Advertisement

Heart – Coronary Vessels and Cardiomyocytes

  • Anderson José FerreiraEmail author
  • Carlos Henrique Castro
  • Robson Augusto Souza Santos
Chapter

Abstract

The renin-angiotensin system (RAS) is crucial for cardiovascular homeostasis. Its relevance is highlighted by the undiscussed role of the anti-hypertensive drugs that modulate this system used in the medical practice. Nowadays, the Angiotensin(Ang)-(1-7) peptide is recognized as a biologically active component of this system. This heptapeptide is formed mainly through the action of the angiotensin-converting enzyme 2 (ACE2) using Ang II as substrate. This reveals an important metabolic pathways since, at the same time, ACE2 degrades the vasoconstrictor peptide Ang II and generates Ang-(1-7), a vasodilator product. Additionally, it is well-established that the G protein-coupled receptor Mas is a functional ligand site for Ang-(1-7). Also, it is now clear that the RAS is composed by two different axes: ACE/Ang II/AT1 receptor and ACE2/Ang-(1-7)/Mas. Functionally, the ACE2/Ang-(1-7)/Mas arm is an endogenous counter-regulatory pathway within the RAS whose actions are opposite to the vasoconstrictor/proliferative axis of the RAS formed by ACE/Ang II/AT1 receptor. In this chapter, we will briefly discuss the main findings concerning the biological role of Ang-(1-7) and its receptor Mas focusing on coronary vessels and cardiomyocytes.

Keywords

Angiotensin II Mas agonists Heart Cardiovascular function Antihypertensive drugs 

References

  1. 1.
    Hall JE, Guyton AC, Mizelle HL. Role of the renin-angiotensin system in control of sodium excretion and arterial pressure. Acta Physiol Scand Suppl [Internet]. 1990/01/01. 1990;591:48–62. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2220409.
  2. 2.
    Guyton AC. Kidneys and fluids in pressure regulation. Small volume but large pressure changes. Hypertension [Internet]. 1992/01/01. 1992;19(1 Suppl):I2–8. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1730451.CrossRefGoogle Scholar
  3. 3.
    Santos RASS, Campagnole-Santos MJ, Andrade SP. Angiotensin-(1-7): an update. Regul Pept [Internet]. 2000;91(1–3):45–62. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10967201.CrossRefGoogle Scholar
  4. 4.
    Marshall RP. The pulmonary renin-angiotensin system. Curr Pharm Des [Internet]. 2003/02/07. 2003;9(9):715–22. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12570789.CrossRefGoogle Scholar
  5. 5.
    le Tran Y, Forster C. Angiotensin-(1-7) and the rat aorta: modulation by the endothelium. J Cardiovasc Pharmacol [Internet]. 1997;30(5):676–82. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9388051.CrossRefGoogle Scholar
  6. 6.
    Santos RAS, Simoes e Silva AC, Maric C, DMR S, Machado RP, de Buhr I, et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci U S A [Internet]. 2003;100(14):8258–63. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12829792.CrossRefGoogle Scholar
  7. 7.
    Santos RAS, Ferreira AJ, Nadu AP, Braga ANG, de Almeida AP, Campagnole-Santos MJ, et al. Expression of an angiotensin-(1-7)-producing fusion protein produces cardioprotective effects in rats. Physiol Genomics. 2004;17(3):292–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Grobe JL, Mecca AP, Lingis M, Shenoy V, Bolton TA, Machado JM, et al. Prevention of angiotensin II-induced cardiac remodeling by angiotensin-(1-7). Am J Physiol Heart Circ Physiol [Internet]. 2007;292(2):H736–42. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17098828.CrossRefGoogle Scholar
  9. 9.
    Mercure C, Yogi A, Callera GE, Aranha AB, Bader M, Ferreira AJ, et al. Angiotensin(1-7) Blunts Hypertensive Cardiac Remodeling by a Direct Effect on the Heart. Circ Res [Internet]. 2008/10/11. 2008 Nov 21 [cited 2013 Aug 13];103(11). Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18845809.
  10. 10.
    Nadu AP, Ferreira AJ, Reudelhuber TL, Bader M, Santos RA. Reduced isoproterenol-induced renin-angiotensin changes and extracellular matrix deposition in hearts of TGR(A1-7)3292 rats. J Am Soc Hypertens [Internet]. 2008/09/01. 2008;2(5):341–8. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20409916.CrossRefGoogle Scholar
  11. 11.
    Ferreira AJ, Castro CH, Guatimosim S, Almeida PWM, Gomes ERM, Dias-Peixoto MF, et al. Attenuation of isoproterenol-induced cardiac fibrosis in transgenic rats harboring an angiotensin-(1-7)-producing fusion protein in the heart. Ther Adv Cardiovasc Dis [Internet]. 2010 Apr [cited 2013 Aug 13];4(2):83–96. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20051448.
  12. 12.
    Santiago NM, Guimaraes PS, Sirvente RA, Oliveira LA, Irigoyen MC, Santos RA, et al. Lifetime overproduction of circulating Angiotensin-(1-7) attenuates deoxycorticosterone acetate-salt hypertension-induced cardiac dysfunction and remodeling. Hypertension [Internet]. 2010/03/10. 2010;55(4):889–96. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20212262.CrossRefGoogle Scholar
  13. 13.
    Savergnini SQ, Beiman M, Lautner RQ, de Paula-Carvalho V, Allahdadi K, Pessoa DC, et al. Vascular relaxation, antihypertensive effect, and cardioprotection of a novel peptide agonist of the MAS receptor. Hypertension [Internet]. 2010;56(1):112–20. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20479330PubMedCrossRefGoogle Scholar
  14. 14.
    Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem [Internet]. 2002;277(17):14838–43. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11815627CrossRefGoogle Scholar
  15. 15.
    Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem [Internet]. 2000;275(43):33238–43. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10924499.PubMedCrossRefGoogle Scholar
  16. 16.
    Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res [Internet]. 2000;87(5):E1–9. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10969042.Google Scholar
  17. 17.
    Ferrario CM. The renin-angiotensin system: importance in physiology and pathology. J Cardiovasc Pharmacol [Internet]. 1990/01/01. 1990;15(Suppl 3):S1–5. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1691411.Google Scholar
  18. 18.
    Nicholls MG, Richards AM, Agarwal M. The importance of the renin-angiotensin system in cardiovascular disease. J Hum Hypertens [Internet]. 1998/07/09. 1998;12(5):295–9. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9655650.CrossRefGoogle Scholar
  19. 19.
    Marshall RP, McAnulty RJ, Laurent GJ. Angiotensin II is mitogenic for human lung fibroblasts via activation of the type 1 receptor. Am J Respir Crit Care Med. 2000;161:1999–2004.PubMedCrossRefGoogle Scholar
  20. 20.
    Fleming I, Kohlstedt K, Busse R. The tissue renin-angiotensin system and intracellular signalling. Curr Opin Nephrol Hypertens [Internet]. 2005/12/13. 2006;15(1):8–13. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16340660.
  21. 21.
    Cargill RI, Lipworth BJ. Lisinopril attenuates acute hypoxic pulmonary vasoconstriction in humans. Chest [Internet]. 1996;109(2):424–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8620717.CrossRefGoogle Scholar
  22. 22.
    Orfanos SE, Armaganidis A, Glynos C, Psevdi E, Kaltsas P, Sarafidou P, et al. Pulmonary capillary endothelium-bound angiotensin-converting enzyme activity in acute lung injury. Circulation [Internet]. 2000;102(16):2011–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11034953.CrossRefGoogle Scholar
  23. 23.
    Schiffrin EL. Vascular and cardiac benefits of angiotensin receptor blockers. Am J Med [Internet]. 2002/10/29. 2002;113(5):409–18. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12401536.
  24. 24.
    Ma TK, Kam KK, Yan BP, Lam YY. Renin-angiotensin-aldosterone system blockade for cardiovascular diseases: current status. Br J Pharmacol [Internet]. 2010/07/02. 2010;160(6):1273–92. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20590619.
  25. 25.
    Vijayaraghavan K, Deedwania P. Renin-angiotensin-aldosterone blockade for cardiovascular disease prevention. Cardiol Clin [Internet]. 2011/01/25. 2011;29(1):137–56. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21257105.
  26. 26.
    Chappell MC, Pirro NT, Sykes A, Ferrario CM. Metabolism of angiotensin-(1-7) by angiotensin-converting enzyme. Hypertension [Internet]. 1998;31(1 Pt 2):362–7. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9453329.
  27. 27.
    Iyer SN, Ferrario CM, Chappell MC. Angiotensin-(1-7) contributes to the antihypertensive effects of blockade of the renin-angiotensin system. Hypertension [Internet]. 1998;31(1 Pt 2):356–61. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9453328.PubMedCrossRefGoogle Scholar
  28. 28.
    Davie AP, McMurray JJ. Effect of angiotensin-(1-7) and bradykinin in patients with heart failure treated with an ACE inhibitor. Hypertension [Internet]. 1999;34(3):457–60. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10489393.PubMedCrossRefGoogle Scholar
  29. 29.
    Britto RR, Santos RA, Fagundes-Moura CR, Khosla MC, Campagnole-Santos MJ. Role of angiotensin-(1-7) in the modulation of the baroreflex in renovascular hypertensive rats. Hypertension [Internet]. 1997/10/10. 1997;30(3 Pt 2):549–56. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9322980.
  30. 30.
    Santos RAS, Brosnihan KB, Chappell MC, Pesquero J, Chernicky CLCL, Greene LLJ, et al. Converting enzyme activity and angiotensin metabolism in the dog brainstem. Hypertension [Internet]. 1988;11(2 Pt 2):I153–7. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2831145.PubMedGoogle Scholar
  31. 31.
    Schiavone MT, Santos RA, Brosnihan KB, Khosla MC, Ferrario CM. Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin-(1-7) heptapeptide. Proc Natl Acad Sci U S A [Internet]. 1988;85(11):4095–8. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=3375255.CrossRefGoogle Scholar
  32. 32.
    Averill DB, Ishiyama Y, Chappell MC, Ferrario CM. Cardiac angiotensin-(1-7) in ischemic cardiomyopathy. Circulation [Internet]. 2003;108(17):2141–6. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14517166.CrossRefGoogle Scholar
  33. 33.
    Santos RAS, Castro CH, Gava E, Pinheiro SVB, Almeida AP, Paula RD De, et al. Impairment of in vitro and in vivo heart function in angiotensin-(1-7) receptor MAS knockout mice. Hypertension [Internet]. 2006 May [cited 2013 Aug 8];47(5):996–1002. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16567589.
  34. 34.
    Ferreira AJ, Moraes PL, Foureaux G, Andrade AB, Santos RA, Almeida AP. The Angiotensin-(1-7)/mas receptor axis is expressed in sinoatrial node cells of rats. J Histochem Cytochem [Internet]. 2011/05/25. 2011;59(8):761–8. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21606202.
  35. 35.
    Carmos-Silva C, de Almeida JFQ, Macedo LM, Melo MBB, Pedrino GR, Santos FFCA, et al. Mas receptor contributes to pregnancy-induced cardiac remodeling. Clin Sci (Lond) [Internet]. 2016 Sep 13 [cited 2017 Feb 17]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27624141.
  36. 36.
    Moraes PL, Kangussu LM, Castro CH, Santos RA, Ferreira AJ, Almeida AP. Vasodilator effect of Angiotensin- (1-7) on vascular coronary bed of rats: Role of Mas, ACE and ACE2. Protein Pept Lett. 2017;24:869.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Trask AJ, Averill DB, Ganten D, Chappell MC, Ferrario CM. Primary role of angiotensin-converting enzyme-2 in cardiac production of angiotensin-(1-7) in transgenic Ren-2 hypertensive rats. Am J Physiol Hear Circ Physiol [Internet]. 2007/02/20. 2007;292(6):H3019-24. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17308000.
  38. 38.
    Neves LA, Almeida AP, Khosla MC, Santos RA. Metabolism of angiotensin I in isolated rat hearts. Effect of angiotensin converting enzyme inhibitors. Biochem Pharmacol [Internet]. 1995 Oct 26 [cited 2018 Mar 24];50(9):1451–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7503796.
  39. 39.
    Guy JL, Lambert DW, Turner AJ, Porter KE. Functional angiotensin-converting enzyme 2 is expressed in human cardiac myofibroblasts. Exp Physiol [Internet]. 2008/01/29. 2008;93(5):579–88. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18223028.
  40. 40.
    Gallagher PE, Ferrario CM, Tallant EA. Regulation of ACE2 in cardiac myocytes and fibroblasts. Am J Physiol Hear Circ Physiol [Internet]. 2008/10/14. 2008;295(6):H2373-9. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18849338.
  41. 41.
    Ferreira AJ, Shenoy V, Qi Y, Fraga-Silva RA, Santos RAS, Katovich MJ, et al. Angiotensin-converting enzyme 2 activation protects against hypertension-induced cardiac fibrosis involving extracellular signal-regulated kinases. Exp Physiol [Internet]. 2011 Mar [cited 2013 Aug 13];96(3):287–94. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21148624.
  42. 42.
    Oudit GY, Crackower MA, Backx PH, Penninger JM. The role of ACE2 in cardiovascular physiology. Trends Cardiovasc Med [Internet]. 2003;13(3):93–101. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12691672.CrossRefGoogle Scholar
  43. 43.
    Souza APS, Sobrinho DBS, Almeida JFQ, Alves GMM, Macedo LM, Porto JE, et al. Angiotensin II type 1 receptor blockade restores angiotensin-(1-7)-induced coronary vasodilation in hypertrophic rat hearts. Clin Sci (Lond) [Internet]. 2013 Nov 1 [cited 2013 Aug 13];125(9):449–59. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23718715.PubMedCrossRefGoogle Scholar
  44. 44.
    Ferrario CM, Jessup J, Chappell MC, Averill DB, Brosnihan KB, Tallant EA, et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation [Internet]. 2005;111(20):2605–10. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15897343.
  45. 45.
    Keidar S, Gamliel-Lazarovich A, Kaplan M, Pavlotzky E, Hamoud S, Hayek T, et al. Mineralocorticoid receptor blocker increases angiotensin-converting enzyme 2 activity in congestive heart failure patients. Circ Res [Internet]. 2005/09/24. 2005;97(9):946–53. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16179584.
  46. 46.
    Kaiqiang J, Minakawa M, Fukui K, Suzuki Y, Fukuda I. Olmesartan improves left ventricular function in pressure-overload hypertrophied rat heart by blocking angiotensin II receptor with synergic effects of upregulation of angiotensin converting enzyme 2. Ther Adv Cardiovasc Dis [Internet]. 2009;3(2):103–11. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19171689.
  47. 47.
    Castro-Chaves P, Pintalhao M, Fontes-Carvalho R, Cerqueira R, Leite-Moreira AF. Acute modulation of myocardial function by angiotensin 1-7. Peptides [Internet]. 2009/06/16. 2009;30(9):1714–9. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19524627.
  48. 48.
    Dias-Peixoto MF, Santos RAS, Gomes ERM, Alves MNM, Almeida PWM, Greco L, et al. Molecular mechanisms involved in the angiotensin-(1-7)/Mas signaling pathway in cardiomyocytes. Hypertension [Internet]. 2008 Sep [cited 2013 Aug 13];52(3):542–8. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18695148.
  49. 49.
    Zhou P, Cheng CP, Li T, Ferrario CM, Cheng H-J. Modulation of cardiac L-type Ca 2+ current by angiotensin-(1-7): Normal versus heart failure HHS Public Access. Ther Adv Cardiovasc Dis. 2015;9(6):342–53.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Costa MA, Verrilli MAL, Gomez KA, Nakagawa P, Peña C, Arranz C, et al. Angiotensin- (1-7) upregulates cardiac nitric oxide synthase in spontaneously hypertensive rats. 2010;2:1205–11.Google Scholar
  51. 51.
    Gomes ERM, Lara AA, Almeida PWM, Guimaraes D, Resende RR, Campagnole-Santos MJ, et al. Angiotensin-(1-7) prevents cardiomyocyte pathological remodeling through a nitric oxide/guanosine 3′,5′-cyclic monophosphate-dependent pathway. Hypertension [Internet]. 2009/12/10. 2010 Jan [cited 2013 Aug 13];55(1):153–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19996065.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Tallant EA, Clark MA. Molecular mechanisms of inhibition of vascular growth by angiotensin-(1-7). Hypertension [Internet]. 2003;42(4):574–9. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12953014.PubMedCrossRefGoogle Scholar
  53. 53.
    Giani JF, Gironacci MM, Munoz MC, Turyn D, Dominici FP. Angiotensin-(1-7) has a dual role on growth-promoting signalling pathways in rat heart in vivo by stimulating STAT3 and STAT5a/b phosphorylation and inhibiting angiotensin II-stimulated ERK1/2 and Rho kinase activity. Exp Physiol [Internet]. 2008/05/02. 2008;93(5):570–8. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18448663.
  54. 54.
    Gava E, de Castro CH, Ferreira AJ, Colleta H, Melo MB, Alenina N, et al. Angiotensin-(1-7) receptor Mas is an essential modulator of extracellular matrix protein expression in the heart. Regul Pept Elsevier BV. 2012;175(1–3):30–42.CrossRefGoogle Scholar
  55. 55.
    Filho AG, Ferreira AJ, Santos SHS, Neves SRS, Silva Camargos ER, Becker LK, et al. Selective increase of angiotensin(1-7) and its receptor in hearts of spontaneously hypertensive rats subjected to physical training. Exp Physiol. 2008;93:589–98.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Brosnihan KB, Li P, Ferrario CM. Angiotensin-(1-7) dilates canine coronary arteries through kinins and nitric oxide. Hypertension [Internet]. 1996;27(3 Pt 2):523–8. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8613197.CrossRefGoogle Scholar
  57. 57.
    Porsti I, Bara AT, Busse R, Hecker M, Porsti I, Bara AT, et al. Release of nitric oxide by angiotensin-(1-7) from porcine coronary endothelium: implications for a novel angiotensin receptor. Br J Pharmacol [Internet]. 1994;111(3):652–4. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8019744.CrossRefGoogle Scholar
  58. 58.
    Feterik K, Smith L, Katusic ZS. Angiotensin-(1-7) causes endothelium-dependent relaxation in canine middle cerebral artery. Brain Res [Internet]. 2000;873(1):75–82. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10915812.CrossRefGoogle Scholar
  59. 59.
    Meng W, Busija DW. Comparative effects of angiotensin-(1-7) and angiotensin II on piglet pial arterioles. Stroke [Internet]. 1993/12/01. 1993;24(12):2041–4; discussion 2045. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8248986.
  60. 60.
    Osei SY, Ahima RS, Minkes RK, Weaver JP, Khosla MC, Kadowitz PJ. Differential responses to angiotensin-(1-7) in the feline mesenteric and hindquarters vascular beds. Eur J Pharmacol [Internet]. 1993;234(1):35–42. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7682513.CrossRefGoogle Scholar
  61. 61.
    Ren Y, Garvin JL, Carretero OA. Vasodilator action of angiotensin-(1-7) on isolated rabbit afferent arterioles. Hypertension [Internet]. 2002;39(3):799–802. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11897767.PubMedCrossRefGoogle Scholar
  62. 62.
    Oliveira MA, Fortes ZB, Santos RA, Kosla MC, De Carvalho MH. Synergistic effect of angiotensin-(1-7) on bradykinin arteriolar dilation in vivo. Peptides [Internet] 1999;20(10):1195–1201. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10573291.
  63. 63.
    Fernandes L, Fortes ZB, Nigro D, Tostes RC, Santos RA, Catelli De Carvalho MH. Potentiation of bradykinin by angiotensin-(1-7) on arterioles of spontaneously hypertensive rats studied in vivo. Hypertension [Internet]. 2001;37(2 Part 2):703–9. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11230360.PubMedCrossRefGoogle Scholar
  64. 64.
    Santos RA, Brosnihan KB, Jacobsen DW, DiCorleto PE, Ferrario CM. Production of angiotensin-(1-7) by human vascular endothelium. Hypertension [Internet]. 1992;19(2 Suppl):II56–61. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1310484.PubMedGoogle Scholar
  65. 65.
    Burrell LM, Johnston CI, Tikellis C, Cooper ME. ACE2, a new regulator of the renin-angiotensin system. Trends Endocrinol Metab [Internet]. 2004/04/28. 2004;15(4):166–9. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15109615.
  66. 66.
    Sampaio WO, Souza dos Santos RA, Faria-Silva R, da Mata Machado LT, Schiffrin EL, Touyz RM. Angiotensin-(1-7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension [Internet]. 2007 Jan [cited 2013 Aug 13];49(1):185–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17116756.
  67. 67.
    Brosnihan KB, Li P, Tallant EA, Ferrario CM. Angiotensin-(1-7): a novel vasodilator of the coronary circulation. Biol Res [Internet]. 1998;31(3):227–34. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9830510.Google Scholar
  68. 68.
    Gorelik G, Carbini LA, Scicli AG. Angiotensin 1-7 induces bradykinin-mediated relaxation in porcine coronary artery. J Pharmacol Exp Ther [Internet]. 1998;286(1):403–10. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9655885.Google Scholar
  69. 69.
    Almeida AP, Frabregas BC, Madureira MM, Santos RJA, Campagnole-Santos MJ, Santos RJA. Angiotensin-(1-7) potentiates the coronary vasodilatatory effect of bradykinin in the isolated rat heart. Braz J Med Biol Res [Internet]. 2000;33(6):709–13. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10829099.CrossRefGoogle Scholar
  70. 70.
    van Esch JH, Oosterveer CR, Batenburg WW, van Veghel R, Jan Danser AH. Effects of angiotensin II and its metabolites in the rat coronary vascular bed: is angiotensin III the preferred ligand of the angiotensin AT2 receptor? Eur J Pharmacol [Internet]. 2008/05/31. 2008;588(2–3):286–93. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18511032.
  71. 71.
    Nunes ADC, Souza APS, Macedo LM, Alves PH, Pedrino GR, Colugnati DB, et al. Influence of antihypertensive drugs on aortic and coronary effects of Ang-(1-7) in pressure-overloaded rats. Brazilian J Med Biol Res. 2017;50(4):1–8.CrossRefGoogle Scholar
  72. 72.
    Castro CH, Santos RA, Ferreira AJ, Bader M, Alenina N, Almeida AP. Evidence for a functional interaction of the angiotensin-(1-7) receptor Mas with AT1 and AT2 receptors in the mouse heart. Hypertension [Internet]. 2005;46(4):937–42. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16157793.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anderson José Ferreira
    • 1
    Email author
  • Carlos Henrique Castro
    • 2
  • Robson Augusto Souza Santos
    • 3
    • 4
  1. 1.Department of MorphologyBiological Sciences Institute, Federal University of Minas GeraisBelo HorizonteBrazil
  2. 2.Department of Physiological SciencesBiological Sciences Institute, Federal University of GoiásGoiâniaBrazil
  3. 3.National Institute of Science and Technology in Nano Biopharmaceutics – Department of Physiology and BiophysicsBiological Sciences Institute, Federal University of Minas GeraisBelo HorizonteBrazil
  4. 4.Department of Physiology and PharmacologyBiological Sciences Institute, Federal University of Minas GeraisBelo HorizonteBrazil

Personalised recommendations