Advertisement

Vulnerability to the Effects of Climate Change: Future Aridness and Present Governance in the Coastal Municipalities of Mexico

  • G. SeingierEmail author
  • O. Jiménez-Orocio
  • I. Espejel
Chapter
Part of the Springer Climate book series (SPCL)

Abstract

We estimated vulnerability to climate change in the coastal municipalities of Mexico through an interdisciplinary approach using an index model with three components: (1) Exposure to dryness and climate change (Lang’s dryness index), (2) socioeconomic sensitivity, and (3) adaptation capacity. Data input were national census data and general circulation model outputs (2045–2069 scenario). Scenarios were compared to reference climatology through Lang’s aridity index, which was found to be practical as an aridity indicator and foresee its future change in value. This methodological approach allowed to set priorities by identifying groups of more threatened and less prepared municipalities in the territories, which show more differences between the present climatological parameter values and the values predicted assuming future climatic scenarios, have less climate change related institutional instruments, present social weaknesses (poverty and inequality), or show environmental degradation. Our results showed the presence of arid zones in 43% of Mexico’s 266 coastal municipalities, comprising more than half of the total coastal population. Comparing present and future scenarios allows differentiating regions already arid that will remain in this situation (Northern Pacific) from regions that are currently humid but will shift to an arid (Caribbean Sea) or desert category (Northern Gulf of Mexico). Both used models predicted a future shift of all categories towards dryness and a worrisome number that will turn to desert and arid categories. We found regional heterogeneity and a complex contribution of each subindex to the total coastal vulnerability index. We concluded that our results can be used as an input to guide the current coastal policies to promote a development model that decreases the vulnerability of coastal municipalities and advance towards a model that includes the complexities of the Mexican coastal dryland socio-ecological systems, its challenges, and its opportunities.

Keywords

Coastal vulnerability Coastal sensitivity Coastal exposure Lang’s index, Dryness Adaptation capacity Governance Coastal municipalities 

Notes

Acknowledgments

The present research is part of the characterization and regionalization of the coastal zones of Mexico that includes methods of Geographic Information Systems and biophysical and socioeconomic statistics in current conditions and with climate change project of the 2013–2016 Collaborative Platform on Climate Change and Green Growth between Canada and Mexico.

References

  1. Abuodha P, Woodroffe CD (2006) International assessments of the vulnerability of the coastal zone to climate change, including an Australian perspective. Australian Greenhouse Office, Department of the Environment and Heritage, AustraliaGoogle Scholar
  2. Abuodha P, Woodroffe CD (2010a) Vulnerability assessment. In: Green DR (ed) Coastal zone management. Thomas Telford, London, pp 262–290CrossRefGoogle Scholar
  3. Abuodha P, Woodroffe CD (2010b) Assessing vulnerability to sea-level rise using a coastal sensitivity index: a case study from Southeast Australia. J Coast Conserv 14:189–205CrossRefGoogle Scholar
  4. Adger WN (2006) Vulnerability. Glob Environ Chang 16:268–281CrossRefGoogle Scholar
  5. Adger WN, Arnell NW, Tompkins EL (2005) Successful adaptation to climate change across scales. Glob Environ Chang 12(2):77–86CrossRefGoogle Scholar
  6. Amador GA, López G, Mendoza ME (2011) Three approaches to the assessment of spatio-temporal distribution of the water balance: the case of the Cuitzeo basin, Michoacán, México. Investigaciones Geográficas, Instituto de Geografía, UNAM, México 76:34–55Google Scholar
  7. Asociación Mexicana de Institutos Municipales de Planeación (AMIMP) (2003) https://www.amimp.org.mx/. Accessed 26 Apr 2019
  8. Azuz-Adeath I, Arredondo-García MC, Espejel I, Rivera-Arriaga E, Seingier G, Fermán JL (2010a) Referentes internacionales sobre indicadores e índices. Historia y estado del arte. In: Rivera-Arriaga E, Azuz-Adeath I, Alpuche GL, Villalobos-Zapata GJ (eds) Cambio climático en México un enfoque costero-marino. Universidad Autónoma de Campeche, Cetys-Universidad, Gobierno del Estado de Campeche, pp 845–858Google Scholar
  9. Azuz-Adeath I, Arredondo-García MC, Espejel I, Rivera-Arriaga E, Seingier G, Fermán JL (2010b) Propuesta de indicadores de la Red Mexicana de Manejo Integrado Costero-Marino. In: Rivera-Arriaga E, Azuz-Adeath I, Alpuche GL, Villalobos-Zapata GJ (eds) Cambio climático en México un enfoque costero-marino. Universidad Autónoma de Campeche, Cetys-Universidad, Gobierno del Estado de Campeche, pp 901–940Google Scholar
  10. Balica SF, Popescu I, Beevers L, Wright NG (2013) Parametric and physically based modelling techniques for flood risk and vulnerability assessment: a comparison. Environ Model Softw 41:84–92CrossRefGoogle Scholar
  11. Bormudoi A, Hazarika MK, Samarakoon L, Phosalath S, Sengtianthr V (2008) Flood hazard in Savannakhet Province, Lao PDR mapping using HEC-RAS, remote sensing and GIS. In: 29th Asian conference on remote sensing. Colombo, Sri LankaGoogle Scholar
  12. Comisión Nacional de Áreas Naturales Protegidas (CONANP) (2017) Programas de Adaptación al Cambio Climático en Áreas Naturales Protegidas. CONANP. https://www.gob.mx/conanp/documentos/programas-de-adaptacion-al-cambio-climatico-en-areas-naturales-protegidas
  13. Dang NM, Babel MS, Huynh TL (2011) Evaluation of food risk parameters in the day river flood diversion area, Red River Delta, Vietnam. Nat Hazards 56:169–194CrossRefGoogle Scholar
  14. Dwarakish GS, Vinay SA, Natesan U, Asano T, Kakimuna T, Venkataramana K, Jagadeesha Pai B, Babita MK (2009) Coastal vulnerability assessment of the future sea level rise in Udupi coastal zone of Karnataka state, west coast of India. Ocean Coast Manag 52:467–478CrossRefGoogle Scholar
  15. Eakin H, Luers AL (2006) Assessing the vulnerability of socio-environmental systems. Annu Rev Environ Resour 31:365–394CrossRefGoogle Scholar
  16. Füsel HM (2007) Vulnerability: a generally applicable conceptual framework for climate change research. Glob Environ Chang 17:155–167CrossRefGoogle Scholar
  17. Gornitz VM, Kanciruk P (1989) Assessment of global coastal hazards from sea level rise. In: Proceedings of the 6th symposium on coastal and ocean management. American Society of Civil Engineers, Charleston, SCGoogle Scholar
  18. Gornitz VM, Daniels RC, White TW, Birdwell KR (1994) The development of a coastal risk assessment database: vulnerability to sea level rise in the US southeast. J Coast Res 12:327–338Google Scholar
  19. Grattan SR, Zeng L, Shamnon MC, Robert SR (2002) Rice is more sensitive than previous thought. Calif Agric 56:189–195CrossRefGoogle Scholar
  20. Harvey N, Woodroffe CD (2008) Australian approaches to coastal vulnerability assessment. Sustain Sci 3:67–87CrossRefGoogle Scholar
  21. Hinkel J (2011) Indicators of vulnerability and adaptive capacity: towards a clarification of the science-policy interface. Glob Environ Chang 21:198–208CrossRefGoogle Scholar
  22. Hoang HN, Huynh HK, Nguyen TH (2012) Simulation of salinity intrusion in the context of the Mekong Delta Region (Viet Nam). IEEE, pp 1–4Google Scholar
  23. Huang Y, Li F, Bai X, Cui S (2012) Comparing vulnerability of coastal communities to land use change: analytical framework and a case study in China. Environ Sci Pol 23:133–143CrossRefGoogle Scholar
  24. Hubálek Z, Horáková M (1988) Evaluation of climatic similarity between areas in biogeography. J Biogeogr 15:409–418CrossRefGoogle Scholar
  25. IPCC (2007) Summary for policymakers. In: Palutikof J, van der Linden P, Hanson C (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 7–22Google Scholar
  26. Kafle TP, Hazarika MK, Samarakoon L (2007) Flood risk assessment in the flood plain of Bagmati river in NepalGoogle Scholar
  27. Le S (2003) The restructuring of production in coastal areas in the Mekong River Delta. J Agric Rural Dev 5Google Scholar
  28. Le QT, Nguyen HT, Le AT (2009) Climate change impacts and vulnerabilities assessment for Can Tho City. Asian Cities Climate Change Resilience Network (ACCCRN) program. DRAGON-Mekong-CTU, Can Tho, VietnamGoogle Scholar
  29. Liu J (1996) Macro-scale survey and dynamic study of natural resources and environment of China by remote sensing. Press of Science and Technology of China, BeijingGoogle Scholar
  30. Mackey P, Russell M (2011) Climate change scenarios, sea level rise for Ca Mau, Kien Giang- climate change impact and adaptation study in the Mekong Delta. Asian Development Bank, TA 7377 e VIE. Sinclair Knight Merz (SKM), Vietnam Institute of Meteorology, Hydrology, and Environment (IMHEN), y the Kien Giang Peoples Committee, Melbourne VIC 8009 AustraliaGoogle Scholar
  31. McFadden L (2007) Vulnerability analysis: a useful concept for coastal management? In: McFadden L, Nicholls RJ, Penning-Rowsell E (eds) Managing coastal vulnerability. Elsevier, Amsterdam, pp 15–28Google Scholar
  32. McLaughlin S, Cooper JAG (2010) A multi-scale coastal vulnerability index: a tool for coastal managers? Environ Hazards 9:233–248CrossRefGoogle Scholar
  33. McLeod E, Poulter B, Hinkel J, Reyes E, Salm R (2010) Sea-level rise impact models and environmental conservation: a review of models and their applications. Ocean Coast Manag 53:507–517CrossRefGoogle Scholar
  34. Nardo M, Saisana M, Saltelli A, Tarantola S (2005) Handbook on constructing composite indicators: methodology and user guide. Organisation for Economic Co-operation and Development, Paris, p 207Google Scholar
  35. Neumann B, Vafeidis AT, Zimmermann J, Nicholss RJ (2015) Future coastal population growth and exposure to sea-level rise and coastal flooding - a global assessment. PLoS One 10(3):e2371CrossRefGoogle Scholar
  36. Nguyen NT (2012) Assessing the vulnerability of coastal Phu Quoc Island, Kien Giang in terms of sea-level rise. Unpublished Master of environmental sciences Master degree. University of Natural Sciences, National University of Ho Chi Minh City, Ho Chi Minh, VietnamGoogle Scholar
  37. Nguyen NT, Bonetti J, Rogers K, Woodroffe CD (2016) Indicator-based assessment of climate-change impacts on coasts: a review of concepts, methodological approaches and vulnerability indices. Ocean Coast Manag 123:18–43CrossRefGoogle Scholar
  38. Nicholls RJ, Wong PP, Burkett V, Woodroffe CD, Hay J (2008) Climate change and coastal vulnerability assessment: scenarios for integrated assessment. Sustain Sci 3:89–102CrossRefGoogle Scholar
  39. Organisation for Economic Co-operation and Development (OECD) (2000) Frameworks to measure sustainable development. Organisation for Economic Co-operation and Development, París, p 164Google Scholar
  40. Organisation for Economic Co-operation and Development (OECD) (2003) OECD environmental indicators development, measurement and use. Organisation for Economic Co-operation and Development, París, p 37Google Scholar
  41. Özyurt G, Ergin A (2010) Improving coastal vulnerability assessments to sea-level rise: a new indicator-based methodology for decision makers. J Coast Res 26:265–273CrossRefGoogle Scholar
  42. Pendleton EA, Thieler ER, Williams SJ (2010) Importance of coastal change variables in determining vulnerability to sea- and lake-level change. J Coast Res 26:176–183CrossRefGoogle Scholar
  43. Pham HT, Nguyen VC (2005) Forecasting the erosion and sedimentation in the coastal and river mouth areas and preventive measures. State level research project. Hanoi. 407pGoogle Scholar
  44. Preston BL, Smith TF, Brooke C, Gorddard R, Measham TG, Withycombe G, Beveridge B, Morrison C, McInnes K, Abbs D (2008) Mapping climate change vulnerability in the Sydney Coastal Councils Group. Report prepared for the Sydney Coastal Councils Group. Sydney Coastal Council Groups. 117 pGoogle Scholar
  45. Sánchez-Torres G, Jospina-Noreña JE, Gay-García C, Conde C (2011) Vulnerability of water resources to climate change scenarios. Impacts on the irrigation districts in the Guayalejo–Tamesí river basin, Tamaulipas, México. Atmósfera 24(1):141–155Google Scholar
  46. Secretaria de Desarrollo Social (SEDESOL) (2012) Guía Municipal de Acciones frente al Cambio Climático, Con énfasis en desarrollo urbano y ordenamiento territorial. http://www.inafed.gob.mx/work/models/inafed/Resource/330/1/images/
  47. Secretaria de Gobernación (SEGOB) (2018) Acuerdo mediante el cual se expide la Política Nacional de Mares y Costas de México. Diario Oficial de la Federación. https://dof.gob.mx/nota_detalle.php?codigo=5545511&fecha=30/11/2018
  48. Secretaria de Gobernación (SEGOB) (2019) Cobertura de Atlas Municipales. http://www.atlasnacionalderiesgos.gob.mx/archivo/cob-atlas-municipales.html. Accessed 26 Apr 2019
  49. Secretaria de Medio Ambiente y Recursos Naturales (SEMARNAT) (2006) Política Nacional de Mares y Costas. https://www.biodiversidad.gob.mx/pais/mares/pdf/A4_PNMC_actualizada_dic2015.pdf
  50. Seingier G, Espejel I, Ferman JL, Montaño G, Azuz I, Aramburo G (2011a) Halfway to sustainability. Ocean Coast Manag 54(2):123–128CrossRefGoogle Scholar
  51. Seingier G, Espejel I, Fermán JL, Montaño G, Azuz I, Aramburo G (2011b) Design of an integrated coastal orientation index. Cross-comparison of Mexican municipalities. Ecol Indic 11(2):633–642CrossRefGoogle Scholar
  52. Spangenberg JH, Bonniot O (1998) Sustainability indicators. A compass on the road towards sustainability. Wuppertal papers. http://nbn-resolving.de/urn:nbn:de:bsz:wup4-opus-7218
  53. Tingsanchali T, Karim MF (2005) Flood hazard and risk analysis in the southwest region of Bangladesh. Hydrol Process 19:2055–2069CrossRefGoogle Scholar
  54. Troyo-Diéguez E, Mercado-Mancera G, Cruz-Falcón A, Nieto AG, Valdez-Cepeda RD, García-Hernández JL, Murillo-Amador B (2014) Análisis de la sequía y desertificación mediante índices de aridez y estimación de la brecha hídrica en Baja California Sur, noroeste de México. Invest Geogr 85:66–81.  https://doi.org/10.14350/rig.32404CrossRefGoogle Scholar
  55. Yin J, Yin Z, Wang J, Xu S (2012) National assessment of coastal vulnerability to sea-level rise for the Chinese coast. J Coast Conserv 16:123–133CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Facultad de Ciencias MarinasUniversidad Autónoma de Baja CaliforniaEnsenadaMexico
  2. 2.Facultad de CienciasUniversidad Autónoma de Baja California UABCEnsenadaMexico

Personalised recommendations