Advertisement

Kidney

  • Ana Cristina Simões e Silva
  • Robson Augusto Souza Santos
Chapter

Abstract

The Renin–Angiotensin System (RAS) has a critical role in kidney function and in the pathophysiology of renal diseases. Recent studies have shown that RAS is a dual function system in which the final effects are primarily driven by the balance between two opposite axes: the first formed by angiotensin converting enzyme (ACE), Angiotensin (Ang) II, and Ang type 1 receptor and the second comprising ACE2, Ang-(1-7), and Mas receptor. In this chapter, we summarize recent studies on the role of ACE2/Ang-(1-7)/Mas axis in regulating renal function and in the pathophysiology of experimental and human renal diseases. In regard to renal physiology, Ang-(1-7) takes part in renal hemodynamic regulation and in tubular handling of sodium and water. The majority of experimental studies suggest an overall renoprotective effect of ACE2/Ang-(1-7)/Mas axis in several models of renal diseases, including subtotal nephrectomy, diabetes nephropathy, adriamycin induced-nephropathy, and acute renal injury. The renoprotection of ACE2/Ang-(1-7)/Mas axis is mainly attributed to reduction of oxidative stress, inflammation, and fibrosis. Few human studies support a compensatory activation of the counter-regulatory RAS axis in renal diseases. Further studies are needed to elucidate the mechanisms by which both RAS axes modulate renal function and take part in the physiopathology of renal diseases in humans. Nevertheless, current knowledge supports the possibility that drugs which mimic or enhance the function of the ACE2/Ang-(1-7)/Mas axis may be beneficial for the treatment of renal diseases.

Keywords

Angiotensin-(1-7) ACE2 Mas receptor AVE 0991 Renal function Chronic kidney disease 

References

  1. 1.
    Simões e Silva AC, Flynn JT. The renin-angiotensin-aldosterone system in 2011: role in hypertension and chronic kidney disease. Pediatr Nephrol. 2012;27:1835–45.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Santos RAS, Ferreira AJ, Simões e Silva AC. Recent advances in the angiotensin converting enzyme 2-Angiotensin-(1-7)-Mas axis. Exp Physiol. 2008;93:519–27.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Simões e Silva AC, Teixeira MM. ACE inhibition, ACE2 and Angiotensin-(1-7) in kidney and cardiac inflammation and fibrosis. Pharmacological Res. 2016;107:154–62.CrossRefGoogle Scholar
  4. 4.
    Santos RA, Simões e Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci U S A. 2003;100(14):8258–63.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Tipinis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem. 2000;275(43):33238–43.CrossRefGoogle Scholar
  6. 6.
    Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000;87(5):E1–9.CrossRefGoogle Scholar
  7. 7.
    Flores-Munoz M, Work LM, Douglas K, Denby L, Dominiczak AF, Graham D, Nicklin SA. Angiotensin-(1-9) attenuates cardiac fibrosis in the stroke-prone spontaneously hypertensive rat via the angiotensin type 2 receptor. Hypertension. 2012;59:300–7.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Ocaranza MP, Michea L, Chiong M, Lagos CF, Lavandero S, Jalil JE. Recent insights and therapeutic perspectives of angiotensin-(1-9) in the cardiovascular system. Clin Sci (Lond). 2014;127:549–57.CrossRefGoogle Scholar
  9. 9.
    Lautner RQ, Villela DC, Fraga-Silva RA, Silva N, Verano-Braga T, Costa-Fraga F, et al. Discovery and characterization of alamandine: a novel component of the renin-angiotensin system. Circ Res. 2013;112:1104–11.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Vilela DC, Passos-Silva DG, Santos RA. Alamandine: a new member of the angiotensin family. Curr Opin Nephrol Hypertens. 2014;23:130–4.CrossRefGoogle Scholar
  11. 11.
    Tetzner A, Gebolys K, Meinert C, Klein S, Uhlich A, Trebicka J, et al. G-protein–coupled receptor MrgD is a receptor for Angiotensin-(1-7) involving adenylyl cyclase, cAMP, and phosphokinase. Hypertension. 2016;68:185–94.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Domeniq O, Manzel A, Grobe N, Königshausen E, Kaltenecker CC, Kovarik JJ, et al. Neprilysin is a mediator of alternative renin-angiotensin-system activation in the murine and human kidney. Sci Rep. 2016;6:33678.  https://doi.org/10.1038/srep33678.CrossRefGoogle Scholar
  13. 13.
    Rice GI, Thomas DA, Grant PJ, Turner AJ, Hooper NM. Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J. 2004;383:45–51.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Flores-Muñoz M, Smith NJ, Haggerty C, Milligan G, Nicklin SA. Angiotensin1-9 antagonises pro-hypertrophic signalling in cardiomyocytes via the angiotensin type 2 receptor. J Physiol. 2011;589:939–51.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Ferrario CM, Jessup J, Gallagher PE, Averill DB, Brosnihan KB, Tallant EA, et al. Effects of renin-angiotensin system blockade on renal angiotensin-(1-7) forming enzymes and receptors. Kidney Int. 2005;68:2189–96.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Andreatta-van Leyen S, Romero MF, Khosla MC, Douglas JC. Modulation of phospholipase A2 and sodium transport by angiotensin-(1-7). Kidney Int. 1993;44(5):932–6.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Handa RK. Angiotensin-(1-7) can interact with the rat proximal tubule AT(4) receptor system. Am J Physiol. 1999;277(1 Pt2):F75–83.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Lara LS, Carvalho T, Leao-Ferreira LR, Lopes AG, Caruso-Neves C. Modulation of the Na+K+ATPase activity by angiotensin-(1-7) in MDCK cells. Reg Peptides. 2005;129(1–3):221–6.CrossRefGoogle Scholar
  19. 19.
    Lara LS, Cavalcante F, Axelband F, De Souza AM, Lopes AG, Caruso-Neves C. Involvement of the Gi/o/cGMP/PKG pathway in the AT2-mediated inhibition of outer cortex proximal tubule Na+-ATPase by angiotensin-(1-7). Biochem J. 2006;395(1):183–90.PubMedCentralCrossRefGoogle Scholar
  20. 20.
    Dellipizzi AM, Hilchley SD, Bell-Quilley CP. Natriuretic action of angiotensin-(1-7). Br J Pharmacol. 1994;111(1):1–3.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Vallon V, Richter K, Heyne N, Osswald H. Effect of intratubular application of angiotensin-(1-7) on nephron function. Kidney Blood Press Res. 1997;20(4):233–9.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Lopez O, Gironacci M, Rodriguez D, Pena C. Effect of angiotensin-(1-7) on ATPase activities in several tissues. Reg Peptides. 1998;77(1–3):135–9.CrossRefGoogle Scholar
  23. 23.
    Bürgelová M, Kramer HJ, Teplan V, Velicková G, Vítko S, Heller J, et al. Intrarenal infusion of angiotensin-(1-7) modulates renal function responses to exogenous angiotensin II in the rat. Kidney Blood Press Res. 2002;25(4):202–10.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Santos RAS, Campagnole-Santos MJ, Baracho NCV, Fontes MA, Silva LC, Neves LA, et al. Characterization of a new angiotensin antagonist selective for angiotensin-(1-7): evidence that the actions of angiotensin-(1-7) are mediated by specific angiotensin receptors. Brain Res Bull. 1994;35(4):293–8.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Santos RAS, Baracho NC. Angiotensin-(1-7) is a potent antidiuretic peptide in rats. Braz J Med Biol Res. 1992;25(6):651–4.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Garcia NH, Garvin JL. Angiotensin-(1-7) has a biphasic effect on fluid absorption in the proximal straight tubule. J Am Soc Nephrol. 1994;5(4):1133–8.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Santos RAS, Simões e Silva AC, Magaldi AJ, Khosla MC, Cesar KR, Passaglio KT, et al. Evidence for a physiological role of angiotensin-(1-7) in the control of the hydroelectrolyte balance. Hypertension. 1996;27(4):875–84.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Simões e Silva AC, Baracho NCV, Passaglio KT, Santos RAS. Renal actions of angiotensin-(1-7). Braz J Med Biol Res. 1997;30(4):503–13.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Baracho NC, Simões e Silva AC, Khosla MC, Santos RAS. Effect of selective angiotensin antagonists on the antidiuresis produced by angiotensin-(1-7) in water-loaded rats. Braz J Med Biol Res. 1998;31(9):1221–7.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Simões e Silva AC, Bello AP, BaCho NC, Khosla MC, Santos RAS. Diuresis and natriuresis produced by long term administration of a selective angiotensin-(1-7) antagonist in normotensive and hypertensive rats. Reg Peptides. 1998;74(2–3):177–84.CrossRefGoogle Scholar
  31. 31.
    Magaldi AJ, Cesar KR, Araujo M, Simões e Silva AC, Santos RA. Angiotensin-(1-7) stimulates water transport in rat inner medullary collecting duct: evidence for novel involvement of vasopressin V2 receptor. Pflugers Archiv. 2003;447(2):223–30.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Pinheiro SVB, Simões e Silva AC, Sampaio WO, de Paula RD, Mendes EP, Bontempo ED, et al. The nonpeptide AVE 0991 is an angiotensin-(1-7) receptor Mas agonist in the mouse kidney. Hypertension. 2004;44(4):490–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Santos RAS, Haibara AS, Campagnole-Santos MJ, Simões e Silva AC, de Paula RD, Pinheiro SV, et al. Characterization of a new selective antagonist for Angiotensin-(1-7), D-Pro7–Angiotensin-(1-7). Hypertension. 2003;41(3 Pt2):737–43.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Ferreira AJ, Pinheiro SVB, Castro CH, Silva GA, Simões e Silva AC, Almeida AP, et al. Renal function in transgenic rats expressing an angiotensin-(1-7)-producing fusion protein. Regul Pept. 2007;137(3):128–33.CrossRefGoogle Scholar
  35. 35.
    Castelo-Branco RC, Leite-Dellova DCA, Fernandes FB, Malnic G, Mello-Aires M. The effects of angiotensin-(1-7) on the exchanger NHE3 and on [ca+2] i in the proximal tubules of spontaneously hypertensive rats. Am J Physiol Renal Physiol. 2017;313:F450–60.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    O’Neil J, Healy V, Johns EJ. Intrarenal Mas and AT1 receptors play a role in mediating the excretory actions of renal interstitial angiotensin-(1-7) infusion in anaesthetized rats. Exp Physiol. 2017;102:1700–15.CrossRefGoogle Scholar
  37. 37.
    Zimmerman D, Burns KD. Angiotensin-(1-7) in kidney disease: a review of the controversies. Clin Sci (Lond). 2012;123:333–46.CrossRefGoogle Scholar
  38. 38.
    Navar LG, Nishiyama A. Why are angiotensin concentrations so high in the kidney? Curr Op Nephrol Hypert. 2004;13(1):107–15.CrossRefGoogle Scholar
  39. 39.
    Brewster UC, Perazella MA. The renin-angiotensin-aldosterone system and the kidney: effects on kidney disease. Am J Med. 2004;116(4):263–72.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Jaimes EA, Tian RX, Pearse D, Raij L. Up-regulation of glomerular COX-2 by angiotensin II: role of reactive oxygen species. Kidney Int. 2005;68(5):2143–53.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Ren Y, Garvin JL, Carretero OA. Vasodilator action of angiotensin-(1-7) on isolated rabbit afferent arterioles. Hypertension. 2002;39(3):799–802.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Sampaio WO, Nascimento AA, Santos RAS. Systemic and regional hemodynamic effects of angiotensin-(1-7) in rats. Am J Physiol Heart Circ Physiol. 2003;284(6):H1985–94.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Stegbauer J, Oberhauser V, Vonend O, Rump LC. Angiotensin-(1-7) modulates vascular resistance and sympathetic neurotransmission in kidneys of spontaneously hypertensive rats. Cardiovasc Res. 2004;61(2):352–9.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Yousif MHM, Benter IF, Diz DI, Chappell MC. Angiotensin-(1-7)-dependent vasorelaxation of the renal artery exhibits unique angiotensin and bradykinin receptor selectivity. Peptides. 2017;90:10–6.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Roks AJ, Van Geel PP, Pinto YM, Buikema H, Henning RH, de Zeeuw D, et al. Angiotensin-(1-7) is a modulator of the human renin-angiotensin system. Hypertension. 1999;34(2):296–301.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Mahon JM, Carr RD, Nicol AK, Henderson IW. Angiotensin-(1-7) is an antagonist at the type I angiotensin II receptor. J Hypertens. 1994;12:1377–81.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Chansel D, Vandermeersch S, Oko A, Curat C, Ardaillou R. Effects of angiotensin IV and angiotensin-(1-7) on basal and angiotensin II-stimulated cytosolic Ca2+ in mesangial cells. Eur J Pharmacol. 2001;414:165–75.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Oudot A, Vergely C, Ecarnot-Laubriet A, Rochette L. Pharmacological concentration of angiotensin-(1-7) activates NADPH oxidase after ischemia-reperfusion in rat heart through AT1 receptor stimulation. Regul Pept. 2005;127(1–3):101–10.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Zhu Z, Zhong J, Zhu S, Liu D, Van Der Giet M, Tepel M. Angiotensin-(1-7) inhibits angiotensin II-induced signal transduction. J Cardiovasc Pharmacol. 2002;40:693–700.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Clark MA, Tallant EA, Tommasi E, Bosch S, Diz DI. Angiotensin-(1-7) reduces renal angiotensin II receptors through a cyclooxygenase-dependent mechanism. J Cardiovasc Pharmacol. 2003;41:276–83.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Kostenis E, Milligan G, Christopoulos A, Sanchez-Ferrer CF, Heringer-Walther S, Sexton PM, et al. G-protein-coupled receptor Mas is a physiological antagonist of the angiotensin II type 1 receptor. Circulation. 2005;111(14):1806–13.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Wilson BA, Nautiyal M, Gwathmey TM, Rose JC, Chappell MC. Evidence for mitochondrial angiotensin-(1-7) system in the kidney. Am J Physiol Renal Physiol. 2016;310:F637–45.PubMedCrossRefGoogle Scholar
  53. 53.
    Pinheiro SV, Ferreira AJ, Kitten GT, da Silveira KD, da Silva DA, Santos SH, et al. Genetic deletion of the angiotensin-(1-7) receptor Mas leads to glomerular hyperfiltration and microalbuminuria. Kidney Int. 2009;75(11):1184–93.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Zhang J, Noble NA, Border WA, Huang Y. Infusion of angiotensin-(1-7) reduces glomerulosclerosis through counteracting angiotensin II in experimental glomerulonephritis. Am J Physiol Renal Physiol. 2010;298(3):F579–88.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Giani JF, Munoz MC, Pons RA, Cao G, Toblli JE, Turyn D, et al. Angiotensin-(1-7) reduces proteinuria and diminishes structural damage in renal tissue of stroke-prone spontaneously hypertensive rats. Am J Physiol Renal Physiol. 2011;300(1):F272–82.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Barroso LC, Silveira KD, Lima CX, Borges V, Bader M, Rachid M, et al. Renoprotective effects of AVE0991, a nonpeptide Mas receptor agonist, in experimental acute renal injury. Int J Hypertens. 2012:808726.Google Scholar
  57. 57.
    Liu Z, Huang XR, Chen HY, Penninger JM, Lan HY. Loss of angiotensin-converting enzyme 2 enhances TGF-beta/Smad-mediated renal fibrosis and NF-kappaB-driven renal inflammation in a mouse model of obstructive nephropathy. Lab Investig. 2012;92(5):650–61.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Xue H, Zhou L, Yuan P, Wang Z, Ni J, Yao T, et al. Counteraction between angiotensin II and angiotensin-(1-7) via activating angiotensin type I and Mas receptor on rat renal mesangial cells. Regul Pept. 2012;177(1–3):12–20.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Silveira KD, Barroso LC, Vieira AT, Cisalpino D, Lima CX, Bader M, et al. Beneficial effects of the activation of the angiotensin-(1-7) Mas receptor in a murine model of adriamycin-induced nephropathy. PLoS One. 2013;8:e66082.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Kim CS, Kim IJ, Bae EH, Ma SK, Lee J, Kim SW. Angiotenisn-(1-7) attenuates kidney injury due to obstructive nephropathy in rats. PLoS One. 2015;10:e0142664.  https://doi.org/10.1371/journal.pone.0142664.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Lu W, Kang J, Hu K, Tang S, Zhou X, Yu S, Xu L. Angiotensin-(1-7) relieved renal injury induced by chronic intermittent hypoxia in rats by reducing inflammation, oxidative stress and fibrosis. Braz J Med Biol Res. 2017;50:e5594.  https://doi.org/10.1590/1414-431X20165594.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Li Y, Wu J, He Q, Shou Z, Zhang P, Pen W, et al. Angiotensin (1-7) prevent heart dysfunction and left ventricular remodeling caused by renal dysfunction in 5/6 nephrectomy mice. Hypertens Res. 2009;32(5):369–74.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Benter IF, Yousif MH, Cojocel C, Al-Maghrebi M, Diz DI. Angiotensin-(1-7) prevents diabetes-induced cardiovascular dysfunction. Am J Physiol Heart Circ Physiol. 2007;292(1):H666–72.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Benter IF, Yousif MH, Dhaunsi GS, Kaur J, Chappell MC, Diz DI. Angiotensin-(1-7) prevents activation of NADPH oxidase and renal vascular dysfunction in diabetic hypertensive rats. Am J Nephrol. 2008;28(1):25–33.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Moon JY, Tanimoto M, Gohda T, Hagiwara S, Yamazaki T, Ohara I, et al. Attenuating effect of angiotensin-(1-7) on angiotensin II-mediated NAD(P)H oxidase activation in type 2 diabetic nephropathy of KK-A(y)/Ta mice. Am J Physiol Renal Physiol. 2011;300(6):F1271–82.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Giani JF, Burghi V, Veiras LC, Tomat A, Munoz MC, Cao G, et al. Angiotensin-(1-7) attenuates diabetic nephropathy in Zucker diabetic fatty rats. Am J Physiol Renal Physiol. 2012;302(12):F1606–15.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Mori J, Patel VB, Ramprasath T, Alrob OA, Desaulniers J, Scholey JW, et al. Angiotensin 1-7 mediates renoprotection against diabetic nephropathy by reducing oxidative stress, inflammation and lipotoxicity. Am J Physiol Renal Physiol. 2014;306(8):F812–21.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Ma L, Han C, Peng T, Li N, Zhang B, Zhen X, Yang X. Ang-(1e7) inhibited mitochondrial fission in high-glucose-induced podocytes by upregulation of miR 30a and downregulation of Drp1 and p53. J Chin Med Association. 2016;79:597–604.CrossRefGoogle Scholar
  69. 69.
    Zhao S, Ghosh A, Lo C-S, Chenier I, Scoley JW, Filep JG, et al. Nrf2 deficiency upregulates intrarenal angiotensin-converting Enzyme-2 and angiotensin 1-7 receptor expression and attenuates hypertension and nephropathy in diabetic mice. Endocrinology. 2018;159:836–52.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Oudit GY, Herzenberg AM, Kassiri Z, Wong D, Reich H, Khokha R, et al. Loss of angiotensin-converting enzyme-2 leads to the late development of angiotensin II-dependent glomerulosclerosis. Am J Pathol. 2006;168(6):1808–20.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Ye M, Wysocki J, William J, Soler MJ, Cokic I, Batlle D. Glomerular localization and expression of angiotensin-converting enzyme 2 and angiotensin-converting enzyme: implications for albuminuria in diabetes. J Am Soc Nephrol. 2006;17(11):3067–75.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Soler MJ, Wysocki J, Ye M, Lloveras J, Kanwar Y, Batlle D. ACE2 inhibition worsens glomerular injury in association with increased ACE expression in streptozotocin-induced diabetic mice. Kidney Int. 2007;72(5):614–23.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Wong DW, Oudit GY, Reich H, Kassiri Z, Zhou J, Liu QC, et al. Loss of angiotensin-converting enzyme-2 (Ace2) accelerates diabetic kidney injury. Am J Pathol. 2007;171(2):438–51.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Wysocki J, Ye M, Soler MJ, Gurley SB, Xiao HD, Bernstein KE, et al. ACE and ACE2 activity in diabetic mice. Diabetes. 2007;55(7):2132–9.CrossRefGoogle Scholar
  75. 75.
    Dilauro M, Zimpelmann J, Robertson SJ, Genest D, Burns KD. Effect of ACE2 and angiotensin-(1-7) in a mouse model of early chronic kidney disease. Am J Physiol Renal Physiol. 2010;298(6):F1523–32.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Silveira KD, Pompermayer Bosco KS, Diniz LR, Carmona AK, Cassali GD, Bruna-Romero O, et al. ACE2-angiotensin-(1-7)-Mas axis in renal ischaemia/reperfusion injury in rats. Clin Sci (Lond). 2010;119(9):385–94.CrossRefGoogle Scholar
  77. 77.
    Lo CS, Liu F, Shi Y, Maachi H, Chenier I, Godin N, et al. Dual RAS blockade normalizes angiotensin-converting enzyme-2 expression and prevents hypertension and tubular apoptosis in Akita angiotensinogen-transgenic mice. Am J Physiol Renal Physiol. 2012;302(7):F840–52.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Wysocki J, Ortiz-Melo DI, Mattocks NK, Xu K, Prescott J, Evora K, et al. ACE2 deficiency increases NADPH-mediated oxidative stress in the kidney. Physiol Rep. 2014;2(3):e00264.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Chen L-J, Xu Y-L, Song B, Yu H-M, Oudit GY, Xu R, et al. Angiotensin-converting enzyme 2 ameliorates renal fibrosis by blocking the activation of mTOR/ERK signaling in apolipoprotein E-deficient mice. Peptides. 2016;79:49–57.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Ng HY, Yisireyili M, Saito S, Lee CT, Adelibieke Y, Nishijima F, Niwa T. Indoxyl sulfate downregulates expression of Mas receptor via OAT3/AhR/Stat3 pathway in proximal tubular cells. PLoS One. 2014;9(3):e91517.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Patel SN, Ali Q, Samuel P, Steckelings UM, Hussain T. Angiotensin II type 2 receptor and receptor Mas are Colocalized and functionally interdependent in obese Zucker rat kidney. Hypertension. 2017;70:831–8.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Esteban V, Heringer-Walther S, Sterner-Kock A, de Bruin R, van den Engel S, Wang Y, et al. Angiotensin-(1-7) and the g protein-coupled receptor MAS are key players in renal inflammation. PLoS One. 2009;4(4):e5406.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Velkoska E, Dean RG, Griggs K, Burchill L, Burrell LM. Angiotensin-(1-7) infusion is associated with increased blood pressure and adverse cardiac remodelling in rats with subtotal nephrectomy. Clin Sci (Lond). 2011;120(8):335–45.CrossRefGoogle Scholar
  84. 84.
    Burrell LM, Gayed D, Griggs K, Patel SK, Velkoska E. Adverse cardiac effects of exogenous angiotensin 1-7 in rats with subtotal nephrectomy are prevented by ACE inhibition. PLoS One. 2017;12:e0171975.  https://doi.org/10.1371/journal.pone.0171975.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Su Z, Zimpelmann J, Burns KD. Angiotensin-(1-7) inhibits angiotensin II-stimulated phosphorylation of MAP kinases in proximal tubular cells. Kidney Int. 2006;69(12):2212–8.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Zimpelmann J, Burns KD. Angiotensin-(1-7) activates growth-stimulatory pathways in human mesangial cells. Am J Physiol Renal Physiol. 2009;296(2):F337–46.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Liu GC, Oudit GY, Fang F, Zhou J, Scholey JW. Angiotensin-(1-7)-induced activation of ERK1/2 is cAMP/protein kinase A-dependent in glomerular mesangial cells. Am J Physiol Renal Physiol. 2012;302(6):F784–90.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Oudit GY, Liu GC, Zhong J, Basu R, Chow FL, Zhou J, et al. Human recombinant ACE2 reduces the progression of diabetic nephropathy. Diabetes. 2010;59(2):529–38.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Luque M, Martin P, Martell N, Fernandez C, Brosnihan KB, Ferrario CM. Effects of captopril related to increased levels of prostacyclin and angiotensin-(1-7) in essential hypertension. J Hypertens. 1996;14(6):799–805.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Ferrario CM, Martell N, Yunis C, Flack JM, Chappell MC, Brosnihan KB, et al. Characterization of angiotensin-(1-7) in the urine of normal and essential hypertensive subjects. Am J Hypertens. 1998;11(2):137–46.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Azizi M, Menard J. Combined blockade of the renin-angiotensin system with angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor antagonists. Circulation. 2004;109(21):2492–9.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Simões e Silva AC, Diniz JS, Regueira Filho A, Santos RA. The renin angiotensin system in childhood hypertension: selective increase of angiotensin-(1-7) in essential hypertension. J Pediatr. 2004;145(1):93–8.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Simões e Silva AC, Diniz JS, Pereira RM, Pinheiro SV, Santos RA. Circulating renin Angiotensin system in childhood chronic renal failure: marked increase of Angiotensin-(1-7) in end-stage renal disease. Pediatr Res. 2006;60(6):734–9.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Nogueira AI, Santos RA, Simões e Silva AC, Cabral AC, Vieira RL, Drumond TC, et al. The pregnancy-induced increase of plasma angiotensin-(1-7) is blunted in gestational diabetes. Regul Pept. 2007;141:55–60.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Vilas-Boas WW, Ribeiro-Oliveira A Jr, Pereira RM, Ribeiro Rda C, Almeida J, Nadu AP, et al. Relationship between angiotensin-(1-7) and angiotensin II correlates with hemodynamic changes in human liver cirrhosis. World J Gastroenterol. 2009;15(20):2512–9.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Anguiano L, Riera M, Pascual J, Valdivielso JM, Barrios C, Betriu A, et al. Circulating angiotensin-converting enzyme 2 activity in patients with chronic kidney disease without previous history of cardiovascular disease. Nephrol Dial Transplant. 2015;30:1176–85.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Antlanger M, Domenig O, Kovarik JJ, Kaltenecker CC, Kopecky C, Poglitsch M, Säemann MD. Molecular remodeling of the renin-angiotensin system after kidney transplantation. J Renin-Angiotensin-Aldosterone System. 2017;18:1–9.  https://doi.org/10.1177/1470320317705232.CrossRefGoogle Scholar
  98. 98.
    Rocha NP, Bastos FM, Vieira EL, Prestes TR, Silveira KD, Teixeira MM, Simões e Silva AC. The protective arm of the renin-angiotensin system may counteract the intense inflammatory process in fetuses with posterior urethral valves. J Pediatr (RJ). 2018; in press.Google Scholar
  99. 99.
    Vieira EL, Rocha NP, Bastos FM, da Silveira KD, Pereira AK, Oliveira EA, et al. Posterior urethral valve in fetuses: evidence for the role of inflammatory molecules. Pediatr Nephrol. 2017;32:1391–400.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Mizuiri S, Hemmi H, Arita M, Aoki T, Ohashi Y, Miyagi M, et al. Increased ACE and decreased ACE2 expression in kidneys from patients with IgA nephropathy. Nephron Clin Pract. 2011;117(1):c57–66.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Soler MJ, Riera M, Crespo M, Mir M, Márquez E, Pascula MJ, et al. Circulating angiotensin-converting enzyme 2 activity in kidney transplantation: a longitudinal pilot study. Nephron Clin Pract. 2012;121(3–4):144–50.Google Scholar
  102. 102.
    Kocks MJ, Lely AT, Boomsma F, de Jong PE, Navis G. Sodium status and angiotensin-converting enzyme inhibition: effects on plasma angiotensin-(1-7) in healthy man. J Hypertens. 2005;23(3):597–602.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Iwanami J, Mogi M, Tsukuda K, Wang XL, Nakaoka H, Ohshima K, et al. Role of angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis in the hypotensive effect of azilsartan. Hypertens Res. 2014;37(7):616–20.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ana Cristina Simões e Silva
    • 1
    • 2
  • Robson Augusto Souza Santos
    • 3
    • 4
  1. 1.Department of Pediatrics, Interdisciplinary Laboratory of Medical Investigation, Faculty of MedicineUFMGBelo HorizonteBrazil
  2. 2.Interdisciplinary Laboratory of Medical Investigation, Faculty of MedicineFederal University of Minas Gerais (UFMG)Belo HorizonteBrazil
  3. 3.National Institute of Science and Technology in Nano Biopharmaceutics – Department of Physiology and BiophysicsBiological Sciences Institute, Federal University of Minas GeraisBelo HorizonteBrazil
  4. 4.Department of Physiology and PharmacologyBiological Sciences Institute, Federal University of Minas GeraisBelo HorizonteBrazil

Personalised recommendations