Advertisement

Tools for Studying Angiotensin-(1-7)

  • Robson Augusto Souza SantosEmail author
Chapter

Abstract

There are many genetic and pharmacological tools available for the study of the pharmacological and pathophysiological implications of angiotensin-(-1-7). In this chapter, we address the pharmacological tools for interfering with the formation and actions of this heptapeptide.

Keywords

AVE 0991 Angiotensin-(1-7) MAS1 ACE2 Cyclodextrins 

References

  1. 1.
    Abdallah WF, Louie SG, Zhang Y, Rodgers KE, Sivok E, S diZerega G, Humayun MS. NorLeu3A(1-7) accelerates clear corneal full thickness wound healing. Invest Ophthalmol Vis Sci. 2016;57:2187–94.  https://doi.org/10.1167/iovs.15-18515.CrossRefPubMedGoogle Scholar
  2. 2.
    Aboye T, Meeks CJ, Majumder S, Shekhtman A, Rodgers K, Camarero JA. Design of a MCoTI-based cyclotide with angiotensin (1-7)-like activity. Molecules. 2016;21:152.  https://doi.org/10.3390/molecules21020152.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Acuna MJ, Pessina P, Olguin H, Cabrera D, Vio CP, Bader M, Munoz-Canoves P, Santos RA, Cabello-Verrugio C, Brandan E. Restoration of muscle strength in dystrophic muscle by angiotensin-1-7 through inhibition of TGF-beta signalling. Hum Mol Genet. 2014;23:1237–49.  https://doi.org/10.1093/hmg/ddt514.CrossRefPubMedGoogle Scholar
  4. 4.
    Becker LK, Totou N, Moura S, Kangussu L, Millán RDS, Campagnole-Santos MJ, Coelho D, Motta-Santos D, Santos RAS. Eccentric overload muscle damage is attenuated by a novel angiotensin- (1-7) treatment. Int J Sports Med. 2018;39:743–8.  https://doi.org/10.1055/a-0633-8892.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bertagnolli M, Casali KR, De Sousa FB, Rigatto K, Becker L, Santos SH, Dias LD, Pinto G, Dartora DR, Schaan BD, Milan RD, Irigoyen MC, Santos RA. An orally active angiotensin-(1-7) inclusion compound and exercise training produce similar cardiovascular effects in spontaneously hypertensive rats. Peptides. 2014;51:65–73.  https://doi.org/10.1016/j.peptides.2013.11.006.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Coutinho DC, Monnerat-Cahli G, Ferreira AJ, Medei E. Activation of angiotensin-converting enzyme 2 improves cardiac electrical changes in ventricular repolarization in streptozotocin-induced hyperglycaemic rats. Europace. 2014;16:1689–96.  https://doi.org/10.1093/europace/euu070.CrossRefPubMedGoogle Scholar
  7. 7.
    de Macedo SM, Guimarares TA, Andrade JM, Guimaraes AL, Batista de Paula AM, Ferreira AJ, Sousa Santos SH. Angiotensin converting enzyme 2 activator (DIZE) modulates metabolic profiles in mice, decreasing lipogenesis. Protein Pept Lett. 2015;22:332–40.CrossRefGoogle Scholar
  8. 8.
    De Maria ML, Araújo LD, Fraga-Silva RA, Pereira LA, Ribeiro HJ, Menezes GB, Shenoy V, Raizada MK, Ferreira AJ. Anti-hypertensive effects of diminazene aceturate: an angiotensin- converting enzyme 2 activator in rats. Protein Pept Lett. 2016;23:9–16.CrossRefGoogle Scholar
  9. 9.
    Ebermann L, Spillmann F, Sidiropoulos M, Escher F, Heringer-Walther S, Schultheiss HP, Tschöpe C, Walther T. The angiotensin-(1-7) receptor agonist AVE0991 is cardioprotective in diabetic rats. Eur J Pharmacol. 2008;590:276–80.  https://doi.org/10.1016/j.ejphar.2008.05.024.CrossRefPubMedGoogle Scholar
  10. 10.
    Ferreira AJ, Jacoby BA, Araújo CA, Macedo FA, Silva GA, Almeida AP, Caliari MV, Santos RA. The nonpeptide angiotensin-(1-7) receptor Mas agonist AVE-0991 attenuates heart failure induced by myocardial infarction. Am J Physiol Heart Circ Physiol. 2007;292:H1113–9.  https://doi.org/10.1152/ajpheart.00828.2006.CrossRefPubMedGoogle Scholar
  11. 11.
    Ferreira AJ, Shenoy V, Yamazato Y, Sriramula S, Francis J, Yuan L, Castellano RK, Ostrov DA, Oh SP, Katovich MJ, Raizada MK. Evidence for angiotensin-converting enzyme 2 as a therapeutic target for the prevention of pulmonary hypertension. Am J Respir Crit Care Med. 2009;179:1048–54.  https://doi.org/10.1164/rccm.200811-1678OC.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Fetzner A, Böhm S, Schreder S, Schubert R. Degradation of raw or film-incorporated β-cyclodextrin by enzymes and colonic bacteria. Eur J Pharm Biopharm. 2004;58:91–7.  https://doi.org/10.1016/j.ejpb.2004.02.001.CrossRefPubMedGoogle Scholar
  13. 13.
    Foureaux G, Nogueira JC, Nogueira BS, Fulgêncio GO, Menezes GB, Fernandes SO, Cardoso VN, Fernandes RS, Oliveira GP, Franca JR, Faraco AA, Raizada MK, Ferreira AJ. Antiglaucomatous effects of the activation of intrinsic angiotensin-converting enzyme 2. Invest Ophthalmol Vis Sci. 2013;54:4296–306.  https://doi.org/10.1167/iovs.12-11427.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Fraga-Silva RA, Costa-Fraga FP, De Sousa FB, Alenina N, Bader M, Sinisterra RD, Santos RA. An orally active formulation of angiotensin-(1-7) produces an antithrombotic effect. Clin Sao Paulo. 2011;66:837–41.CrossRefGoogle Scholar
  15. 15.
    Fraga-Silva RA, Costa-Fraga FP, Montecucco F, Sturny M, Faye Y, Mach F, Pelli G, Shenoy V, da Silva RF, Raizada MK, Santos RA, Stergiopulos N. Diminazene protects corpus cavernosum against hypercholesterolemia-induced injury. J Sex Med. 2015;12:289–302.  https://doi.org/10.1111/jsm.12757.CrossRefPubMedGoogle Scholar
  16. 16.
    Fraga-Silva RA, Da Silva DG, Montecucco F, Mach F, Stergiopulos N, da Silva RF, Santos RA. The angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas receptor axis: a potential target for treating thrombotic diseases. Thromb Haemost. 2012;108:1089–96.  https://doi.org/10.1160/TH12-06-0396.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Fraga-Silva RA, Sorg BS, Wankhede M, Dedeugd C, Jun JY, Baker MB, Li Y, Castellano RK, Katovich MJ, Raizada MK, Ferreira AJ. ACE2 activation promotes antithrombotic activity. Mol Med. 2010;16:210–5.  https://doi.org/10.2119/molmed.2009.00160.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Haschke M, Schuster M, Poglitsch M, Loibner H, Salzberg M, Bruggisser M, Penninger J, Krähenbühl S. Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clin Pharmacokinet. 2013;52:783–92.  https://doi.org/10.1007/s40262-013-0072-7.CrossRefPubMedGoogle Scholar
  19. 19.
    Hernández Prada JA, Ferreira AJ, Katovich MJ, Shenoy V, Qi Y, Santos RAS, Castellano RK, Lampkins AJ, Gubala V, Ostrov DA, Raizada MK. 2008. Structure-based identification of small-molecule angiotensin-converting enzyme 2 activators as novel antihypertensive agents. Hypertens. Dallas Tex. 1979;51:1312–7.  https://doi.org/10.1161/HYPERTENSIONAHA.107.108944.CrossRefGoogle Scholar
  20. 20.
    Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, Thomas WG. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin receptors: interpreters of pathophysiological angiotensinergic stimuli. Pharmacol Rev. 2015;67:754–819.  https://doi.org/10.1124/pr.114.010454.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kluskens LD, Nelemans SA, Rink R, de Vries L, Meter-Arkema A, Wang Y, Walther T, Kuipers A, Moll GN, Haas M. Angiotensin-(1-7) with thioether bridge: an angiotensin-converting enzyme-resistant, potent angiotensin-(1-7) analog. J Pharmacol Exp Ther. 2009;328:849–54.  https://doi.org/10.1124/jpet.108.146431.CrossRefPubMedGoogle Scholar
  22. 22.
    Lula I, Denadai AL, Resende JM, de Sousa FB, de Lima GF, Pilo-Veloso D, Heine T, Duarte HA, Santos RA, Sinisterra RD. Study of angiotensin-(1-7) vasoactive peptide and its beta-cyclodextrin inclusion complexes: complete sequence-specific NMR assignments and structural studies. Peptides. 2007;28:2199–210.  https://doi.org/10.1016/j.peptides.2007.08.011.CrossRefPubMedGoogle Scholar
  23. 23.
    Macedo LM, Souza ÁP, De Maria ML, Borges CL, Soares CM, Pedrino GR, Colugnati DB, Santos RA, Mendes EP, Ferreira AJ, Castro CH. Cardioprotective effects of diminazene aceturate in pressure-overloaded rat hearts. Life Sci. 2016;155:63–9.  https://doi.org/10.1016/j.lfs.2016.04.036.CrossRefPubMedGoogle Scholar
  24. 24.
    Malek M, Nematbakhsh M. The preventive effects of diminazene aceturate in renal ischemia/reperfusion injury in male and female rats. Adv Prev Med. 2014;2014(740647)  https://doi.org/10.1155/2014/740647.CrossRefGoogle Scholar
  25. 25.
    Marques FD, Ferreira AJ, Sinisterra RD, Jacoby BA, Sousa FB, Caliari MV, Silva GA, Melo MB, Nadu AP, Souza LE, Irigoyen MC, Almeida AP, Santos RA. An oral formulation of angiotensin-(1-7) produces cardioprotective effects in infarcted and isoproterenol-treated rats. Hypertension. 2011;57:477–83.  https://doi.org/10.1161/HYPERTENSIONAHA.110.167346.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Marques FD, Melo MB, Souza LE, Irigoyen MC, Sinisterra RD, de Sousa FB, Savergnini SQ, Braga VB, Ferreira AJ, Santos RA. Beneficial effects of long-term administration of an oral formulation of angiotensin-(1-7) in infarcted rats. Int J Hypertens. 2012;2012(795452)  https://doi.org/10.1155/2012/795452.CrossRefGoogle Scholar
  27. 27.
    Mecca AP, Regenhardt RW, O’Connor TE, Joseph JP, Raizada MK, Katovich MJ, Sumners C. Cerebroprotection by angiotensin-(1-7) in endothelin-1-induced ischaemic stroke. Exp Physiol. 2011;96:1084–96.  https://doi.org/10.1113/expphysiol.2011.058578.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Murça TM, Moraes PL, Capuruço CAB, Santos SHS, Melo MB, Santos RAS, Shenoy V, Katovich MJ, Raizada MK, Ferreira AJ. Oral administration of an angiotensin-converting enzyme 2 activator ameliorates diabetes-induced cardiac dysfunction. Regul Pept. 2012;177:107–15.  https://doi.org/10.1016/j.regpep.2012.05.093.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Pinheiro SV, Simões e Silva AC, Sampaio WO, de Paula RD, Mendes EP, Bontempo ED, Pesquero JB, Walther T, Alenina N, Bader M, Bleich M, Santos RA. Nonpeptide AVE 0991 is an angiotensin-(1-7) receptor Mas agonist in the mouse kidney. Hypertension. 2004;44:490–6.  https://doi.org/10.1161/01.HYP.0000141438.64887.42.CrossRefPubMedGoogle Scholar
  30. 30.
    Qiu Y, Shil PK, Zhu P, Yang H, Verma A, Lei B, Li Q. Angiotensin-converting enzyme 2 (ACE2) activator diminazene aceturate ameliorates endotoxin-induced uveitis in mice. Invest Ophthalmol Vis Sci. 2014;55:3809–18.  https://doi.org/10.1167/iovs.14-13883.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Rigatto K, Casali KR, Shenoy V, Katovich MJ, Raizada MK. Diminazene aceturate improves autonomic modulation in pulmonary hypertension. Eur J Pharmacol. 2013;713:89–93.  https://doi.org/10.1016/j.ejphar.2013.04.017.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rodgers KE, Espinoza T, Felix J, Roda N, Maldonado S, diZerega G. Acceleration of healing, reduction of fibrotic scar, and normalization of tissue architecture by an angiotensin analogue, NorLeu3-A(1-7). Plast Reconstr Surg. 2003;111:1195–206.  https://doi.org/10.1097/01.PRS.0000047403.23105.66.CrossRefPubMedGoogle Scholar
  33. 33.
    Rodrigues-Machado MG, Magalhães GS, Cardoso JA, Kangussu LM, Murari A, Caliari MV, Oliveira ML, Cara DC, Noviello ML, Marques FD, Pereira JM, Lautner RQ, Santos RA, Campagnole-Santos MJ. AVE 0991, a non-peptide mimic of angiotensin-(1-7) effects, attenuates pulmonary remodelling in a model of chronic asthma. Br J Pharmacol. 2013;170:835–46.  https://doi.org/10.1111/bph.12318.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Sabharwal R, Cicha MZ, Sinisterra RD, De Sousa FB, Santos RA, Chapleau MW. Chronic oral administration of Ang-(1-7) improves skeletal muscle, autonomic and locomotor phenotypes in muscular dystrophy. Clin Sci. 2014;127:101–9.  https://doi.org/10.1042/CS20130602.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Santos SH, Giani JF, Burghi V, Miquet JG, Qadri F, Braga JF, Todiras M, Kotnik K, Alenina N, Dominici FP, Santos RA, Bader M. Oral administration of angiotensin-(1-7) ameliorates type 2 diabetes in rats. J Mol Med Berl. 2014;92:255–65..  https://doi.org/10.1007/s00109-013-1087-0CrossRefGoogle Scholar
  36. 36.
    Savergnini SQ, Beiman M, Lautner RQ, de Paula-Carvalho V, Allahdadi K, Pessoa DC, Costa-Fraga FP, Fraga-Silva RA, Cojocaru G, Cohen Y, Bader M, de Almeida AP, Rotman G, Santos RA. Vascular relaxation, antihypertensive effect, and cardioprotection of a novel peptide agonist of the MAS receptor. Hypertension. 2010;56:112–20.  https://doi.org/10.1161/HYPERTENSIONAHA.110.152942.CrossRefPubMedGoogle Scholar
  37. 37.
    Savergnini SQ, Ianzer D, Carvalho MBL, Ferreira AJ, Silva GAB, Marques FD, Peluso AAB, Beiman M, Cojocaru G, Cohen Y, Almeida AP, Rotman G, Santos RAS. The novel Mas agonist, CGEN-856S, attenuates isoproterenol-induced cardiac remodeling and myocardial infarction injury in rats. PLoS One. 2013;8:e57757.  https://doi.org/10.1371/journal.pone.0057757.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Shenoy V, Ferreira AJ, Qi Y, Fraga-Silva RA, Díez-Freire C, Dooies A, Jun JY, Sriramula S, Mariappan N, Pourang D, Venugopal CS, Francis J, Reudelhuber T, Santos RA, Patel JM, Raizada MK, Katovich MJ. The angiotensin-converting enzyme 2/angiogenesis-(1-7)/Mas axis confers cardiopulmonary protection against lung fibrosis and pulmonary hypertension. Am J Respir Crit Care Med. 2010;182:1065–72.  https://doi.org/10.1164/rccm.200912-1840OC.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Singh K, Sharma K, Singh M, Sharma P. Possible mechanism of the cardio-renal protective effects of AVE-0991, a non-peptide Mas-receptor agonist, in diabetic rats. J Renin-Angiotensin-Aldosterone Syst. 2012;13:334–40.  https://doi.org/10.1177/1470320311435534.CrossRefPubMedGoogle Scholar
  40. 40.
    Singh N, Joshi S, Guo L, Baker MB, Li Y, Castellano RK, Raizada MK, Jarajapu YPR. ACE2/Ang-(1-7)/Mas axis stimulates vascular repair-relevant functions of CD34+ cells. Am J Physiol Heart Circ Physiol. 2015;309:H1697–707.  https://doi.org/10.1152/ajpheart.00854.2014.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Souza LKM, Nicolau LAD, Sousa NA, Araújo TSL, Sousa FBM, Costa DS, Souza FM, Pacífico DM, Martins CS, Silva RO, Souza MHLP, Cerqueira GS, Medeiros JVR. Diminazene aceturate, an angiotensin-converting enzyme II activator, prevents gastric mucosal damage in mice: role of the angiotensin-(1-7)/Mas receptor axis. Biochem Pharmacol. 2016;112:50–9.  https://doi.org/10.1016/j.bcp.2016.05.010.CrossRefPubMedGoogle Scholar
  42. 42.
    Strachan RT, Sun J, Rominger DH, Violin JD, Ahn S, Thomsen ARB, Zhu X, Kleist A, Costa T, Lefkowitz RJ. Divergent transducer-specific molecular efficacies generate biased agonism at a G protein-coupled receptor (GPCR). J Biol Chem. 2014;289:14211–24.  https://doi.org/10.1074/jbc.M114.548131.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Tao L, Qiu Y, Fu X, Lin R, Lei C, Wang J, Lei B. Angiotensin-converting enzyme 2 activator diminazene aceturate prevents lipopolysaccharide-induced inflammation by inhibiting MAPK and NF-κB pathways in human retinal pigment epithelium. J Neuroinflammation. 2016;13(35)  https://doi.org/10.1186/s12974-016-0489-7.
  44. 44.
    Toton-Zuranska J, Gajda M, Pyka-Fosciak G, Kus K, Pawlowska M, Niepsuj A, Wolkow P, Olszanecki R, Jawien J, Korbut R. AVE 0991-angiotensin-(1-7) receptor agonist, inhibits atherogenesis in apoE-knockout mice. J Physiol Pharmacol. 2010;61:181–3.PubMedGoogle Scholar
  45. 45.
    Velkoska E, Patel SK, Burrell LM. Angiotensin converting enzyme 2 and diminazene: role in cardiovascular and blood pressure regulation. Curr Opin Nephrol Hypertens. 2016;25:384–95.  https://doi.org/10.1097/MNH.0000000000000254.CrossRefPubMedGoogle Scholar
  46. 46.
    Wiemer G, Dobrucki LW, Louka FR, Malinski T, Heitsch H. AVE 0991, a nonpeptide mimic of the effects of angiotensin-(1-7) on the endothelium. Hypertension. 2002;40:847–52.CrossRefGoogle Scholar
  47. 47.
    Zhang T, Li Z, Dang H, Chen R, Liaw C, Tran T-A, Boatman PD, Connolly DT, Adams JW. Inhibition of mas G-protein signaling improves coronary blood flow, reduces myocardial infarct size, and provides long-term cardioprotection. Am J Physiol Heart Circ Physiol. 2012;302:H299–311.  https://doi.org/10.1152/ajpheart.00723.2011.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.National Institute of Science and Technology in Nano Biopharmaceutics – Department of Physiology and BiophysicsBiological Sciences Institute, Federal University of Minas GeraisBelo HorizonteBrazil
  2. 2.Department of Physiology and PharmacologyBiological Sciences Institute, Federal University of Minas GeraisBelo HorizonteBrazil

Personalised recommendations