Spatial and Temporal Analysis of Precipitation and Drought Trends Using the Climate Forecast System Reanalysis (CFSR)

  • D. A. Martinez-Cruz
  • M. Gutiérrez
  • M. T. Alarcón-HerreraEmail author
Part of the Springer Climate book series (SPCL)


Determination of spatial and temporal patterns of precipitation and drought remains a challenge in many arid and semi-arid regions. Generally, in these areas, precipitation measurements obtained from field stations are few or unreliable. Reanalysis precipitation data has opened up new large-scale hydrological application in data-sparse or ungauged catchments. This study presents a method based on GIS, statistical tests, and satellite-based precipitation for the analysis of spatial and temporal precipitation and drought trends. As a case study, we used 35 years (1979–2013) of precipitation data from the climate forecast system reanalysis (CFSR) for the Mexican state of Durango. For trend detection, we used the statistical test of Mann–Kendall at 5% standard precipitation index timescale of 12 months (SPI-12) to analyze the spatiotemporal trends of drought, and principal component analysis (PCA) was applied to characterize the spatial patterns. In many of the grid locations analyzed, the precipitation trends were not statistically significant. However, the months within winter and spring, except for June, showed a decreasing trend in precipitation, while the months of July, August, and September showed an increasing trend. This variation in rainfall intensity agrees with the climate pattern reported for this region. The frequency of drought events for each month during the period of analysis was mapped. The incidence of drought events was higher in June and September. Drought events are present all around the state of Durango, but they are more frequent in the northern part, in the Sierra Madre Occidental, Mapimi, and Laguna regions.


Spatial–temporal Trends Precipitation Drought Satellite-based precipitation 


  1. Ashouri H, Nguyen P, Thorstensen A, Hsu K-L, Sorooshian S, Braithwaite D (2016) Assessing the efficacy of high-resolution satellite-based PERSIANN-CDR precipitation product in simulating streamflow. J Hydrometeorol 17(7):2061–2076CrossRefGoogle Scholar
  2. Ayanlade A, Radeny M, Morton JF, Muchaba T (2018) Rainfall variability and drought characteristics in two agro-climatic zones: an assessment of climate change challenges in Africa. Sci Total Environ 630:728–737CrossRefGoogle Scholar
  3. Beguería S, Vicente-Serrano SM, Beguería MS (2017) Package SPEI, Calculation of the Standardised Precipitation-vapotranspiration, version 1.7.
  4. Chen Y, Han D (2016) Big data and hydroinformatics. J Hydroinf 18(4):599–614CrossRefGoogle Scholar
  5. Comrie AC, Glenn EC (1998) Principal components-based regionalization of precipitation regimes across the southwest United States and northern Mexico, with an application to monsoon precipitation variability. Clim Res 10(3):201–215CrossRefGoogle Scholar
  6. Comtois P (2000) The gamma distribution as the true aerobiological probability density function. Aerobiologia 16(2):171–176CrossRefGoogle Scholar
  7. Dinpashoh Y, Mirabbasi R, Jhajharia D, Abianeh HZ, Mostafaeipour AJ (2013) Effect of short-term and long-term persistence on identification of temporal trends. J Hydrol Eng 19(3):617–625CrossRefGoogle Scholar
  8. Ffolliott PF (2012) Sustainable use of natural resources of dryland regions in controlling of environmental degradation and desertification. In: Sustainable natural resources management. InTech, LondonGoogle Scholar
  9. Fuka DR, Walter MT, MacAlister C, Degaetano AT, Steenhuis TS, Easton ZM (2014) Using the climate forecast system reanalysis as weather input data for watershed models. Hydrol Process 28(22):5613–5623CrossRefGoogle Scholar
  10. Gallego M, Trigo R, Vaquero J, Brunet M, García J, Sigró J, Valente MJ (2011) Trends in frequency indices of daily precipitation over the Iberian Peninsula during the last century. J Geophys Res Atmos 116(D2):7280CrossRefGoogle Scholar
  11. Gao Y, Liu MJH, Discussions ESS (2012) Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau. Hydrol Earth Syst Sci 9(8):23CrossRefGoogle Scholar
  12. Ghosh S, Mujumdar P (2007) Nonparametric methods for modeling GCM and scenario uncertainty in drought assessment. Water Resour Res 43(7):W07405CrossRefGoogle Scholar
  13. Greenwood JA, Landwehr JM, Matalas NC, Wallis JR (1979) Probability weighted moments: definition and relation to parameters of several distributions expressable in inverse form. Water Resour Res 15(5):1049–1054CrossRefGoogle Scholar
  14. Hamed KH, Rao ARJ (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol 204(1–4):182–196CrossRefGoogle Scholar
  15. Hare FJ (1983) Climate and desertification. A revised analysis. World Meteorological Organization, WCP-44. World Climate Program, GenevaGoogle Scholar
  16. Higgins RW, Chen Y, Douglas AV (1999) Interannual variability of the North American warm season precipitation regime. J Clim 12(3):653–680CrossRefGoogle Scholar
  17. Jolliffe IT, Cadima J (2016) Principal component analysis: a review and recent developments. Philos Trans A Math Phys Eng Sci 374(2065):20150202CrossRefGoogle Scholar
  18. Khaliq MN, Ouarda TB, Gachon P, Sushama L, St-Hilaire A (2009) Identification of hydrological trends in the presence of serial and cross correlations: a review of selected methods and their application to annual flow regimes of Canadian rivers. J Hydrol 368(1–4):117–130CrossRefGoogle Scholar
  19. Kiros G, Shetty A, Nandagiri L (2017) Extreme rainfall signatures under changing climate in semi-arid northern highlands of Ethiopia. Cogent Geosci 3(1):1353719CrossRefGoogle Scholar
  20. Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, Van den Dool H, Jenne R, Fiorino M (2001) The NCEP–NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82(2):247–268CrossRefGoogle Scholar
  21. Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi C, Endo H (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn 93(1):5–48CrossRefGoogle Scholar
  22. Magaña VO, Vázquez JL, Pérez JL, JBJGi P (2003) Impact of El Niño on precipitation in Mexico. Geofis Int 42(3):313–330Google Scholar
  23. McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: Preprints, eighth conference on applied climatology. American Meteorological Society, Anaheim, pp 179–184Google Scholar
  24. Mosiño Alemán PA, Garcia E (1981) The variability of rainfall in Mexico and its determination by means of the gamma distribution. Geogr Ann Ser B 63(1–2):1–10Google Scholar
  25. Návar J (2014) Spatial and temporal hydro-climatic variability in Durango, Mexico. Tecnol Cienc Agua 1:103–123Google Scholar
  26. O’Donnell R, Lewis N, McIntyre S, Condon JJJC (2011) Improved methods for PCA-based reconstructions: case study using the Steig et al. (2009) Antarctic temperature reconstruction. J Clim 24(8):2099–2115CrossRefGoogle Scholar
  27. Pandey N (2005) Societal adaptation to abrupt climate change and monsoon variability: implications for sustainable livelihoods of rural communities. Winrock International–India, New DelhiGoogle Scholar
  28. Patel NR, Chopra P, Dadhwal VK (2007) Analyzing spatial patterns of meteorological drought using standardized precipitation index. Meteorol Appl 14(4):329–336. Scholar
  29. Pedroza Sandoval A, Sánchez Cohen I, Becerra López J, Ramos Cortez E, Reyes Bernabé C, Rosales Palacios L, Vargas Piedra G (2014) Regionalización de zonas con escaso régimen pluvial: Estudio de caso zona Centro-Norte del estado de Durango, México. Rev Chapingo Ser Zonas Aridas 13(2):71–85CrossRefGoogle Scholar
  30. Rivera del Río R, Crespo Pichardo G, Arteaga Ramírez R, Quevedo Nolasco A (2007) Comportamiento espacio temporal de la sequía en el estado de Durango, México. Terra Latinoam 25(4):383–392Google Scholar
  31. Rivera J, Penalba OJC (2014) Trends and spatial patterns of drought affected area in Southern South America. Climate 2(4):264–278CrossRefGoogle Scholar
  32. Saha S, Moorthi S, Pan H-L, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91(8):1015–1058CrossRefGoogle Scholar
  33. Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63(324):1379–1389CrossRefGoogle Scholar
  34. Theil H (1950) A rank-invariant method of linear and polynomial regression analysis. In: Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, pp 1397–1412Google Scholar
  35. Thornton PK, Ericksen PJ, Herrero M, Challinor A (2014) Climate variability and vulnerability to climate change: a review. Glob Chang Biol 20(11):3313–3328CrossRefGoogle Scholar
  36. Van Etten J (2009) Inter-annual rainfall variability of arid Australia: greater than elsewhere? Aust Geogr 40(1):109–120CrossRefGoogle Scholar
  37. Vu TM, Raghavan SV, Liong SY, Mishra A (2018) Uncertainties of gridded precipitation observations in characterizing spatio-temporal drought and wetness over Vietnam. Int J Climatol 38(4):2067–2081CrossRefGoogle Scholar
  38. Waswa BS (2012) Assessment of land degradation patterns in Western Kenya-implications for restoration and rehabilitation. Doctoral dissertation, Landwirtschaftlichen Fakultät Rheinischen Friedrich-Wilhelms-Universität, BonnGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • D. A. Martinez-Cruz
    • 1
  • M. Gutiérrez
    • 2
  • M. T. Alarcón-Herrera
    • 1
    Email author
  1. 1.Centro de Investigación en Materiales Avanzados, S.C. DurangoDurangoMexico
  2. 2.Department of Geography, Geology and PlanningMissouri State UniversitySpringfieldUSA

Personalised recommendations