Advertisement

Lung

  • Giselle S. Magalhães
  • Maria Jose Campagnole-Santos
  • Maria da Glória Rodrigues-MachadoEmail author
Chapter

Abstract

In the present chapter, we review and summarize current advances on the role of angiotensin-(1-7) [Ang-(1-7)] in the pathophysiology of main lung diseases: pulmonary hypertension (PH), acute respiratory distress syndrome (ARDS), asthma, and pulmonary fibrosis. Understanding the involvement of renin angiotensin system (RAS) in pulmonary inflammation may open new therapeutic possibilities for the treatment of respiratory diseases. Studies to date showed that Ang-(1-7) presents anti-inflammatory, antifibrotic activities and reduces pulmonary remodeling. These actions support the development of new pharmacological therapies based on the increase in Ang-(1-7) in the lungs to improve the treatment of inflammatory diseases.

Keywords

Pulmonary hypertension (PH) Acute respiratory distress syndrome (ARDS) Asthma Pulmonary fibrosis and pulmonary remodeling 

References

  1. 1.
    Aeffner F, Bolon B, Davis IC. Mouse models of acute respiratory distress syndrome: a review of analytical approaches, pathologic features, and common measurements. Toxicol Pathol. 2015;43(8):1074–92.PubMedCrossRefGoogle Scholar
  2. 2.
    Ashbaugh DG, Bigelow DB, Petty TL, Levine BE. Acute respiratory distress in adults. Lancet. 1967;2:319–23.PubMedCrossRefGoogle Scholar
  3. 3.
    Balakumar P, Jagadeesh G. A century old renin-angiotensin system still grows with endless possibilities: AT1 receptor signaling cascades in cardiovascular physiopathology. Cell Signal. 2014;26:2147–60.PubMedCrossRefGoogle Scholar
  4. 4.
    Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R. The American-European consensus conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149:818–24.PubMedCrossRefGoogle Scholar
  5. 5.
    Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. The acute respiratory distress syndrome network: ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Bocchino M, Agnese S, Fagone E, Svegliati S, Grieco D, Vancheri C, Gabrielli A, Sanduzzi A, Avvedimento EV. Reactive oxygen species are required for maintenance and differentiation of primary lung fibroblasts in idiopathic pulmonary fibrosis. PLoS One. 2010;5:e14003.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Chen L, Xiao J, Li Y, Ma H. Ang-(1-7) might prevent the development of monocrotaline induced pulmonary arterial hypertension in rats. Eur Rev Med Pharmacol Sci. 2011;15(1):1–7.PubMedGoogle Scholar
  8. 8.
    Chen Q, Yang Y, Huang Y, Pan C, Liu L, Qiu H. Angiotensin-(1-7) attenuates lung fibrosis by way of Mas receptor in acute lung injury. J Surg Res. 2013;185:740–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Cheng ZJ, Vapaatalo H, Mervaala E. Angiotensin II and vascular inflammation. Med Sci Monit. 2005;11(6):RA194–205.PubMedGoogle Scholar
  10. 10.
    Dai HL, Dai H, Gong Y, Xiao Z, Guang X, Yin X. Decreased levels of serum angiotensin-(1-7) in patients with pulmonary arterial hypertension due to congenital heart disease. Int J Cardiol. 2014;176:1399–401.PubMedCrossRefGoogle Scholar
  11. 11.
    Dai HL, Guo Y, Guang XF, Xiao ZC, Zhang M, Yin XL. The changes of serum angiotensin-converting enzyme 2 in patients with pulmonary arterial hypertension due to congenital heart disease. Cardiology. 2013;124:208–12.PubMedCrossRefGoogle Scholar
  12. 12.
    de Man FS, Tu L, Handoko ML, Rain S, Ruiter G, François C, Schalij I, Dorfmüller P, Simonneau G, Fadel E, Perros F, Boonstra A, Postmus PE, van der Velden J, Vonk-Noordegraaf A, Humbert M, Eddahibi S, Guignabert C. Dysregulated renin-angiotensin-aldosterone system contributes to pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;186(8):780–9.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Duncan JC. Clinical relevance of local renin angiotensin systems. Front Endocrinol (Lausanne). 2014;5:113.Google Scholar
  14. 14.
    Duncan CJA, Lawrie A, Blaylock MG, Douglas JG, Walsh GM. Reduced eosinophil apoptosis in induced sputum correlates with asthma severity. Eur Respir J. 2003;22:484–90.PubMedCrossRefGoogle Scholar
  15. 15.
    El-Hasmin, et al. Angiotensin-(1-7) inhibits allergic inflammation, via MAS1 receptor, through supression of ERK1/2 and NF-Kb-dependent pathways. Br J Pharmacol. 2012;166(6):1964–76.CrossRefGoogle Scholar
  16. 16.
    Fan E, Brodie D, Slutsky AS. Acute respiratory distress syndrome: advances in diagnosis and treatment. JAMA. 2018;319(7):698–710.PubMedCrossRefGoogle Scholar
  17. 17.
    Ferreira AJ, Shenoy V, Yamazato Y, Sriramula S, Francis J, Yuan L, Castellano RK, Ostrov DA, Oh SP, Katovich MJ, Raizada MK. Evidence for angiotensin-converting enzyme 2 as a therapeutic target for the prevention of pulmonary hypertension. Am J Respir Crit Care Med. 2009;179(11):1048–54.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Fletcher AN, Molteni A, Ponnapureddy R, Patel C, Pluym M, Poisner AM. The renin inhibitor aliskiren protects rat lungs from the histopathologic effects of fat embolism. J Trauma Acute Care Surg. 2017;82(2):338–44.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Fulkerson PC, Rothember ME. Targeting eosinophyls in allergy, inflammation and beyond. Nat Rev Drug Discov. 2013;12:117–29.PubMedCrossRefGoogle Scholar
  20. 20.
    Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, Ghofrani A, Gomez Sanchez MA, Hansmann G, Klepetko W, Lancellotti P, Matucci M, McDonagh T, Pierard LA, Trindade PT, Zompatori M, Hoeper M, ESC Scientific Document Group. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;37(1):67–119.PubMedCrossRefGoogle Scholar
  21. 21.
    Gattinoni L, Pelosi P, Suter PM, Pedoto A, Vercesi P, Lissoni A. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes? Am J Respir Crit Care Med. 1998;158(1):3–11.PubMedCrossRefGoogle Scholar
  22. 22.
    Georas SN, Guo J, De Fanis U, Casolaro V. T–helper cell type-2 regulation in allergic disease. Eur Respir J. 2005;26:1119–37.PubMedCrossRefGoogle Scholar
  23. 23.
    Ghataorhe P, Rhodes CJ, Harbaum L, Attard M, Wharton J, Wilkins MR. Pulmonary arterial hypertension progress in understanding the disease and prioritizing strategies for drug development. J Intern Med. 2017;282(2):129–41.PubMedCrossRefGoogle Scholar
  24. 24.
    Haga S, Tsuchiya H, Hirai T, Hamano T, Mimori A, Ishizaka Y. A novel ACE2 activator reduces monocrotaline-induced pulmonary hypertension by suppressing the JAK/STAT and TGF-β cascades with restored caveolin-1 expression. Exp Lung Res. 2015;41(1):21–31.PubMedCrossRefGoogle Scholar
  25. 25.
    Hagiwara S, Iwasaka H, Matumoto S, Hidaka S, Noguchi T. Effects of an angiotensin-converting enzyme inhibitor on the inflammatory response in in vivo and in vitro models. Crit Care Med. 2009;37:626–33.PubMedCrossRefGoogle Scholar
  26. 26.
    Hamming I, Cooper ME, Haagmans BL, Hooper NM, Korstanje R, Osterhaus AD, Timens W, Turner AJ, Navis G, van Goor H. The emerging role of ACE2 in physiology and disease. J Pathol. 2007;212(1):1–11.PubMedCrossRefGoogle Scholar
  27. 27.
    Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631–7.PubMedCrossRefGoogle Scholar
  28. 28.
    He H, Liu L, Chen Q, Liu A, Cai S, Yang Y, Lu X, Qiu H. Mesenchymal stem cells overexpressing angiotensin-converting enzyme 2 rescue lipopolysaccharide-induced lung injury. Cell Transplant. 2015;24(9):1699–715.PubMedCrossRefGoogle Scholar
  29. 29.
    Hecker L, Vittal R, Jones T, Jagirdar R, Luckhardt TR, Horowitz JC, Pennathur S, Martinez FJ, Thannickal VJ. NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med. 2009;15(9):1077–81.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Hemnes AR, Rathinasabapathy A, Austin EA, Brittain EL, Carrier EJ, Chen X, Fessel JP, Fike CD, Fong P, Fortune N, Gerszten RE, Johnson JA, Kaplowitz M, Newman JH, Piana R, Pugh ME, Rice TW, Robbins IM, Wheeler L, Yu C, Loyd JE, West J. A potential therapeutic role for angiotensin-converting enzyme 2 in human pulmonary arterial hypertension. Eur Respir J. 2018;51(6).PubMedCrossRefGoogle Scholar
  31. 31.
    Hernández Prada JA, Ferreira AJ, Katovich MJ, Shenoy V, Qi Y, Santos RA, Castellano RK, Lampkins AJ, Gubala V, Ostrov DA, Raizada MK. Structure-based identification of small-molecule angiotensin-converting enzyme 2 activators as novel antihypertensive agents. Hypertension. 2008;51(5):1312–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Hoeper MM, Bogaard HJ, Condliffe R, Frantz R, Khanna D, Kurzyna M, Langleben D, Manes A, Satoh T, Torres F, Wilkins MR, Badesch DB. Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):D42–50.PubMedCrossRefGoogle Scholar
  33. 33.
    Holgate ST. Asthma: a simple concept but in reality a complex disease. Eur J Clin Investig. 2011;41:1339–52.CrossRefGoogle Scholar
  34. 34.
    Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, Yang P, Sarao R, Wada T, Leong-Poi H, Crackower MA, Fukamizu A, Hui CC, Hein L, Uhlig S, Slutsky AS, Jiang C, Penninger JM. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047):112–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Jerng JS, Hsu YC, Wu HD, Pan HZ, Wang HC, Shun CT, Yu CJ, Yang PC. Role of the renin-angiotensin system in ventilator-induced lung injury: an in vivo study in a rat model. Thorax. 2007;62(6):527–35.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Jerng JS, Yu CJ, Wang HC, Chen KY, Cheng SL, Yang PC. Polymorphism of the angiotensin converting enzyme gene affects the outcome of acute respiratory distress syndrome. Crit Care Med. 2006;34:1001–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Jiang JS, Wang LF, Chou HC, Chen CM. Angiotensin-converting enzyme inhibitor captopril attenuates ventilator-induced lung injury in rats. J Appl Physiol. 2007;102(6):2098–103.PubMedCrossRefGoogle Scholar
  38. 38.
    Kaparianos A, Argyropoulou E. Local renin-angiotensin II systems, angiotensin-converting enzyme and its homologue ACE2: their potential role in the pathogenesis of chronic obstructive pulmonary diseases, pulmonary hypertension and acute respiratory distress syndrome. Curr Med Chem. 2011;18(23):3506–15.PubMedCrossRefGoogle Scholar
  39. 39.
    Khan A, Benthin C, Zeno B, Albertson TE, Boyd J, Christie JD, Hall R, Poirier G, Ronco JJ, Tidswell M, Hardes K, Powley WM, Wright TJ, Siederer SK, Fairman DA, Lipson DA, Bayliffe AI, Lazaar AL. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care. 2017;21(1):234.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Klein N, Gembardt F, Supé S, Kaestle SM, Nickles H, Erfinanda L, Lei X, Yin J, Wang L, Mertens M, Szaszi K, Walther T, Kuebler WM. Angiotensin-(1-7) protects from experimental acute lung injury. Crit Care Med. 2013;41(11):e334–43.PubMedCrossRefGoogle Scholar
  41. 41.
    Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, Huan Y, Yang P, Zhang Y, Deng W, Bao L, Zhang B, Liu G, Wang Z, Chappell M, Liu Y, Zheng D, Leibbrandt A, Wada T, Slutsky AS, Liu D, Qin C, Jiang C, Penninger JM. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11:875–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Latus H, Delhaas T, Schranz D, Apitz C. Treatment of pulmonary arterial hypertension in children. Nat Rev Cardiol. 2015;12(4):244–54.PubMedCrossRefGoogle Scholar
  43. 43.
    Lee C, Mitsialis SA, Aslam M, Vitali SH, Vergadi E, Konstantinou G, Sdrimas K, Fernandez-Gonzalez A, Kourembanas S. Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation. 2012;126(22):2601–011.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Li G, Liu Y, Zhu Y, Liu A, Xu Y, Li X, Li Z, Su J, Sun L. ACE2 activation confers endothelial protection and attenuates neointimal lesions in prevention of severe pulmonary arterial hypertension in rats. Lung. 2013;191(4):327–36.PubMedCrossRefGoogle Scholar
  45. 45.
    Li G, Xu YL, Ling F, Liu AJ, Wang D, Wang Q, Liu YL. Angiotensin-converting enzyme 2 activation protects against pulmonary arterial hypertension through improving early endothelial function and mediating cytokines levels. Chin Med J. 2012;125(8):1381–8.PubMedGoogle Scholar
  46. 46.
    Li Y, Cao Y, Zeng Z, Liang M, Xue Y, Xi C, Zhou M, Jiang W. Angiotensin-converting enzyme 2/ angiotensin-(1-7)/ Mas axis prevents lipopolysaccharide-induced apoptosis of pulmonary microvascular endothelial cells by inhibiting JNK/NF-κB pathways. Sci Rep. 2015;5:8209.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Li Y, Zeng Z, Cao Y, Liu Y, Ping F, Liang M, Xue Y, Xi C, Zhou M, Jiang W. Angiotensin-converting enzyme 2 prevents lipopolysaccharide-induced rat acute lung injury via suppressing the ERK1/2 and NF-κB signaling pathways. Sci Rep. 2016;6:27911.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450–4.PubMedCrossRefGoogle Scholar
  49. 49.
    Ling Y, Johnson MK, Kiely DG, et al. Changing demographics, epidemiology, and survival of incident pulmonary arterial hypertension: results from the pulmonary hypertension registry of the United Kingdom and Ireland. Am J Respir Crit Care Med. 2012;186:790–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Liu Z, Liu J, Xiao M, Wang J, Yao F, Zeng W, Yu L, Guan Y, Wei W, Peng Z, Zhu K, Wang J, Yang Z, Zhong J, Chen J. Mesenchymal stem cell-derived microvesicles alleviate pulmonary arterial hypertension by regulating renin-angiotensin system. J Am Soc Hypertens. 2018;12(6):470–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Loftus PA, Wise SK. Epidemiology and economic burden of asthma. Int Forum Allergy Rhinol. 2015;5(Suppl 1):S7–10.PubMedCrossRefGoogle Scholar
  52. 52.
    Magalhães GS, Rodrigues-Machado MG, Motta-Santos D, Silva AR, Caliari MV, Prata LO, Abreu SC, Rocco PR, Barcelos LS, Santos RA, Campagnole-Santos MJ. Angiotensin-(1-7) attenuates airway remodelling and hyperresponsiveness in a model of chronic allergic lung inflammation. Br J Pharmacol. 2015;172(9):2330–23342.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Magalhaes GS, Rodrigues-Machado MG, Motta-Santos D, Alenina N, Bader M, Santos RA, Campagnole-Santos MJ. Chronic allergic pulmonary inflammation is aggravated in angiotensin-(1-7) Mas receptor knockout mice. Am J Physiol Lung Cell Mol Physiol. 2016;311(6):L1141–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Magalhaes GS, Barroso LC, Reis AC, Rodrigues-Machado MG, Gregório JF, Motta-Santos D, Oliveira AC, Perez DA, Barcelos LS, Teixeira MM, Santos RAS, Pinho V, Campagnole-Santos MJ. Angiotensin-(1-7) promotes resolution of eosinophilic inflammation in an experimental model of asthma. Front Immunol. 2018;9:58.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Marshall RP, Gohlke P, Chambers RC, Howell DC, Bottoms SE, Unger T, McAnulty RJ, Laurent GJ. Angiotensin II and the fibroproliferative response to acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2004;286:L156–64.PubMedCrossRefGoogle Scholar
  56. 56.
    Marshall RP. The pulmonary renin-angiotensin system. Curr Pharm Des. 2003;9(9):715–22.PubMedCrossRefGoogle Scholar
  57. 57.
    Marshall RP, Webb S, Bellingan GJ, Montgomery HE, Chaudhari B, RJ MA, Humphries SE, Hill MR, Laurent GJ. Angiotensin converting enzyme insertion/deletion polymorphism is associated with susceptibility and outcome in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2002;166(5):646–50.PubMedCrossRefGoogle Scholar
  58. 58.
    Marshall RP, McAnulty RJ, Laurent GJ. Angiotensin II is mitogenic for human lung fibroblasts via activation of the type 1 receptor. Am J Respir Crit Care Med. 2000;161:1999–2004.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, Kuebler WM. An official American thoracic society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol. 2011;44:725–38.PubMedCrossRefGoogle Scholar
  60. 60.
    Meng Y, Yu C-H, Li W, Li T, Luo W, Huang S, Wu P-S, Cai S-X, Li X. Angiotensin-Converting Enzyme 2/Angiotensin-(1-7)/Mas Axis Protects against Lung Fibrosis by Inhibiting the MAPK/NF-κB Pathway. Am J Respir Cell Mol Biol. 2014;50(4):723–36.PubMedCrossRefGoogle Scholar
  61. 61.
    Meng YTL, Zhou G-s, Chen Y, Yu C-H, Pang M-X, Li W, Li Y, Zhang W-Y, Li X. The Angiotensin-Converting Enzyme 2/Angiotensin (1-7)/Mas Axis Protects Against Lung Fibroblast Migration and Lung Fibrosis by Inhibiting the NOX4-Derived ROS-Mediated RhoA/Rho Kinase Pathway. Antioxid Redox Signal. 2015;20(22(3)):241–58.CrossRefGoogle Scholar
  62. 62.
    McGoon MD, Benza RL, Escribano-Subias P, et al. Pulmonary arterial hypertension: epidemiology and registries. J Am Coll Cardiol. 2013;62:D51–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Mclff TE, Poisner AM, Herndon B, Lankachandra K, Molteni A, Adler F. Mitigating effects of captopril and losartan on lung histopathology in a rat model of fat embolism. J Trauma. 2011;70(5):1186–91.CrossRefGoogle Scholar
  64. 64.
    Moeller A, Ask K, Warburton D, Gauldie J, Kolb M. The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int J Biochem Cell Biol. 2008;40:362–82.PubMedCrossRefGoogle Scholar
  65. 65.
    Morrell NW, Morris KG, Stenmark KR. Role of angiotensin-converting enzyme and angiotensin II in development of hypoxic pulmonary hypertension. Am J Phys. 1995;269(4 Pt 2):H1186–94.Google Scholar
  66. 66.
    Murray JF, Matthay MA, Luce JM, Flick MR. An expanded definition of the adult respiratory distress syndrome. Am Rev Respir Dis. 1988;138:720–3.PubMedCrossRefGoogle Scholar
  67. 67.
    Myou S, Fujimura M, Kamio Y, Ishiura Y, Kurashima K, Tachibana H, et al. Effect of losartan, a type 1 angiotensin II receptor antagonist, on bronchial hyperresponsiveness to methacholine in patients with bronchial asthma. Am J Respir Crit Care Med. 2000;162:40–4.PubMedCrossRefGoogle Scholar
  68. 68.
    Myou S, Fujimura M, Kamio Y, Kita T, Watanabe K, Ishiura Y, et al. Effect of candesartan, a type 1 angiotensin II receptor antagonist, on bronchial hyper-responsiveness to methacholine in patients with bronchial asthma. Br J Clin Pharmacol. 2002;54:622–6.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Orte C, Polak JM, Haworth SG, Yacoub MH, Morrell NW. Expression of pulmonary vascular angiotensin-converting enzyme in primary and secondary plexiform pulmonary hypertension. J Pathol. 2000;192(3):379–84.PubMedCrossRefGoogle Scholar
  70. 70.
    Perez DA, Vago JP, Athayde RM, Reis AC, Teixeira MM, Sousa LP, et al. Switching off key signaling survival molecules to switch on the resolution of inflammation. Mediat Inflamm. 2014;2014:829851.CrossRefGoogle Scholar
  71. 71.
    Prata LO, et al. ACE2 activator associated with physical exercise potentiates the reduction of pulmonary fibrosis. Exp Biol med. 2017;242(1):8–21.CrossRefGoogle Scholar
  72. 72.
    Raiden S, Nahmod K, Nahmod V, Semeniuk G, Pereira Y, Alvarez C, Giordano M, Geffner JR. Nonpeptide antagonists of AT1 receptor for angiotensin II delay the onset of acute respiratory distress syndrome. J Pharmacol Exp Ther. 2002;303:45–51.PubMedCrossRefGoogle Scholar
  73. 73.
    Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307:2526–33.PubMedGoogle Scholar
  74. 74.
    Rincon M, Irvin CG. Role of Il-6 in asthma and other inflammatory pulmonary diseases. Int J Biol Sci. 2012;8:1281–90.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Rodrigues-Machado MG, et al. AVE 0991, a non-pepitide mimic of angiotensin-(1-) effects, atenuattes pulmonary remodeling in a model of chronic asthma. Br J Pharmacol. 2013;170(4):835–46.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Santos RA, Simoes e Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, Heringer-Walther S, Pinheiro SV, Lopes MT, Bader M, Mendes EP, Lemos VS, Campagnole-Santos MJ, Schultheiss HP, Speth R, Walther T. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci U S A. 2003;100(14):8258–63.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, Campagnole-Santos MJ. The ACE2/Angiotensin-(1-7)/MAS axis of renin-angiotensin system: focus on angiotensin-(1-7). Physiol Rev. 2018;98(1):505–3.PubMedCrossRefGoogle Scholar
  78. 78.
    Schannwell CM, Steiner S, Strauer BE. Diagnostics in pulmonary hypertension. J Physiol Pharmacol. 2007;58 Suppl 5(Pt 2):591–602.PubMedGoogle Scholar
  79. 79.
    Selman M, King TE, Pardo A, American Thoracic Society; European Respiratory Society; America College of Chest Physicians. Idiopathic pulmonary fibrosis: prevailing and evolving hypothesis about its pathogenesis and implications for therapy. Ann Intem Med. 2001;134(2):136–51.CrossRefGoogle Scholar
  80. 80.
    Shaver CM, Bastarache JA. Clinical and biological heterogeneity in acute respiratory distress syndrome: direct versus indirect lung injury. Clin Chest Med. 2014;35(4):639–53.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Shen L, Mo H, Cai L, Kong T, Zheng W, Ye J, Qi J, Xiao Z. Losartan prevents sepsis-induced acute lung injury and decreases activation of nuclear factor kappa B and mitogen-activated protein kinases. Shock. 2009;31(5):500–6.PubMedCrossRefGoogle Scholar
  82. 82.
    Shenoy V, Ferreira AJ, Qi Y, Fraga-Silva RA, Díez-Freire C, Dooies A, Jun JY, Sriramula S, Mariappan N, Pourang D, Venugopal CS, Francis J, Reudelhuber T, Santos RA, Patel JM, Raizada MK, Katovich MJ. The angiotensin-converting enzyme 2/angiogenesis-(1-7)/Mas axis confers cardiopulmonary protection against lung fibrosis and pulmonary hypertension. Am J Respir Crit Care Med. 2010;182(8):1065–72.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Shelhamer JH, Levine SJ, Wu T, Jacoby DB, Kaliner MA, Rennard SL. Airway inflammation. Ann Intern Med. 1995;123:288–304.PubMedCrossRefGoogle Scholar
  84. 84.
    Shenoy V, Gjymishka A, Jarajapu YP, Qi Y, Afzal A, Rigatto K, Ferreira AJ, Fraga-Silva RA, Kearns P, Douglas JY, Agarwal D, Mubarak KK, Bradford C, Kennedy WR, Jun JY, Rathinasabapathy A, Bruce E, Gupta D, Cardounel AJ, Mocco J, Patel JM, Francis J, Grant MB, Katovich MJ, Raizada MK. Diminazene attenuates pulmonary hypertension and improves angiogenic progenitor cell functions in experimental models. Am J Respir Crit Care Med. 2013;187(6):648–57.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Shenoy V, Kwon KC, Rathinasabapathy A, Lin S, Jin G, Song C, Shil P, Nair A, Qi Y, Li Q, Francis J, Katovich MJ, Daniell H, Raizada MK. Oral delivery of Angiotensin-converting enzyme 2 and Angiotensin-(1-7) bioencapsulated in plant cells attenuates pulmonary hypertension. Hypertension. 2014;64(6):1248–59. Erratum in: Hypertension. 2015;65(3):e8.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Shenoy V, Qi Y, Katovich MJ, Raizada MK. ACE2 a promising therapeutic target for pulmonary hypertension. Curr Opin Pharmacol. 2011;11(2):150–5.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Simoes e Silva AC, Silveira KD, Ferreira AJ, Teixeira MM. ACE2, angiotensin-(1-7) and Mas receptor axis in inflammation and fibrosis. Br J Pharmacol. 2013;169:477–92.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Supé S, Kohse F, Gembardt F, Kuebler WM, Walther T, et al. Therapeutic time window for angiotensin-(1-7) in acute lung injury. Br J Pharmacol. 2016;173(10):1618–28.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Taichman DB, Ornelas J, Chung L, Klinger JR, Lewis S, Mandel J, Palevsky HI, Rich S, Sood N, Rosenzweig EB, Trow TK, Yung R, Elliott CG, Badesch DB. Pharmacologic therapy for pulmonary arterial hypertension in adults: CHEST guideline and expert panel report. Chest. 2014;146(2):449–75.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Tan WSD, Liao W, Zhou S, Mei D, Wong WF. Targeting the renin-angiotensin system as novel therapeutic strategy for pulmonary diseases. Curr Opin Pharmacol. 2018;40:9–17.PubMedCrossRefGoogle Scholar
  91. 91.
    Van Wetering S, Zuyderduyn S, Ninaber DK, van Sterkenburg MA, Rabe KF, Hiemstra PS. Epithelial differentiation is a determinant in the production of eotaxin-2 and -3 by bronchial epithelial cells in response to IL-4 and IL-13. Mol Immunol. 2007;44:803–11.PubMedCrossRefGoogle Scholar
  92. 92.
    Wiener RS, Cao YX, Hinds A, Ramirez MI, Williams MC. Angiotensin converting enzyme 2 is primarily epithelial and is developmentally regulated in the mouse lung. J Cell Biochem. 2007;101(5):1278–91.PubMedCrossRefGoogle Scholar
  93. 93.
    Wösten-van Asperen RM, Lutter R, Specht PA, Moll GN, van Woensel JB, van der Loos CM, van Goor H, Kamilic J, Florquin S, Bos AP. Acute respiratory distress syndrome leads to reduced ratio of ACE/ACE2 activities and is prevented by angiotensin-(1-7) or an angiotensin II receptor antagonist. J Pathol. 2011;225:618–27.PubMedCrossRefGoogle Scholar
  94. 94.
    Yamazato Y, Ferreira AJ, Hong KH, Sriramula S, Francis J, Yamazato M, Yuan L, Bradford CN, Shenoy V, Oh SP, Katovich MJ, Raizada MK. Prevention of pulmonary hypertension by angiotensin-converting enzyme 2 gene transfer. Hypertension. 2009;54(2):365–71.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Zambelli V, Bellani G, Borsa R, Pozzi F, Grassi A, Scanziani M, Castiglioni V, Masson S, Decio A, Laffey JG, Latini R, Pesenti A. Angiotensin-(1-7) improves oxygenation, while reducing cellular infiltrate and fibrosis in experimental acute respiratory distress syndrome. Inten Care Med Exp. 2015;3(1):44.Google Scholar
  96. 96.
    Zhang J, Dong J, Martin M, He M, Gongol B, Marin TL, Chen L, Shi X, Yin Y, Shang F, Wu Y, Huang HY, Zhang J, Zhang Y, Kang J, Moya EA, Huang HD, Powell FL, Chen Z, Thistlethwaite PA, Yuan ZY, Shyy JY. AMPK phosphorylation of ACE2 in endothelium mitigates pulmonary hypertension. Am J Respir Crit Care Med. 2018;198(4):509–20.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Giselle S. Magalhães
    • 1
    • 2
  • Maria Jose Campagnole-Santos
    • 1
  • Maria da Glória Rodrigues-Machado
    • 2
    Email author
  1. 1.Department of Physiology and BiophysicsFederal University of Minas GeraisBelo HorizonteBrazil
  2. 2.Post-Graduation Program in Health Sciences, Medical Sciences Faculty of Minas GeraisBelo HorizonteBrazil

Personalised recommendations