Advertisement

Introducing VECMAtk - Verification, Validation and Uncertainty Quantification for Multiscale and HPC Simulations

  • Derek GroenEmail author
  • Robin A. Richardson
  • David W. Wright
  • Vytautas Jancauskas
  • Robert Sinclair
  • Paul Karlshoefer
  • Maxime Vassaux
  • Hamid Arabnejad
  • Tomasz Piontek
  • Piotr Kopta
  • Bartosz Bosak
  • Jalal Lakhlili
  • Olivier Hoenen
  • Diana Suleimenova
  • Wouter Edeling
  • Daan Crommelin
  • Anna Nikishova
  • Peter V. Coveney
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11539)

Abstract

Multiscale simulations are an essential computational method in a range of research disciplines, and provide unprecedented levels of scientific insight at a tractable cost in terms of effort and compute resources. To provide this, we need such simulations to produce results that are both robust and actionable. The VECMA toolkit (VECMAtk), which is officially released in conjunction with the present paper, establishes a platform to achieve this by exposing patterns for verification, validation and uncertainty quantification (VVUQ). These patterns can be combined to capture complex scenarios, applied to applications in disparate domains, and used to run multiscale simulations on any desktop, cluster or supercomputing platform.

Keywords

Multiscale simulations Verification Validation Uncertainty quantification 

Notes

Acknowledgements

We are grateful to the VECMA consortium, Scientific Advisory Board and the VECMAtk alpha users for their constructive discussions and input around this work. We acknowledge funding support from the European Union’s Horizon 2020 research and innovation programme under grant agreement 800925 (VECMA project, www.vecma.eu), and the UK Consortium on Mesoscale Engineering Sciences (UKCOMES) under the UK EPSRC Grant No. EP/L00030X/1.

References

  1. 1.
    Oberkampf, W.L., DeLand, S.M., Rutherford, B.M., Diegert, K.V., Alvin, K.F.: Error and uncertainty in modeling and simulation. Reliab. Eng. Syst. Saf. 75(3), 333–357 (2002)CrossRefGoogle Scholar
  2. 2.
    Oberkampf, W.L., Roy, C.J.: Verification and Validation in Scientific Computing. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  3. 3.
    Roy, C.J., Oberkampf, W.L.: A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing. Comput. Methods Appl. Mech. Eng. 200(25), 2131–2144 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Groen, D., Knap, J., Neumann, P., Suleimenova, D., Veen, L., Leiter, K.: Mastering the scales: a survey on the benefits of multiscale computing software. Philos. Trans. Roy. Soc. A 377(2142), 20180147 (2019)CrossRefGoogle Scholar
  5. 5.
    Nikishova, A., Hoekstra, A.G.: Semi-intrusive uncertainty quantification for multiscale models. arXiv preprint arXiv:1806.09341 (2018)
  6. 6.
    Alowayyed, S., Groen, D., Coveney, P.V., Hoekstra, A.G.: Multiscale computing in the exascale era. J. Comput. Sci. 22, 15–25 (2017)CrossRefGoogle Scholar
  7. 7.
    Baudin, M., Dutfoy, A., Iooss, B., Popelin, A.-L.: OpenTURNS: an industrial software for uncertainty quantification in simulation. In: Ghanem, R., Higdon, D., Owhadi, H. (eds.) Handbook of Uncertainty Quantification, pp. 2001–2038. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-12385-1_64CrossRefGoogle Scholar
  8. 8.
    Marelli, S., Sudret, B.: UQLab: a framework for uncertainty quantification in Matlab. In: Vulnerability, Uncertainty, and Risk: Quantification, Mitigation, and Management, pp. 2554–2563 (2014)Google Scholar
  9. 9.
    Tennøe, S., Halnes, G., Einevoll, G.T.: Uncertainpy: a Python toolbox for uncertainty quantification and sensitivity analysis in computational neuroscience. bioRxiv (2018).  https://doi.org/10.1101/274779
  10. 10.
    Feinberg, J., Langtangen, H.P.: Chaospy: an open source tool for designing methods of uncertainty quantification. J. Comput. Sci. 11, 46–57 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Piontek, T., et al.: Development of science gateways using QCG – lessons learned from the deployment on large scale distributed and HPC infrastructures. J. Grid Comput. 14(4), 559–573 (2016)CrossRefGoogle Scholar
  12. 12.
    Groen, D., Bhati, A.P., Suter, J., Hetherington, J., Zasada, S.J., Coveney, P.V.: FabSim: facilitating computational research through automation on large-scale and distributed e-infrastructures. Comput. Phys. Commun. 207, 375–385 (2016)CrossRefGoogle Scholar
  13. 13.
    Sobol, I.: On Quasi-Monte Carlo integrations. Math. Comput. Simul. 47(2), 103–112 (1998)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Luk, O., Hoenen, O., Bottino, A., Scott, B., Coster, D.: ComPat framework for multiscale simulations applied to fusion plasmas. Comput. Phys. Commun. 239, 126–133 (2019)CrossRefGoogle Scholar
  15. 15.
    Preuss, R., von Toussaint, U.: Uncertainty quantification in ion–solid interaction simulations. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 393, 26–28 (2017)CrossRefGoogle Scholar
  16. 16.
    Jansson, F., van den Oord, G., Pelupessy, I., Grönqvist, J., Siebesma, A., Crommelin, D.: Regional superparameterization in a global circulation model using large eddy simulations (2018, in press)Google Scholar
  17. 17.
    Verheul, N., Crommelin, D.: Data-driven stochastic representations of unresolved features in multiscale models. Commun. Math. Sci 14(5), 1213–1236 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Verheul, N., Viebahn, J., Crommelin, D.: Covariate-based stochastic parameterization of baroclinic ocean eddies. Math. Clim. Weather Forecast. 3(1), 90–117 (2017)MathSciNetGoogle Scholar
  19. 19.
    Groen, D.: Simulating refugee movements: where would you go? Procedia Comput. Sci. 80, 2251–2255 (2016)CrossRefGoogle Scholar
  20. 20.
    Suleimenova, D., Bell, D., Groen, D.: A generalized simulation development approach for predicting refugee destinations. Sci. Rep. 7, 13377 (2017)CrossRefGoogle Scholar
  21. 21.
    Suleimenova, D., Bell, D., Groen, D.: Towards an automated framework for agent-based simulation of refugee movements. In: Chan, W.K.V., DAmbrogio, A., Zacharewicz, G., Mustafee, N., Wainer, G., Page, E., (eds.): Proceedings of the 2017 Winter Simulation Conference, Las Vegas, Nevada, IEEE, pp. 1240–1251 (2017)Google Scholar
  22. 22.
    Suleimenova, D., Groen, D.: How policy decisions affect refugee journeys in South Sudan: a study using automated ensemble simulations. J. Artif. Soc. and Soc. Simul. (2019, submitted)Google Scholar
  23. 23.
    Vassaux, M., Richardson, R.A., Coveney, P.V.: The heterogeneous multiscale method applied to inelastic polymer mechanics. Philos. Trans. Roy. Soc. A 377, 20180150 (2019)CrossRefGoogle Scholar
  24. 24.
    Vassaux, M., Sinclair, R.C., Richardson, R.A., Suter, J.L., Coveney, P.V.: The role of graphene in enhancing the mechanical properties of epoxy resins. Adv. Theory Simul. 2, 1800168 (2019)CrossRefGoogle Scholar
  25. 25.
    Sadiq, S.K., Wright, D., Watson, S.J., Zasada, S.J., Stoica, I., Coveney, P.V.: Automated molecular simulation based binding affinity calculator for ligand-bound HIV-1 proteases. J. Chem. Inf. Model. 48(9), 1909–1919 (2008). PMID: 18710212CrossRefGoogle Scholar
  26. 26.
    Wan, S., et al.: Rapid and reliable binding affinity prediction of bromodomain inhibitors: a computational study. J. Chem. Theory Comput. 13(2), 784–795 (2017). PMID: 28005370CrossRefGoogle Scholar
  27. 27.
    Mazzeo, M.D., Coveney, P.V.: HemeLB: a high performance parallel lattice-Boltzmann code for large scale fluid flow in complex geometries. Comput. Phys. Commun. 178(12), 894–914 (2008)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Patronis, A., Richardson, R.A., Schmieschek, S., Wylie, B.J., Nash, R.W., Coveney, P.V.: Modelling patient-specific magnetic drug targeting within the intracranial vasculature. Front. Physiol. 9, 331 (2018)CrossRefGoogle Scholar
  29. 29.
    Groen, D., et al.: Validation of patient-specific cerebral blood flow simulation using transcranial Doppler measurements. Front. Physiol. 9, 721 (2018)CrossRefGoogle Scholar
  30. 30.
    Fernández-Ruiz, I.: Interventional cardiology: drug-eluting or bare-metal stents? Nat. Rev. Cardiol. 13(11), 631–631 (2016)CrossRefGoogle Scholar
  31. 31.
    Caiazzo, A., et al.: A complex automata approach for in-stent restenosis: two-dimensional multiscale modelling and simulations. J. Comput. Sci. 2(1), 9–17 (2011)CrossRefGoogle Scholar
  32. 32.
    Nikishova, A., Veen, L., Zun, P., Hoekstra, A.G.: Uncertainty quantification of a multiscale model for in-stent restenosis. Cardiovasc. Eng. Technol. 9(4), 761–774 (2018)CrossRefGoogle Scholar
  33. 33.
    Nikishova, A., Veen, L., Zun, P., Hoekstra, A.G.: Semi-intrusive multiscale metamodeling uncertainty quantification with application to a model of in-stent restenosis. Philos. Trans. A 377(2142), 20180154 (2018)CrossRefGoogle Scholar
  34. 34.
    Zun, P.S., Anikina, T., Svitenkov, A., Hoekstra, A.G.: A comparison of fully-coupled 3D in-stent restenosis simulations to in-vivo data. Front. Physiol. 8, 284 (2017)CrossRefGoogle Scholar
  35. 35.
    Docker: Docker for the Virtualization Admin. eBook (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Derek Groen
    • 1
    Email author
  • Robin A. Richardson
    • 2
  • David W. Wright
    • 2
  • Vytautas Jancauskas
    • 10
  • Robert Sinclair
    • 2
  • Paul Karlshoefer
    • 9
  • Maxime Vassaux
    • 2
  • Hamid Arabnejad
    • 1
  • Tomasz Piontek
    • 5
  • Piotr Kopta
    • 5
  • Bartosz Bosak
    • 5
  • Jalal Lakhlili
    • 4
  • Olivier Hoenen
    • 4
  • Diana Suleimenova
    • 1
  • Wouter Edeling
    • 6
  • Daan Crommelin
    • 6
    • 7
  • Anna Nikishova
    • 8
  • Peter V. Coveney
    • 2
    • 3
    • 8
  1. 1.Department of Computer ScienceBrunel University LondonLondonUK
  2. 2.Centre for Computational ScienceUniversity College LondonLondonUK
  3. 3.Centre for Mathematics and Physics in the Life Sciences and Experimental BiologyUniversity College LondonLondonUK
  4. 4.Max-Planck Institute for Plasma Physics - GarchingMunichGermany
  5. 5.Poznań Supercomputing and Networking CenterPoznańPoland
  6. 6.Centrum Wiskunde & InformaticaAmsterdamThe Netherlands
  7. 7.Korteweg-de Vries Institute for MathematicsAmsterdamThe Netherlands
  8. 8.University of AmsterdamAmsterdamThe Netherlands
  9. 9.BULL/ATOSParisFrance
  10. 10.LRZGarchingGermany

Personalised recommendations