Advanced Phase Triangulation Methods for 3D Shape Measurements in Scientific and Industrial Applications

  • Sergey Vladimirovich Dvoynishnikov
  • Ivan Konstantinovich Kabardin
  • Vladimir Genrievich Meledin


This chapter comprises the review of new methods of phase triangulation, which allow 3D geometry measurements under the conditions of arbitrary measured object surface light-scattering properties, varying measurement setting external illumination, and limited depth of field of optical elements of the source and receiver of optical radiation. The application of the proposed methods provides higher metrological characteristics of measuring systems and expands the functionality and the range of application of optical-electronic systems for geometric control in the production environment.


Phase triangulation 3D measurements Structured light Industrial applications 



Three dimensional


Institute of Thermophysics Siberian Branch of Russian academy of Science


Russian Fund of Basic Research


Root mean square



This research was supported in part by RFBR (project No 18-08-00910) and was carried out under state contract with IT SB RAS.


  1. 1.
    Gorthi, S. S., & Rastogi, P. (2010). Fringe projection techniques: Whither we are? Optics and Lasers in Engineering, 48, 133–140.CrossRefGoogle Scholar
  2. 2.
    D’Apuzzo, N. (2006). Overview of 3D surface digitization technologies in Europe. In Proc. SPIE, pp. 1–13.Google Scholar
  3. 3.
    Zhang, S. (2010). Recent progresses on real-time 3-D shape measurement using digital fringe projection techniques. Optics and Lasers in Engineering, 48(2), 149–158.CrossRefGoogle Scholar
  4. 4.
    Lindner, L., Sergiyenko, O., Rivas-Lopez, M., Hernandez-Balbuena, D., Flores-Fuentes, W., Rodriguez-Quinonez, J. C., Murrieta-Rico, F. N., Ivanov, M., Tyrsa, V., & Basaca, L. C. (2017). Exact laser beam positioning for measurement of vegetation vitality. Industrial Robot: An International Journal, 44(4), 532–541.CrossRefGoogle Scholar
  5. 5.
    Lindner, L. (2016). Laser scanners. In O. Sergiyenko & J. C. Rodriguez-Quinonez (Eds.), Developing and applying optoelectronics in machine vision. Hershey, PA: IGI Global. 38.Google Scholar
  6. 6.
    Lindner, L., Sergiyenko, O., Rivas-Lopez, M., Ivanov, M., Rodriguez-Quinonez, J., Hernandez-Balbuena, D., Flores-Fuentes, W., Tyrsa, V., Muerrieta-Rico, F. N., & Mercorelli, P. (2017). Machine vision system errors for unmanned aerial vehicle navigation. In Industrial Electronics (ISIE), 2017 IEEE 26th International Symposium on, Edinburgh.Google Scholar
  7. 7.
    Lindner, L., Sergiyenko, O., Rivas-Lopez, M., Valdez-Salas, B., Rodriguez-Quinonez, J. C., Hernandez-Balbuena, D., Flores-Fuentes, W., Tyrsa, V., Medina Barrera, M., Muerrieta-Rico F., & Mercorelli, P. (2016). UAV remote laser scanner improvement by continuous scanning using DC motors. In Industrial Electronics Society, IECON 2016, Florence.Google Scholar
  8. 8.
    Lindner, L., Sergiyenko, O., Rivas-Lopez, M., Valdez-Salas, B., Rodriguez-Quinonez, J. C., Hernandez-Balbuena, D., Flores-Fuentes, W., Tyrsa, V., Medina, M., Murietta-Rico, F., Mercorelli, P., Gurko, A., & Kartashov, V. (2016). Machine vision system for UAV navigation. In Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), International Conference on, Toulouse.Google Scholar
  9. 9.
    Chen, L., Liang, C., Nguyen, X., Shu, Y., & Wu, H.-W. (2010). High-speed 3D surface profilometry employing trapezoidal phase-shifting method with multi-band calibration for colour surface reconstruction. Measurement Science and Technology, 21(10), 105309.CrossRefGoogle Scholar
  10. 10.
    Lohry, W., & Zhang, S. (2014). High-speed absolute three-dimensional shape measurement using three binary dithered patterns. Optics Express, 22, 26752–26762.CrossRefGoogle Scholar
  11. 11.
    Wissmann, P., Schmitt, R., & Forster, F. (2011). Fast and accurate 3D scanning using coded phase shifting and high speed pattern projection. In Proceedings of the IEEE Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission, pp. 108–115. IEEE.Google Scholar
  12. 12.
    Zuo, C., et al. (2013). High-speed three-dimensional shape measurement for dynamic settings using bi-frequency tripolar pulse-width-modulation fringe projection. Optics and Lasers in Engineering, 51(8), 953–960.CrossRefGoogle Scholar
  13. 13.
    Zhang, S., & Yau, S.-T. (2007). Generic nonsinusoidal phase error correction for threedimensional shape measurement using a digital video projector. Applied Optics, 46(1), 36–43.CrossRefGoogle Scholar
  14. 14.
    Zhang, S., & Huang, P. S. (2007). Phase error compensation for a 3-D shape measurement system based on the phase-shifting method. Optical Engineering, 46(6), 063601–063601-9.CrossRefGoogle Scholar
  15. 15.
    Song, L., et al. (2015). Phase unwrapping method based on multiple fringe patterns without use of equivalent wavelengths. Optics Communication, 355, 213–224.CrossRefGoogle Scholar
  16. 16.
    Armangue, X., Salvi, J., & Battle, J. (2002). A comparative review of camera calibrating methods with accuracy evaluation. Pattern Recognition, 35(7), 1617–1635.CrossRefGoogle Scholar
  17. 17.
    Guzhov, V. I. (1995). Practical aspects of phase measurement in interferometry. Avtometria, 5, 25–31.Google Scholar
  18. 18.
    Guzhov, V. I., & Solodkin, Y. N. (1992). Accuracy analysis of determination of phase total difference in integer interferometers. Avtometria, (6), 24–30.Google Scholar
  19. 19.
    Indebetouw, G. (1978). Profile measurement using projection of running fringes. Applied Optics, 17, 2930–2933.CrossRefGoogle Scholar
  20. 20.
    Takeda, M., & Mutoh, K. (1983). Fourier transform profilometry for the automatic measurement of 3-D object shapes. Applied Optics, 22(24), 3977–3982.CrossRefGoogle Scholar
  21. 21.
    Bruning, J. H., Herriott, D. R., Gallagher, J. E., Rosenfeld, D. P., White, A. D., & Brangaccio, D. J. (1974). Digital wave-front measuring for testing optical surfaces and lenses. Applied Optics, 13, 2693–2703.CrossRefGoogle Scholar
  22. 22.
    Dvoynishnikov, S. V., Kulikov, D. V., & Meledin, V. G. (2010). Optoelectronic method of contactless reconstruction of the surface profile of complexly shaped three-dimensional objects. Measurement Techniques, 53(6), 648–656.CrossRefGoogle Scholar
  23. 23.
    Takeda, M., & Yamamoto, H. (1994). Fourier-transform speckle profilometry: Three-dimensional shape measurements of diffuse objects with large height steps and/or spatially isolated surfaces. Applied Optics, 33(34), 7829–7837.CrossRefGoogle Scholar
  24. 24.
    Gruber, M., & Hausler, G. (1992). Simple, robust and accurate phase-measuring triangulation. Optik, 3, 118–122.Google Scholar
  25. 25.
    Inokuchi, S., & Sato, K., et al. (1984). Range-imaging system for 3-D object recognition. In Proceeding of 7th International Conference Pattern Recognition, Montreal, Canada, pp. 806–808.Google Scholar
  26. 26.
    Stahs, T., & Wahl, F. (1992). Fast and versatile range data acquisition. In IEEE/RSJ International Conference Intelligent Robots and Systems, Raleigh, NC, pp. 1169–1174.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sergey Vladimirovich Dvoynishnikov
    • 1
  • Ivan Konstantinovich Kabardin
    • 1
  • Vladimir Genrievich Meledin
    • 1
  1. 1.Kutateladze Institute of Thermophysics SB RASNovosibirskRussia

Personalised recommendations