analysis of perovskite solar modules. Adv. Sci. 4, (2017)Google Scholar
  136. 136.
    F. Taghizadeh-Hesary, N. Yoshino, Y. Inagaki, Empirical analysis of factors influencing price of solar modules (2018)Google Scholar
  137. 137.
    He, X. Perovskite Photovoltaics 2018–2028. (2018)Google Scholar
  138. 138.
    I. Cardinaletti et al., Organic and perovskite solar cells for space applications. Sol. Energy Mater. Sol. Cells 182, 121–127 (2018)CrossRefGoogle Scholar
  139. 139.
    M. Kaltenbrunner et al., Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. Nat. Mater. 14, 1032–1039 (2015)CrossRefADSGoogle Scholar
  140. 140.
    S. De Wolf et al., Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014)CrossRefGoogle Scholar
  141. 141.
    S. Pang et al., NH2CH═NH2PbI3: an alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem. Mater. 26, 1485–1491 (2014)CrossRefADSGoogle Scholar
  142. 142.
    J.-H. Im, H.-S. Kim, N.-G. Park, Morphology-photovoltaic property correlation in perovskite solar cells: one-step versus two-step deposition of CH3 NH3 PbI3. APL Mater. 2, 081510 (2014)CrossRefADSGoogle Scholar
  143. 143.
    B. Chen, M. Yang, S. Priya, K. Zhu, Origin of J-V hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 905–917 (2016)Google Scholar
  144. 144.
    K. Wojciechowski, D.Forgács, T. Rivera, Industrial Opportunities and Challenges for Perovskite Photovoltaic Technology. 1900144, 1–9 (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Director of Knowledge ManagementSaule TechnologiesWroclawPoland
  2. 2.Scientific DirectorSaule TechnologiesWroclawPoland
  3. 3.Chief Technology OfficerSaule TechnologiesWroclawPoland

Personalised recommendations