Advertisement

deal.II Implementation of a Weak Galerkin Finite Element Solver for Darcy Flow

  • Zhuoran Wang
  • Graham Harper
  • Patrick O’Leary
  • Jiangguo LiuEmail author
  • Simon Tavener
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11539)

Abstract

This paper presents a weak Galerkin (WG) finite element solver for Darcy flow and its implementation on the deal.II platform. The solver works for quadrilateral and hexahedral meshes in a unified way. It approximates pressure by Q-type degree \(k({\ge }0)\) polynomials separately defined in element interiors and on edges/faces. Numerical velocity is obtained in the unmapped Raviart-Thomas space \( RT_{[k]} \) via postprocessing based on the novel concepts of discrete weak gradients. The solver is locally mass-conservative and produces continuous normal fluxes. The implementation in deal.II allows polynomial degrees up to 5. Numerical experiments show that our new WG solver performs better than the classical mixed finite element methods.

Keywords

Darcy flow deal.II Finite element methods Hexahedral meshes Quadrilateral meshes Weak Galerkin 

References

  1. 1.
  2. 2.
    Arbogast, T., Correa, M.: Two families of mixed finite elements on quadrilaterals of minimal dimension. SIAM J. Numer. Anal. 54, 3332–3356 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bangerth, W., Hartmann, R., Kanschat, G.: deal.II- a general purpose object oriented finite element library. ACM Trans. Math. Softw. 33, 24–27 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bastian, P., Riviere, B.: Superconvergence and \( H(div) \) projection for discontinuous Galerkin methods. Int. J. Numer. Meth. Fluids 42, 1043–1057 (2003)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008).  https://doi.org/10.1007/978-0-387-75934-0CrossRefGoogle Scholar
  6. 6.
    Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991).  https://doi.org/10.1007/978-1-4612-3172-1CrossRefzbMATHGoogle Scholar
  7. 7.
    Bush, L., Ginting, V.: On the application of the continuous Galerkin finite element method for conservation problems. SIAM J. Sci. Comput. 35, A2953–A2975 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cockburn, B., Gopalakrishnan, J., Wang, H.: Locally conservative fluxes for the continuous Galerkin method. SIAM J. Numer. Anal. 45, 1742–1770 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Durlofsky, L.: Accuracy of mixed and control volume finite element approximations to Darcy velocity and related quantities. Water Resour. Res. 30, 965–973 (1994)CrossRefGoogle Scholar
  10. 10.
    Harper, G., Liu, J., Tavener, S., Wang, Z.: A two-field finite element solver for poroelasticity on quadrilateral meshes. In: Shi, Y., et al. (eds.) ICCS 2018. LNCS, vol. 10862, pp. 76–88. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93713-7_6CrossRefGoogle Scholar
  11. 11.
    Harper, G., Liu, J., Zheng, B.: The THex algorithm and a simple Darcy solver on hexahedral meshes. Procedia Comput. Sci. 108C, 1903–1912 (2017)CrossRefGoogle Scholar
  12. 12.
    Lie, K.A.: An introduction to reservoir simulation using MATLAB/GNU Octave. Cambridge University Press (2019). ISBN 9781108492430Google Scholar
  13. 13.
    Lin, G., Liu, J., Mu, L., Ye, X.: Weak Galerkin finite element methdos for Darcy flow: anistropy and heterogeneity. J. Comput. Phys. 276, 422–437 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lin, G., Liu, J., Sadre-Marandi, F.: A comparative study on the weak Galerkin, discontinuous Galerkin, and mixed finite element methods. J. Comput. Appl. Math. 273, 346–362 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Liu, J., Sadre-Marandi, F., Wang, Z.: DarcyLite: a Matlab toolbox for Darcy flow computation. Procedia Comput. Sci. 80, 1301–1312 (2016)CrossRefGoogle Scholar
  16. 16.
    Liu, J., Tavener, S., Wang, Z.: Lowest-order weak Galerkin finite element method for Darcy flow on convex polygonal meshes. SIAM J. Sci. Comput. 40, B1229–B1252 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Liu, J., Tavener, S., Wang, Z.: The lowest-order weak Galerkin finite element method for the Darcy equation on quadrilateral and hybrid meshes. J. Comput. Phys. 359, 312–330 (2018)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Mu, L., Wang, J., Ye, X.: A weak Galerkin finite element method with polynomial reduction. J. Comput. Appl. Math. 285, 45–58 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Sun, S., Liu, J.: A locally conservative finite element method based on piecewise constant enrichment of the continuous Galerkin method. SIAM J. Sci. Comput. 31, 2528–2548 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Wang, J., Ye, X.: A weak Galerkin finite element method for second order elliptic problems. J. Comput. Appl. Math. 241, 103–115 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Zhuoran Wang
    • 1
  • Graham Harper
    • 1
  • Patrick O’Leary
    • 2
  • Jiangguo Liu
    • 1
    Email author
  • Simon Tavener
    • 1
  1. 1.Colorado State UniversityFort CollinsUSA
  2. 2.Kitware, Inc.Santa FeUSA

Personalised recommendations