Surrogate-Based Optimization of Tidal Turbine Arrays: A Case Study for the Faro-Olhão Inlet

  • Eduardo González-GorbeñaEmail author
  • André Pacheco
  • Theocharis A. Plomaritis
  • Óscar Ferreira
  • Cláudia Sequeira
  • Theo Moura
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11538)


This paper presents a study for estimating the size of a tidal turbine array for the Faro-Olhão Inlet (Potugal) using a surrogate optimization approach. The method compromises problem formulation, hydro-morphodynamic modelling, surrogate construction and validation, and constraint optimization. A total of 26 surrogates were built using linear RBFs as a function of two design variables: number of rows in the array and Tidal Energy Converters (TECs) per row. Surrogates describe array performance and environmental effects associated with hydrodynamic and morphological aspects of the multi inlet lagoon. After validation, surrogate models were used to formulate a constraint optimization model. Results evidence that the largest array size that satisfies performance and environmental constraints is made of 3 rows and 10 TECs per row.


Hydro-morphodynamic modelling Marine renewable energy Ria Formosa 



Eduardo González-Gorbeña has received funding for the OpTiCA project ( from the Marie Skłodowska-Curie Actions of the European Union’s H2020-MSCA-IF-EF-RI-2016/GA#: 748747. The paper is a contribution to the SCORE project, funded by the Portuguese Foundation for Science and Technology (FCT–PTDC/AAG-TEC/1710/2014). André Pacheco was supported by the Portuguese Foundation for Science and Technology under the Portuguese Researchers’ Programme 2014 entitled “Exploring new concepts for extracting energy from tides” (IF/00286/2014/CP1234).


  1. 1.
    European Commission: Factsheet: Clean Energy for Islands Initiative.
  2. 2.
    Brutto, O.A.L., Thiébot, J., Guillou, S.S., Gualous, H.: A semi-analytic method to optimize tidal farm layouts–application to the Alderney Race (Raz Blanchard), France. Appl. Energy 183, 1168–1180 (2016)CrossRefGoogle Scholar
  3. 3.
    Shakoor, R., Hassan, M.Y., Raheem, A., Wu, Y.K.: Wake effect modeling: a review of wind farm layout optimisation using Jensen’s model. Renew. Sustain. Energy Rev. 58, 1048–1059 (2016)CrossRefGoogle Scholar
  4. 4.
    Funke, S.W., Farrell, P.E., Piggott, M.D.: Tidal turbine array optimisation using the adjoint approach. Renew. Energy 63, 658–673 (2014)CrossRefGoogle Scholar
  5. 5.
    Du Feu, R.J., et al.: The trade-off between tidal-turbine array yield and impact on flow: a multi-objective optimisation problem. Renew. Energy 114, 1247–1257 (2017)CrossRefGoogle Scholar
  6. 6.
    González-Gorbeña, E., Qassim, R.Y., Rosman, P.C.: Optimisation of hydrokinetic turbine array layouts via surrogate modelling. Renew. Energy 93, 45–57 (2016)CrossRefGoogle Scholar
  7. 7.
    Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidyanathan, R., Tucker, P.K.: Surrogate-based analysis and optimisation. Prog. Aerosp. Sci. 41(1), 1–28 (2005)CrossRefGoogle Scholar
  8. 8.
    González-Gorbeña, E., Qassim, R.Y., Rosman, P.C.: Multi-dimensional optimisation of tidal energy converters array layouts considering geometric, economic and environmental constraints. Renew. Energy 116, 647–658 (2018)CrossRefGoogle Scholar
  9. 9.
    González-Gorbeña, E., Pacheco, A., Plomaritis, T.A., Ferreira, Ó., Sequeira, C.: Estimating the optimum size of a tidal array at a multi-inlet system considering environmental and performance constraints. Appl. Energy 232, 292–311 (2018)CrossRefGoogle Scholar
  10. 10.
    Pacheco, A., Vila-Concejo, A., Ferreira, Ó., Dias, J.A.: Assessment of tidal inlet evolution and stability using sediment budget computations and hydraulic parameter analysis. Mar. Geol. 247, 104–127 (2008)CrossRefGoogle Scholar
  11. 11.
    Koziel, S., Tesfahunegn, Y., Leifsson, L.: Variable-fidelity CFD models and co-Kriging for expedited multi-objective aerodynamic design optimisation. Eng. Comput. 33(8), 2320–2338 (2016)CrossRefGoogle Scholar
  12. 12.
    Acar, E., Tüten, N., Güler, M.A.: Design optimisation of an automobile torque arm using global and successive surrogate modeling approaches. Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. 233(6), 1453–1465 (2018). Scholar
  13. 13.
    Koziel, S., Ogurtsov, S.: Surrogate-based optimization. In: Koziel, S., Ogurtsov, S. (eds.) Antenna Design by Simulation-Driven Optimization. SO, pp. 13–24. Springer, Cham (2014). Scholar
  14. 14.
    Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. 4, 409–423 (1989)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Loeppky, J.L., Sacks, J., Welch, W.J.: Choosing the sample size of a computer experiment: a practical guide. Technometrics 51(4), 366–376 (2009)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Eisenmann, E.G.G., Qassim, R.Y., Rosman, P.C.C.: A metamodel simulation based optimisation approach for the tidal turbine location problem. Aquat. Sci. Technol. 3(1), 33–58 (2015)CrossRefGoogle Scholar
  17. 17.
    Delft3D Open Source Community.
  18. 18.
    Fang, K.-T., Li, R., Sudjianto, A.: Design and Modeling for Computer Experiments. Computer Science & Data Analysis Series. Chapman & Hall/CRC, Boca Raton (2006)zbMATHGoogle Scholar
  19. 19.
    Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  20. 20.
    Forrester, A., Sobester, A., Keane, A.: Engineering Design via Surrogate Modelling: A Practical Guide. Wiley, Chichester (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centre for Marine and Environmental ResearchUniversidade do AlgarveFaroPortugal
  2. 2.Faculty of Marine and Environmental Science, Department of Earth ScienceUniversidad de CádizCádizSpain

Personalised recommendations