ODE-Driven Sketch-Based Organic Modelling

  • Ouwen LiEmail author
  • Zhigang Deng
  • Shaojun Bian
  • Algirdas Noreika
  • Xiaogang Jin
  • Ismail Khalid Kazmi
  • Lihua You
  • Jian Jun Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11542)


How to efficiently create 3D models from 2D sketches is an important problem. In this paper we propose a sketch-based and ordinary differential equation (ODE) driven modelling technique to tackle this problem. We first generate 2D silhouette contours of a 3D model. Then, we select proper primitives for each of the corresponding silhouette contours. After that, we develop an ODE-driven and sketch-guided deformation method. It uses ODE-based deformations to deform the primitives to exactly match the generated 2D silhouette contours in one view plane. Our experiment demonstrates that the proposed approach can create 3D models from 2D silhouette contours easily and efficiently.


Organic models Sketch-guided modelling ODE-driven deformations 



This research is supported by the PDE-GIR project which has received funding from the European Unions Horizon 2020 research and innovation programme under the Marie Skodowska-Curie grant agreement No 778035, and Innovate UK (Knowledge Transfer Partnerships Ref: KTP010860). Xiaogang Jin is supported by Science and Technology Project on Preservation of Cultural Relics, Cultural Heritage Bureau of Zhejiang Province (Grant No. 2018009) and the National Natural Science Foundation of China (No. 61732015).


  1. 1.
    Botsch, M., Sorkine, O.: On linear variational surface deformation methods. IEEE Trans. Vis. Comput. Graph. 14(1), 213–230 (2008)CrossRefGoogle Scholar
  2. 2.
    Celniker, G., Gossard, D.: Deformable curve and surface finite-elements for free-form shape design. ACM SIGGRAPH Comput. Graph. 25(4), 257–266 (1991)CrossRefGoogle Scholar
  3. 3.
    Chaudhry, E., Bian, S., Ugail, H., Jin, X., You, L., Zhang, J.J.: Dynamic skin deformation using finite difference solutions for character animation. Comput. Graph. 46, 294–305 (2015)CrossRefGoogle Scholar
  4. 4.
    Chaudhry, E., You, L., Jin, X., Yang, X., Zhang, J.J.: Shape modeling for animated characters using ordinary differential equations. Comput. Graph. 37(6), 638–644 (2013)CrossRefGoogle Scholar
  5. 5.
    Chen, T., Zhu, Z., Shamir, A., Hu, S.M., Cohen-Or, D.: 3-sweep: extracting editable objects from a single photo. ACM Trans. Graph. (TOG) 32(6), 195 (2013)Google Scholar
  6. 6.
    Chevalier, L., Jaillet, F., Baskurt, A.: Segmentation and superquadric modeling of 3D objects (2003)Google Scholar
  7. 7.
    Do Carmo, M.P., Fischer, G., Pinkall, U., Reckziegel, H.: Differential geometry. Mathematical Models, pp. 155–180. Springer, Wiesbaden (2017). Scholar
  8. 8.
    Gingold, Y., Igarashi, T., Zorin, D.: Structured annotations for 2D-to-3D modeling. In: ACM Transactions on Graphics (TOG), vol. 28, p. 148. ACM (2009)CrossRefGoogle Scholar
  9. 9.
    Igarashi, T., Matsuoka, S., Tanaka, H.: Teddy: a sketching interface for 3d freeform design. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 409–416. ACM Press/Addison-Wesley Publishing Co. (1999)Google Scholar
  10. 10.
    Karpenko, O.A., Hughes, J.F.: Smoothsketch: 3D free-form shapes from complex sketches. ACM Trans. Graph. 25(3), 589–598 (2006). Scholar
  11. 11.
    Li, C., Pan, H., Liu, Y., Tong, X., Sheffer, A., Wang, W.: Bendsketch: modeling freeform surfaces through 2D sketching. ACM Trans. Graph. (TOG) 36(4), 125 (2017)Google Scholar
  12. 12.
    Nealen, A., Igarashi, T., Sorkine, O., Alexa, M.: Fibermesh: designing freeform surfaces with 3D curves. ACM Trans. Graph. (TOG) 26(3), 41 (2007)CrossRefGoogle Scholar
  13. 13.
    Olsen, L., Samavati, F.F., Sousa, M.C., Jorge, J.A.: Sketch-based modeling: a survey. Comput. Graph. 33(1), 85–103 (2009)CrossRefGoogle Scholar
  14. 14.
    Shtof, A., Agathos, A., Gingold, Y., Shamir, A., Cohen-Or, D.: Geosemantic snapping for sketch-based modeling. In: Computer Graphics Forum, vol. 32, pp. 245–253. Wiley Online Library (2013)Google Scholar
  15. 15.
    Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. In: ACM SIGGRAPH Computer Graphics, vol. 21, pp. 205–214. ACM (1987)Google Scholar
  16. 16.
    Welch, W., Witkin, A.: Variational surface modeling. In: ACM SIGGRAPH Computer Graphics, vol. 26, pp. 157–166. ACM (1992)Google Scholar
  17. 17.
    Xu, M., Li, M., Xu, W., Deng, Z., Yang, Y., Zhou, K.: Interactive mechanism modeling from multi-view images. ACM Trans. Graph. (TOG) 35(6), 236 (2016)Google Scholar
  18. 18.
    You, L., Ugail, H., Tang, B., Jin, X., You, X., Zhang, J.J.: Blending using ode swept surfaces with shape control and c1 continuity. Vis. Comput. 30(6–8), 625–636 (2014)CrossRefGoogle Scholar
  19. 19.
    You, L., Yang, X., Pachulski, M., Zhang, J.J.: Boundary constrained swept surfaces for modelling and animation. In: Computer Graphics Forum, vol. 26, pp. 313–322. Wiley Online Library (2007)Google Scholar
  20. 20.
    You, L., Yang, X., You, X.Y., Jin, X., Zhang, J.J.: Shape manipulation using physically based wire deformations. Comput. Anim. Virtual Worlds 21(3–4), 297–309 (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ouwen Li
    • 1
    Email author
  • Zhigang Deng
    • 2
  • Shaojun Bian
    • 1
  • Algirdas Noreika
    • 3
  • Xiaogang Jin
    • 4
  • Ismail Khalid Kazmi
    • 5
  • Lihua You
    • 1
  • Jian Jun Zhang
    • 1
  1. 1.National Centre for Computer AnimationBournemouth UniversityBournemouthUK
  2. 2.University of HoustonHoustonUSA
  3. 3.Indeform Ltd.KaunasLithuania
  4. 4.State Key Lab of CAD & CGZhejiang UniversityHangzhouChina
  5. 5.Teesside UniversityMiddlesbrough, Tees ValleyUK

Personalised recommendations