Advertisement

Changes in the Vegetation Cover and Quality of Aquifers in the Drylands of Mexico: Trends in an Urbanized Complex of Three Socio-Ecological Systems Within the Chihuahuan Desert

  • V. M. Reyes GómezEmail author
  • D. Núñez López
  • M. Gutiérrez
Chapter
Part of the Springer Climate book series (SPCL)

Abstract

The increase in the change of land use in many areas has resulted in an excessive extraction of groundwater, often in volumes that exceed the total recharge in the underlying aquifers. These are expected to be accentuated by climate change. Monitoring and regulating aquifers is a challenging task, especially in developing countries where data are scarce. Over an 11-year interval, the water level (WL) and water quality in wells of three contiguous aquifers in Northern Mexico were measured. An actual average WL drop rate of 2.012 m year−1 rendered unsustainable considering that the area receives 0.35 m year−1 and negligible horizontal flows. Agricultural land use increased fivefold in the last few years at the expense of rangeland, increasing 11.7–76.2% in the three aquifers, and producing a water demand threefold the aquifer recharge. The permanent presence of As and F above guidelines in several wells makes communities vulnerable to ingestion toxicity. The results of this study stress the inability of these aquifers to supply additional water to a large city nearby and the need of immediate corrective actions, e.g., promoting water-efficient irrigation, artificial aquifer recharge, and an efficient and sustained management policy.

Keywords

Socio-ecological systems Water level Loss and gain of vegetation cover Contamination Geogenic and anthropogenic As–F co-occurrence 

References

  1. Aide TM, Grau HR (2004) Globalization, migration, and Latin American ecosystems. Science 305:1915–1916CrossRefGoogle Scholar
  2. Alarcón-Herrera MT, Bundschuh J, Nath B et al (2013) Co-occurrence of arsenic and fluoride in groundwater of semi-arid regions in Latin America: genesis, mobility and remediation. J Hazard Mater 262:960–966CrossRefGoogle Scholar
  3. Barbier EB, Burgess JC, Grainger A (2010) The forest transition: towards a more comprehensive theoretical framework. Land Use Policy 27:98–107CrossRefGoogle Scholar
  4. Brauman KA, Richter BD, Postel S et al (2016) Water depletion: an improved metric for incorporating seasonal and dry-year water scarcity into water risk assessments. Elementa Sci Anthropos 4:000083CrossRefGoogle Scholar
  5. Bredehoeft JD, Alley WM (2014) Mining goundwater for sustained yield. Bridge Link Eng Soc 44(1):33–41Google Scholar
  6. Castle SL, Thomas BF, Reager JT et al (2014) Groundwater depletion during drought threatens future water security of the Colorado River Basin. Geophys Res Lett 4:5904–5911CrossRefGoogle Scholar
  7. CONABIO (2006) Capital natural y bienestar social. CONABIO, Mexico CityGoogle Scholar
  8. Currell M, Cartwright I, Raveggi M et al (2011) Controls on elevated fluoride and arsenic concentrations in groundwater from the Yuncheng Bas China. Appl Geochem 26(4):540–552CrossRefGoogle Scholar
  9. D’Odorico P, Abinash B (2012) Hydrologic variability in dryland regions: impacts on ecosystem dynamics and food security. Philos Trans R Soc Lond B 367:3145–3157CrossRefGoogle Scholar
  10. Dávila Pórcel RA, Shuth C, De León-Gómez H et al (2014) Land-use impact and nitrate analysis to validate DRASTIC vulnerability MaWL using a GIS platform of Pablillo River Basin, Linares, N.L., Mexico. Int J Geosci 5:1468–1489CrossRefGoogle Scholar
  11. El Alfy M (2014) Numerical groundwater modelling as an effective tool for management of water resources in arid areas. Hydrol Sci J 59:1259–1274CrossRefGoogle Scholar
  12. Esteller MV, Rodríguez R, Cardona A, Padilla-Sánchez L (2012) Evaluation of hydrochemical changes due to intensive aquifer exploitation: case studies from Mexico. Environ Monit Assess 184:5725–5741CrossRefGoogle Scholar
  13. Gale I (2005) Strategies for managed aquifer recharge (MAR) in semi-arid areas. UNESCO, Paris. http://unesdoc.unesco.org/images/0014/001438/143819e.pdf. Accessed 31 Oct 2016Google Scholar
  14. García E (2003) Distribución de la precipitación en la República Mexicana. Investig Geogr Bol 50:67–76Google Scholar
  15. Granados-Sánchez D, Sánchez González A, Granados-Vitorino RL et al (2011) Vegetation ecology of the Chihuahuan Desert. Rev Chapingo Ser Cienc For Ambiente XVII:111–130Google Scholar
  16. Hiscock KM, Rivet MO, Davison RM (2002) Sustainable groundwater development. Geol Soc Lond Spec Publ 193:1–14CrossRefGoogle Scholar
  17. Hyot CA (2002) The Chihuahuan Desert: diversity at risk. Endanger Species Bull XXVII(2):16–17Google Scholar
  18. INEGI (1993) Mapas de Uso del Suelo y Vegetación. Escala 1:250 000. Serie II. México. www3.inegi.org.mx/sistemas/biblioteca/ficha.aspx?upc=702825229344. Accessed 29 Oct 2016
  19. INEGI (2013) Mapas de Uso del Suelo y Vegetación. Escala 1:250 000. Serie V. México. http://catalogo.datos.gob.mx/dataset/mapas-de-uso-del-suelo-y-vegetacion-escala-1-250-000-serie-v-mexico. Accessed 29 Oct 2016
  20. Korus JT, Burbach ME (2009) Analysis of aquifer depletion criteria with implications for groundwater management. Gt Plains Res 19:187–200Google Scholar
  21. Kumar CP (2012) Climate change and its impact on groundwater resources. Int J Eng Sci 1(5):43–60Google Scholar
  22. Lambin EF, Turner BL, Geist HJ et al (2001) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Chang 11:261–269CrossRefGoogle Scholar
  23. Longmire P, Rearick M, McQuillan D et al (2016) Water quality and hydrogeochemistry of a basin and range watershed in a semi-arid region of northern New Mexico. Environ Earth Sci 75:640CrossRefGoogle Scholar
  24. López DL, Bundschuh J, Birkle P et al (2012) Arsenic in volcanic geothermal fluids of Latin America. Sci Total Environ 429:57–75CrossRefGoogle Scholar
  25. Mahlknecht J, Horst A, Hernández-Limón G et al (2008) Groundwater geochemistry of the Chihuahua City region in the Rio Conchos Basin (northern Mexico) and implications for water resources management. Hydrol Process 22:4736–4751CrossRefGoogle Scholar
  26. Mayer DG, Butler DG (1993) Statistical validation. Ecol Model 68:21–32CrossRefGoogle Scholar
  27. Morsy KM, Alenezi A, Alrukaibi DS (2017) Groundwater and dependent ecosystems: revealing the impacts of climate change. Int J Appl Eng Res 12(13):3919–3926Google Scholar
  28. NOM-011-CNA, Norma Oficial Mexicana (2000) Conservación del recurso agua que establece el método para determinar la disponibilidad media anual de las aguas nacionales, México. http://www.conagua.gob.mx/CONAGUA07/Noticias/NOM-011-CNA-2000.pdf. Accessed 19 Oct 2016
  29. NOM-127-SSAI-1994, Modificación a la Norma Oficial Mexicana NOM-127-SSAI-(2005) Salud ambiental. Agua para usos y consumo humano. Límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización. http://www.cofepris.gob.mx/MJ/Documents/Normas/mod127ssa1.pdf. Accessed 19 Oct 2016
  30. Núñez López D, Muñoz Robles C, Reyes Gómez VM et al (2007) Characterization of drought at different time scales in Chihuahua, México. Agrociencia 41:253–261Google Scholar
  31. Opazo T, Aravena R, Parker B (2016) Nitrate distribution and potential attenuation mechanisms of a municipal water supply bedrock aquifer. Appl Geochem 73:157–168CrossRefGoogle Scholar
  32. Reyes Gómez VM, Alarcón Herrera MT, Gutiérrez M, Núñez López D (2015) Arsenic and fluoride contamination in groundwater of an endorheic basin undergoing land use changes. Arch Environ Contam Toxicol 68:292–304CrossRefGoogle Scholar
  33. Reyes Gómez VM, Gutiérrez M, Nájera Haro B et al (2017) Groundwater quality impacted by land use/land cover change in a semiarid region of Mexico. Groundw Sustain Dev 5:160–167CrossRefGoogle Scholar
  34. Robertson WM, Sharp JM Jr (2015) Estimates of net infiltration in arid basins and potential impacts on recharge and solute flux due to land use and vegetation change. J Hydrol 522:211–227CrossRefGoogle Scholar
  35. Rosas I, Belmont R, Armienta MA (1999) Arsenic concentrations in water, soil, milk and forage in Comarca Lagunera, Mexico. Water Air Soil Pollut 112:133–149CrossRefGoogle Scholar
  36. Rosete VF, Pérez-Damián JL, Bocco G (2008) Cambio de uso el suelo y vegetación en la Península de Baja California, México (Land use and vegetation change in Baja California Península, México). Investig Geogr 67:39–58Google Scholar
  37. Rosete VF, Velázquez A, Bocco G, Espejel I (2014) Multi-scale land cover dynamics of semiarid scrubland in Baja California, México. Reg Environ Chang 14:1315–1328CrossRefGoogle Scholar
  38. Scanlon BR, Faunt CC, Longuevergne L et al (2012) Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc Natl Acad Sci 109:9320–9325CrossRefGoogle Scholar
  39. Scanlon BR, Levitt DG, Reedy RC (2005) Ecological controls on water-cycle response to climate variability in deserts. Proc Natl Acad Sci 102(17):6033–6038CrossRefGoogle Scholar
  40. Scanlon BR, Zhang Z, Save H et al (2016) Global evaluation of new GRACE mascon products for hydrologic applications. Water Resour Res 52:9412–9429CrossRefGoogle Scholar
  41. Scott C (2003) Sustainable groundwater management: have property rights reforms helped in Mexico? In: World Water Forum 3, Kyoto, Japan, International Water Management Institute (IWMI). http://publications.iwmi.org/pdf/H044092.pdf. Accessed 1 Nov 2016
  42. Steward DR, Allen AJ (2016) Peak groundwater depletion in the High Plains Aquifer, projections from 1930 to 2110. Agric Water Manag 170:36–48CrossRefGoogle Scholar
  43. UNESCO (2007) Groundwater resources sustainability indicators. IHP-VI, series on groundwater 14. http://unesdoc.unesco.org/images/0014/001497/149754e.pdf. Accessed Oct 2017
  44. Wang Z-Q, Wu Q (2006) Development of groundwater sustainability indicators. In: Sustainability of groundwater resources and its indicators (proceedings of symposium S3 held during the seventh IAHS scientific assembly at Foz do Iguaçu, Brazil, April 2005), vol 302. IAHS, Wallingford, pp 29–34Google Scholar
  45. Yager RM, Heywood CE (2014) Simulation of the effects of seasonally varying pumping on intraborehole flow and the vulnerability of public-supply wells to contamination. Groundwater 52:40–52CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • V. M. Reyes Gómez
    • 1
    Email author
  • D. Núñez López
    • 2
  • M. Gutiérrez
    • 3
  1. 1.Red Ambiente y SustentabilidadInstituto de Ecología, A.C.ChihuahuaMexico
  2. 2.Centro de Investigación en Materiales Avanzados, S.C.DurangoMexico
  3. 3.Department of Geography, Geology and PlanningMissouri State UniversitySpringfieldUSA

Personalised recommendations