Skip to main content

Advances in Image and Video Compression Using Wavelet Transforms and Fovea Centralis

  • Chapter
  • First Online:
Machine Vision and Navigation

Abstract

It is well-known that there has been a considerable progress in multimedia technologies during the last decades, namely TV, photography, sound and video recording, communication systems, etc., which came into the world during at least half of the previous century and were developed as analog systems, and nowadays have been almost completely replaced by digital systems. The aforementioned motivates a deep study of multimedia compression and intensive research in this area. Data compression is concerned with minimization of the number of information carrying units used to represent a given data set. Such smaller representation can be achieved by applying coding algorithms. Coding algorithms can be either lossless algorithms that reconstruct the original data set perfectly or lossy algorithms that reconstruct a close representation of the original data set. Both methods can be used together to achieve higher compression ratios. Lossless compression methods can either exploit statistical structure of the data or compress the data by building a dictionary that uses fewer symbols for each string that appears on the data set. Lossy compression, on the other hand, uses a mathematical transform that projects the current data set onto the frequency domain. The coefficients obtained from the transform are quantized and stored. The quantized coefficients require less space to be stored. This chapter is focused on the recently published advances in image and video compression to date considering the use of the integer discrete cosine transform (IDCT), wavelet transforms, and fovea centralis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.adobe.com.

  2. 2.

    http://www.gimp.org.

  3. 3.

    https://developers.google.com/speed/webp/?csw=1.

  4. 4.

    JPEG2000 draft at http://www.jpeg.org/public/fcd15444-1.pdf.

  5. 5.

    http://jpeg.org/jbig/index.html.

  6. 6.

    https://media.xiph.org/video/derf/.

References

  1. Acharya, T., & Tsai, P. S. (2004). JPEG2000 standard for image compression. Hoboken, NJ: Wiley.

    Book  Google Scholar 

  2. Alarcon-Aquino, V., & Barria, J. A. (2006). Multiresolution FIR neural-network-based learning algorithm applied to network traffic prediction. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 36(2), 208–220. https://doi.org/10.1109/TSMCC.2004.843217

    Article  Google Scholar 

  3. Bocharova, I. (2010). Compression for multimedia. Cambridge: Cambridge University Press. http://books.google.com/books?id=9UXBxPT5vuUC&pgis=1

    MATH  Google Scholar 

  4. Böck, A. (2009). Video compression systems: From first principles to concatenated codecs. IET telecommunications series. Stevenage: Institution of Engineering and Technology. http://books.google.com.mx/books?id=zJyOx08p42IC

    Book  Google Scholar 

  5. Boopathi, G., & Arockiasamy, S. (2012). Image compression: Wavelet transform using radial basis function (RBF) neural network. In: 2012 Annual IEEE India Conference (INDICON) (pp. 340–344). Piscataway: IEEE. https://doi.org/10.1109/INDCON.2012.6420640

    Chapter  Google Scholar 

  6. Bovik, A. C. (2009). The essential guide to video processing (1st ed.). London: Academic Press.

    Google Scholar 

  7. Chang, E., Mallat, S., & Yap, C. (2000). Wavelet foveation. Applied and Computational Harmonic Analysis, 9(3), 312–335.

    Article  MathSciNet  Google Scholar 

  8. Cintra, R., Bayer, F., & Tablada, C. (2014). Low-complexity 8-point DCT approximations based on integer functions. Signal Processing, 99, 201–214. https://doi.org/10.1016/j.sigpro.2013.12.027. http://www.sciencedirect.com/science/article/pii/S0165168413005161

  9. Ciocoiu, I. B. (2009). ECG signal compression using 2D wavelet foveation. In Proceedings of the 2009 International Conference on Hybrid Information Technology - ICHIT ’09 (Vol. 13, pp. 576–580)

    Google Scholar 

  10. Ciubotaru, B., Ghinea, G., & Muntean, G. M. (2014) Subjective assessment of region of interest-aware adaptive multimedia streaming quality. IEEE Transactions on Broadcasting, 60(1), 50–60. https://doi.org/10.1109/TBC.2013.2290238. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6755558

  11. Daubechies, I., & Sweldens, W. (1998). Factoring wavelet transforms into lifting steps. The Journal of Fourier Analysis and Applications, 4(3), 247–269. https://doi.org/10.1007/BF02476026. http://link.springer.com/10.1007/BF02476026

  12. Dempsey, P. (2016). The teardown: HTC vive VR headset. Engineering Technology, 11(7–8), 80–81. https://doi.org/10.1049/et.2016.0731

    Google Scholar 

  13. Ding, J. J., Chen, H. H., & Wei, W. Y. (2013) Adaptive Golomb code for joint geometrically distributed data and its application in image coding. IEEE Transactions on Circuits and Systems for Video Technology, 23(4), 661–670. https://doi.org/10.1109/TCSVT.2012.2211952. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6261530

  14. Frazier, M. (1999). An introduction to wavelets through linear algebra. Berlin: Springer. http://books.google.com/books?id=IlRdY9nUTZgC&pgis=1

    MATH  Google Scholar 

  15. Galan-Hernandez, J., Alarcon-Aquino, V., Ramirez-Cortes, J., & Starostenko, O. (2013). Region-of-interest coding based on fovea and hierarchical tress. Information Technology and Control, 42, 127–352. http://dx.doi.org/10.5755/j01.itc.42.4.3076. http://www.itc.ktu.lt/index.php/ITC/article/view/3076

  16. Galan-Hernandez, J., Alarcon-Aquino, V., Starostenko, O., Ramirez-Cortes, J., & Gomez-Gil, P. (2018). Wavelet-based frame video coding algorithms using fovea and speck. Engineering Applications of Artificial Intelligence, 69, 127–136. https://doi.org/10.1016/j.engappai.2017.12.008. http://www.sciencedirect.com/science/article/pii/S0952197617303032

  17. Gonzalez, R. C., & Woods, R. E. (2006). Digital image processing (3rd ed.). Upper Saddle River, NJ: Prentice-Hall.

    Google Scholar 

  18. Gray, R. M. (2011). Entropy and information theory (Google eBook). Berlin: Springer. http://books.google.com/books?id=wdSOqgVbdRcC&pgis=1

    Book  Google Scholar 

  19. Hanzo, L., Cherriman, P. J., & Streit, J. (2007). Video compression and communications. Chichester, UK: Wiley.

    Book  Google Scholar 

  20. Homann, J. P. (2008). Digital color management: Principles and strategies for the standardized print production (Google eBook). Berlin: Springer. http://books.google.com/books?id=LatEFg5VBZ4C&pgis=1

    Google Scholar 

  21. Itti, L. (2004). Automatic foveation for video compression using a neurobiological model of visual attention. IEEE Transactions on Image Processing, 13(10), 1304–1318. http://dx.doi.org/10.1109/TIP.2004.834657

    Article  Google Scholar 

  22. Kondo, H., & Oishi, Y. (2000). Digital image compression using directional sub-block DCT. In WCC 2000 - ICCT 2000. 2000 International Conference on Communication Technology Proceedings (Cat. No.00EX420) (Vol. 1, pp. 985–992). Piscataway: IEEE. http://dx.doi.org/10.1109/ICCT.2000.889357. http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=889357

  23. Lakhani, G. (2013). Modifying JPEG binary arithmetic codec for exploiting inter/intra-block and DCT coefficient sign redundancies. IEEE transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 22(4), 1326–39. http://dx.doi.org/10.1109/TIP.2012.2228492. http://www.ncbi.nlm.nih.gov/pubmed/23192556

  24. Lee, S., & Bovik, A. C. (2003). Fast algorithms for foveated video processing. IEEE Transactions on Circuits and Systems for Video Technology, 13(2), 149–162. http://dx.doi.org/10.1109/TCSVT.2002.808441

    Article  Google Scholar 

  25. Li, J. (2013). An improved wavelet image lossless compression algorithm. International Journal for Light and Electron Optics, 124(11), 1041–1044. http://dx.doi.org/10.1109/10.1016/j.ijleo.2013.01.012. http://www.sciencedirect.com/science/article/pii/S0030402613001447

  26. Liu, L. (2008). On filter bank and transform design with the lifting scheme. Baltimore, MD: Johns Hopkins University. http://books.google.com/books?id=f0IxpHYF0pAC&pgis=1

    Google Scholar 

  27. Mallat, S. (2008). A wavelet tour of signal processing, third edition: The sparse way (3rd ed.). New York: Academic Press.

    Google Scholar 

  28. Miano, J. (1999). Compressed image file formats: JPEG, PNG, GIF, XBM, BMP (Vol. 757). Reading, MA: Addison-Wesley. http://books.google.com/books?id=_nJLvY757dQC&pgis=1

    Google Scholar 

  29. Mohanty, B., & Mohanty, M. N. (2013). A novel speck algorithm for faster image compression. In 2013 International Conference on Machine Intelligence and Research Advancement (pp. 479–482). http://dx.doi.org/10.1109/ICMIRA.2013.101

  30. Ozenli, D. (2016). Dirac video codec and its performance analysis in different wavelet bases. In 24th Signal Processing and Communication Application Conference (SIU) (pp. 1565–1568). http://dx.doi.org/10.1109/SIU.2016.7496052

  31. Pearlman, W., Islam, A., Nagaraj, N., & Said, A. (2004) Efficient, low-complexity image coding with a set-partitioning embedded block coder. IEEE Transactions on Circuits and Systems for Video Technology, 14(11), 1219–1235. http://dx.doi.org/10.1109/TCSVT.2004.835150

    Article  Google Scholar 

  32. Peter, S., & Win, S. (2000). Wavelets in the geosciences. Lecture Notes in Earth Sciences (Vol. 90). Berlin: Springer. http://dx.doi.org/10.1007/BFb0011093. http://www.springerlink.com/index/10.1007/BFb0011091, http://link.springer.com/10.1007/BFb0011091

  33. Poynton, C. (2012). Digital video and HD: Algorithms and interfaces (Google eBook). Amsterdam: Elsevier. http://books.google.com/books?id=dSCEGFt47NkC&pgis=1

    Google Scholar 

  34. Rao, K. R., Kim, D. N., & Hwang, J. J. (2011). Fast Fourier transform—algorithms and applications: Algorithms and applications (Google eBook). Berlin: Springer. http://books.google.com/books?id=48rQQ8v2rKEC&pgis=1

    Google Scholar 

  35. Rehna, V. (2012). Wavelet based image coding schemes: A recent survey. International Journal on Soft Computing, 3(3), 101–118. http://dx.doi.org/10.5121/ijsc.2012.3308. http://www.airccse.org/journal/ijsc/papers/3312ijsc08.pdf

  36. Richardson, I. E. (2004). H.264 and MPEG-4 video compression: Video coding for next-generation multimedia (Google eBook). London: Wiley. http://books.google.com/books?id=n9YVhx2zgz4C&pgis=1

    Google Scholar 

  37. Richardson, I. E. G. (2002). Video codec design. Chichester, UK: Wiley. http://dx.doi.org/10.1002/0470847832, http://doi.wiley.com/10.1002/0470847832

  38. Rivas-Lopez, M., Sergiyenko, O., & Tyrsa, V. (2008). Machine vision: Approaches and limitations. In: Zhihui, X. (ed.) Chapter 22: Computer vision. Rijeka: IntechOpen. https://doi.org/10.5772/6156

  39. Rivas-Lopez, M., Sergiyenko, O., Flores-Fuentes, W., & Rodriguez-Quinonez, J. C. (2019). Optoelectronics in machine vision-based theories and applications (Vol. 4018). Hershey, PA: IGI Global. ISBN: 978-1-5225-5751-7.

    Google Scholar 

  40. Ross, D., & Lenton, D. (2016). The graphic: Oculus rift. Engineering Technology, 11(1). 16–16. http://dx.doi.org/10.1049/et.2016.0119

    Article  Google Scholar 

  41. Sacha, D., Zhang, L., Sedlmair, M., Lee, J. A., Peltonen, J., Weiskopf, D., et al. (2017). Visual interaction with dimensionality reduction: A structured literature analysis. IEEE Transactions on Visualization and Computer Graphics, 23(1), 241–250. http://dx.doi.org/10.1109/TVCG.2016.2598495

    Article  Google Scholar 

  42. Said, A., & Pearlman, W. (1996). A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology, 6(3), 243–250.

    Article  Google Scholar 

  43. Salomon, D. (2006). Coding for data and computer communications (Google eBook). Berlin: Springer. http://books.google.com/books?id=Zr9bjEpXKnIC&pgis=1

    Google Scholar 

  44. Salomon, D. (2006). Data compression: The complete reference. New York, NY: Springer.

    MATH  Google Scholar 

  45. Salomon, D., Bryant, D., & Motta, G. (2010). Handbook of data compression (Google eBook). Berlin: Springer. http://books.google.com/books?id=LHCY4VbiFqAC&pgis=1

    Book  Google Scholar 

  46. Sayood, K. (2012). Introduction to data compression. Amsterdam: Elsevier. http://dx.doi.org/10.1016/B978-0-12-415796-5.00003-X. http://www.sciencedirect.com/science/article/pii/B978012415796500003X

  47. Schanda, J. (2007). Colorimetry: Understanding the CIE system (Google eBook). London: Wiley. http://books.google.com/books?id=uZadszSGe9MC&pgis=1

    Book  Google Scholar 

  48. Sergiyenko, O., & Rodriguez-Quinonez, J. C. (2017). Developing and applying optoelectronics in machine vision (Vol. 4018). Hershey, PA: IGI Global. ISBN: 978-1-5225-0632-4.

    Google Scholar 

  49. Silverstein, L. D. (2008). Foundations of vision. Color Research & Application, 21(2), 142–144.

    Article  Google Scholar 

  50. Song, E. C., Cuff, P., & Poor, H. V. (2016). The likelihood encoder for lossy compression. IEEE Transactions on Information Theory, 62(4), 1836–1849. http://dx.doi.org/10.1109/TIT.2016.2529657

    Article  MathSciNet  Google Scholar 

  51. Stollnitz, E., DeRose, A., & Salesin, D. (1995). Wavelets for computer graphics: A primer.1. IEEE Computer Graphics and Applications, 15(3), 76–84. http://dx.doi.org/10.1109/38.376616. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=376616

  52. Sullivan, G. J., Ohm, J. R., Han, W. J., & Wiegand, T. (2012). Overview of the high efficiency video coding (HEVC) standard. IEEE Transactions on Circuits and Systems for Video Technology, 22(12), 1649–1668. http://dx.doi.org/10.1109/TCSVT.2012.2221191

    Article  Google Scholar 

  53. Sweldens, W. (1996). The lifting scheme: A custom-design construction of biorthogonal wavelets. Applied and Computational Harmonic Analysis, 3(2), 186–200. http://dx.doi.org/10.1006/acha.1996.0015. http://www.sciencedirect.com/science/article/pii/S1063520396900159

  54. Tan, T. K., Weerakkody, R., Mrak, M., Ramzan, N., Baroncini, V., Ohm, J. R., et al. (2016). Video quality evaluation methodology and verification testing of HEVC compression performance. IEEE Transactions on Circuits and Systems for Video Technology, 26(1), 76–90. http://dx.doi.org/10.1109/TCSVT.2015.2477916

    Article  Google Scholar 

  55. Tanchenko, A. (2014). Visual-PSNR measure of image quality. Journal of Visual Communication and Image Representation, 25(5), 874–878. http://dx.doi.org/10.1016/j.jvcir.2014.01.008. http://www.sciencedirect.com/science/article/pii/S1047320314000091

  56. Theodoridis, S. (2013). Academic press library in signal processing: Image, video processing and analysis, hardware, audio, acoustic and speech processing (Google eBook). London: Academic Press. http://books.google.com/books?id=QJ3HqmLG8gIC&pgis=1

    Google Scholar 

  57. Viction Workshop L. (2011). Vectorism: Vector graphics today. Victionary. http://books.google.com/books?id=dHaeZwEACAAJ&pgis=1

  58. Wallace, G. (1992). The JPEG still picture compression standard. IEEE Transactions on Consumer Electronics, 38(1), xviii–xxxiv. http://dx.doi.org/10.1109/30.125072. http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=125072

  59. Wallace, G. K. (1991). The JPEG still picture compression standard. Communications of the ACM, 34(4), 30–44. http://dx.doi.org/10.1145/103085.103089. http://dl.acm.org/citation.cfm?id=103085.103089

  60. Walls, F. G., & MacInnis, A. S. (2016). VESA display stream compression for television and cinema applications. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 6(4), 460–470. http://dx.doi.org/10.1109/JETCAS.2016.2602009

    Article  Google Scholar 

  61. Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612. http://dx.doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  62. Werner, J. S., & Backhaus, W. G. K. (1998). Color vision: Perspectives from different disciplines. New York, NY: Walter de Gruyter. http://books.google.com/books?id=gN0UaSUTbnUC&pgis=1

    Google Scholar 

  63. Wien, M. (2015). High efficiency video coding— coding tools and specification. Berlin: Springer.

    Google Scholar 

  64. Zhang, L., Wang, D. &, Zheng, D. (2012). Segmentation of source symbols for adaptive arithmetic coding. IEEE Transactions on Broadcasting, 58(2), 228–235. http://dx.doi.org/10.1109/TBC.2012.2186728. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6166502

Download references

Acknowledgement

The authors gratefully acknowledge the financial support from CONACYT, Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Alarcon-Aquino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Galan-Hernandez, J.C., Alarcon-Aquino, V., Starostenko, O., Ramirez-Cortes, J., Gomez-Gil, P. (2020). Advances in Image and Video Compression Using Wavelet Transforms and Fovea Centralis. In: Sergiyenko, O., Flores-Fuentes, W., Mercorelli, P. (eds) Machine Vision and Navigation. Springer, Cham. https://doi.org/10.1007/978-3-030-22587-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22587-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22586-5

  • Online ISBN: 978-3-030-22587-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics