Advertisement

Testing-Deformation

  • Joshua PellegEmail author
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

This chapter considers the major static deformations observed in silicides. The tests performed are tension, compression and indentation in both single crystals and polycrystalline silicides. Further, the mechanical properties of thin films are an integral part of this chapter and their stress developed during formation on cooling (differential thermal shrinkage) and as a result of mismatch between substrate and silicide film are discussed. Known expressions are included in this chapter which describe the observed stress developed and the strain rate sensitivity. The ideal case to eliminate cracking, other defect formation and lift-off in the silicide film is zero stress. Slip lines of some single crystal silicides for various orientations and temperatures characterize the deformation. Silicides are brittle at room temperature and become ductile at elevated temperatures. The single crystal and polycrystalline silicides and silicide thin films presented in this chapter are CoSi2, NiSi2, MoSi2, WSi2, FeSi2 and TiSi2.

References

  1. G.R. Anstis, P. Chantikul, B.R. Lawn, D.B. Marshall, J. Am. Ceram. Soc. 64, 533 (1981)CrossRefGoogle Scholar
  2. W.A. Brantley, J. Appl. Phys. 44, 534 (1973)CrossRefGoogle Scholar
  3. P. Burkhardt, R.E. Marvel, J. Electrochem. Soc. 116, 864 (1969)CrossRefGoogle Scholar
  4. A.V. Byakova, Yu.V. Milman, A.A. Vlasov, Sci. Sinter. 36, 93 (2004)Google Scholar
  5. H.-Y. Chen, C.-Y. Lin, C.-C. Huang, C.-H. Chien, Microelectron. Eng. 87, 2540 (2010)CrossRefGoogle Scholar
  6. T.C. Chou, T.G. Nieh, Thin Solid Film 214, 48 (1992)CrossRefGoogle Scholar
  7. G. Frommeyer, R. Rosenkranz, in Metallic Materials with High Structural Efficiency, ed. by O.N. Senkov et al. (Kluwer Academic Publishers, the Netherlands, 2004), p. 287Google Scholar
  8. S. Guder, M. Bartsch, M. Yamaguchi, U. Messerschmidt, Mater. Sci. Eng. A 261, 139 (1999)CrossRefGoogle Scholar
  9. K. Ito, H. Inui, T. Hirano, M. Yamaguchi, Mater. Sci. Eng. A 152, 153 (1992)CrossRefGoogle Scholar
  10. K. Ito, H. Inui, T. Hirano, M. Yamaguchi, Acta Metall. Mater. 42, 1261 (1994)Google Scholar
  11. K. Ito, T. Yano, T. Nakamoto, H. Inui, M. Yamaguchi, Acta Mater. 47, 837 (1999)CrossRefGoogle Scholar
  12. J.F. Jongste, O.B. Loopstra, G.C.A.M. Janssen, S. Radelaar, J. Appl. Phys. 73, 2816 (1993)CrossRefGoogle Scholar
  13. L. Junker, M. Bartsch, U. Messerschmidt, Mater. Sci. Eng. A 328, 181 (2002)CrossRefGoogle Scholar
  14. M.T. Laugier, J. Mater. Sci. Lett. 6, 355 (1987)CrossRefGoogle Scholar
  15. W.-S. Lee, T.-H. Chen, C.-F. Lin, J.-M. Chen, Appl. Phys. A 100, 1089 (2010)CrossRefGoogle Scholar
  16. J.F. Liu, J.Y. Feng, W.Z. Li, Nucl. Instr. Methods Phys. Res. B 194, 289 (2002)Google Scholar
  17. B.-R. Kim, K.-Seok Nam, J.-K. Yoon, J.-M. Dohc, K.-T. Lee, I.-J. Shon, J. Ceram. Process. Res. 10, 171–175 (2009)Google Scholar
  18. V. Milekhine, M.I. Onsoien, J.K. Solberg, T. Skaland, Intermetallics 10, 743 (2002)CrossRefGoogle Scholar
  19. R. Mitra, N.E. Prasad, S. Kumari, A.V. Rao, Met. Mater. Trans. 34A, 2003 (2003)Google Scholar
  20. S.P. Murarka, D.B. Fraser, J. Appl. Phys. 51, 342 (1980)CrossRefGoogle Scholar
  21. T. Nakano, M. Azuma, Y. Umakoshi, Acta Mater. 50, 3731 (2002)CrossRefGoogle Scholar
  22. K. Niihara, J. Mater. Sci. Lett. 2, 221 (1983)CrossRefGoogle Scholar
  23. K. Niihara, R. Morena, D.P.H. Hasselman, J. Mater. Sci. Lett. 1, 13 (1982)CrossRefGoogle Scholar
  24. S. Palmqvist, Arch. Eisenhuttenwesen. 9, 1 (1962)Google Scholar
  25. J. Pelleg, Mechanical Properties of Materials (Springer, Dordrecht, 2013)Google Scholar
  26. J. Pelleg, Mechanical Properties of Ceramics (Springer, 2014)Google Scholar
  27. T.F. Retajzxyk Jr., A.K. Sinha, Thin Solid Films 70, 241 (1980)CrossRefGoogle Scholar
  28. D. Sander, A. Enders, J. Kirschner, Appl. Phys. Lett. 67, 1833 (1995)CrossRefGoogle Scholar
  29. D.K. Shetty, I.G. Wright, P.N. Mincer, A.H. Clauer, J. Mater. Sci. 20, 1873 (1985)CrossRefGoogle Scholar
  30. S. Takeuchi, T. Hashimoto, M. Nakamura, Intermetallics 2, 289 (1994)CrossRefGoogle Scholar
  31. Y. Umakoshi, T. Hirano, T. Sakagami, T. Yamane, Scr. Met. 23, 87 (1989)CrossRefGoogle Scholar
  32. Y. Umakoshi, T. Sakagami, T. Hirano, T. Yamane, Acta Metall. Mater. 38, 309 (1990)Google Scholar
  33. A.H. van Ommen, C.W.T. Bulle-Lieuwma, C. Langereis, J. Appl. Phys. 64, 2708 (1988)CrossRefGoogle Scholar
  34. J.B. Wachtman Jr., W.E. Tefft, D.G. Lam Jr., R.P. Stinchfield, J. Res. Natl. Bur. Std. Sect. A 64, 213 (1960)Google Scholar
  35. J.B. Wachtman Jr., T.G. Scuderi, G.W. Cleek, J. Am. Ceram. Soc. 45, 319 (1962)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Materials EngineeringBen-Gurion University of the NegevBeer ShevaIsrael

Personalised recommendations