Neuroradiological Imaging of Traumatic Brain Injury

  • Tuong Huu LeEmail author
  • Alisa Gean
  • Shirley I. Stiver


Fundamentals and recent advances in imaging techniques and selection paradigms for the diagnosis of traumatic brain injury (TBI) will be discussed. Characteristic imaging findings for common TBI lesions will be described. Computed tomography (CT) is the modality of choice for the initial assessment of acute TBI. Magnetic resonance imaging (MRI) is recommended for patients with acute TBI when the neurological findings are unexplained by CT. For the evaluation of subacute and chronic TBI, MRI is the modality of choice. MR techniques, such as diffusion-weighted imaging, can improve the identification of otherwise occult lesions, especially with mild TBI. Modalities such as susceptibility-weighted imaging, diffusion tensor imaging and tractography, magnetization transfer imaging, magnetic source imaging, magnetic resonance spectroscopy, positron emission tomography, and perfusion imaging provide novel insights into the diagnosis and management of TBI.


Imaging Traumatic brain injury Blast-induced injury CT MRI 



We thank the residents, fellows, and attendings from the Neuroradiology Section of the University of California, San Francisco. Some of the cases presented in this article were the product of their contributions.


  1. 1.
    Teasdale G, Jennett B. Assessment of coma and impaired consciousness. A practical scale. Lancet. 1974;2(7872):81–4.CrossRefGoogle Scholar
  2. 2.
    Shetty VS, Reis MN, Aulino JM, Berger KL, Broder J, Choudhri AF, et al. ACR appropriateness criteria head trauma. J Am Coll Radiol. 2016;13:668–79.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Bell RS, Loop JW. The utility and futility of radiographic skull examination for trauma. N Engl J Med. 1971;284(5):236–9.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Hackney DB. Skull radiography in the evaluation of acute head trauma: a survey of current practice. Radiology. 1991;181(3):711–4.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Masters SJ. Evaluation of head trauma: efficacy of skull films. AJR Am J Roentgenol. 1980;135(3):539–47.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Frush DP. Pediatric CT: practical approach to diminish the radiation dose. Pediatr Radiol. 2002;32:714–7.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Gravel J, Gouin S, Chalut D, Crevier L, Decarie JC, Elazhary N, et al. Derivation and validation of a clinical decision rule to identify young children with skull fracture following isolated head trauma. CMAJ. 2015;187:1202–8.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Munoz-Sanchez MA, Murillo-Cabezas F, Cayuela-Dominguez A, Rincon-Ferrari MD, Amaya-Villar R, Leon-Carrion J. Skull fracture, with or without clinical signs, in mTBI is an independent risk marker for neurosurgically relevant intracranial lesion: a cohort study. Brain Inj. 2009;23(1):39–44.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Nakahara K, Shimizu S, Kitahara T, Oka H, Utsuki S, Soma K, et al. Linear fractures invisible on routine axial computed tomography: a pitfall at radiological screening for minor head injury. Neurol Med Chir (Tokyo). 2011;51:272–4.CrossRefGoogle Scholar
  10. 10.
    Jain V, Chari R, Farine D, Maternal Fetal Medicine Committee, Bujold E, Gagnon R, et al. Guidelines for the management of a pregnant trauma patient. J Obstet Gynaecol Can. 2015;37:553–74.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Brown HL. Trauma in pregnancy. Obstet Gynecol. 2009;114:145–60.CrossRefGoogle Scholar
  12. 12.
    Hartl R, Ko K. In utero skull fracture: case report. J Trauma. 1996;41:549–52.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Palmer JD, Sparrow OC. Extradural haematoma following intrauterine trauma. Injury. 1994;25:671–3.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Bowdler N, Faix RG, Elkins T. Fetal skull fracture and brain injury after a maternal automobile accident. A case report. J Reprod Med. 1987;32:375–8.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Breysem L, Cossey V, Mussen E, Demaerel P, Van de Voorde W, Smet M. Fetal trauma: brain imaging in four neonates. Eur Radiol. 2004;14:1609–14.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Ryan ME, Palasis S, Saigal G, Singer AD, Karmazy B, Dempsey ME, et al. ACR appropriateness criteria head trauma—child. J Am Coll Radiol. 2014;11:939–47.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Haydel MJ, Preston CA, Mills TJ, Luber S, Blaudeau E, DeBieux PM. Indications for computed tomography in patients with minor head injury. N Engl J Med. 2000;343:100–5.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Stiell IG, Lesiuk H, Wells GA, McKnight RD, Brison R, Clement C, et al. The Canadian CT Head Rule Study for patients with minor head injury: rationale, objectives, and methodology for phase I (derivation). Ann Emerg Med. 2001;38(2):160–9.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Stiell IG, Lesiuk H, Wells GA, Coyle D, McKnight RD, Brison R, et al. Canadian CT head rule study for patients with minor head injury: methodology for phase II (validation and economic analysis). Ann Emerg Med. 2001;38(3):317–22.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Stiell IG, Wells GA, Vandemheen K, Clement C, Lesiuk H, Laupacis A, et al. The Canadian CT Head Rule for patients with minor head injury. Lancet. 2001;357:1391–6.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Mower WR, Hoffman JR, Herbert M, Wolfson AB, Pollack CV Jr, Zucker MI. Developing a decision instrument to guide computed tomographic imaging of blunt head injury patients. J Trauma. 2005;59:954–9.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Jagoda AS, Cantrill SV, Wears RL, Valadka A, Gallagher EJ, Gottesfeld SH, et al. Clinical policy: neuroimaging and decisionmaking in adult mild traumatic brain injury in the acute setting. Ann Emerg Med. 2002;40(2):231–49.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Smits M, Dippel DW, de Haan GG, Dekker HM, Vos PE, Kool DR, et al. External validation of the Canadian CT Head Rule and the New Orleans criteria for CT scanning in patients with minor head injury. JAMA. 2005;294:1519–25.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Stiell IG, Clement CM, Rowe BH, Schull MJ, Brison R, Cass D, et al. Comparison of the Canadian CT Head Rule and the New Orleans criteria in patients with minor head injury. JAMA. 2005;294:1511–8.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Papa L, Stiell IG, Clement CM, Pawlowicz A, Wolfram A, Braga C, et al. Performance of the Canadian CT Head Rule and the New Orleans criteria for predicting any traumatic intracranial injury on computed tomography in a United States level 1 trauma center. Acad Emerg Med. 2012;19:2–10.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Kuppermann N, Holmes JF, Dayan PS, Hoyle JD Jr, Atabaki SM, Holubkov R, et al. Identification of children at very low risk of clinically-important brain injuries after head trauma: a prospective cohort study. Lancet. 2009;374:1160–70.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Reljic T, Mahony H, Djulbegovic B, Etchason J, Paxton H, Flores M, et al. Value of repeat head computed tomography after traumatic brain injury: systematic review and meta-analysis. J Neurotrauma. 2014;31(1):78–98.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Washington CW, Grubb RL Jr. Are routine repeat imaging and intensive care unit admission necessary in mild traumatic brain injury? J Neurosurg. 2012;116(3):549–57.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Cohen DB, Rinker C, Wilberger JE. Traumatic brain injury in anticoagulated patients. J Trauma. 2006;60(3):553–7.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Almenawer SA, Bogza I, Yarascavitch BK, Reddy K. The value of scheduled repeat cranial computed tomography after mild head injury. Neurosurgery. 2013;72:56–64.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Wang MC, Linnau KF, Tirschwell DL, Hollingworth W. Utility of repeat computed tomography after blunt head trauma: a systematic review. J Trauma. 2006;61:226–33.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Enterline DS, Kapoor G. A practical approach to CT angiography of the neck and brain. Tech Vasc Interv Radiol. 2006;9(4):192–204.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Yonas H, Snyder JV, Gur D, Good WR, Latcchaw RE, Wolfson SK Jr, et al. Local cerebral blood flow alterations (Xe-CT method) in an accident victim. J Comput Assist Tomogr. 1984;8:990–1.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Chieregato A, Tanfani A, Compagnone C, Turrini C, Sarpieri F, Ravaldini M, et al. Global cerebral blood flow and CPP after severe head injury: a xenon-CT study. Intensive Care Med. 2007;33:856–62.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Chieregato A, Fainardi E, Tanfani A, Martino C, Pransani V, Cocciolo F, et al. Mixed dishomogeneous hemorrhagic brain contusions. Mapping of cerebral blood flow. Acta Neurochir Suppl. 2003;86:333–7.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Kaloostian P, Robertson C, Gopianth SP, Stippler M, King CC, Qualls C, et al. Outcome prediction within twelve hours after severe traumatic brain injury by quantitative cerebral blood flow. J Neurotrauma. 2012;29:727–34.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Honda M, Ichibayashi R, Yokomuro H, Yoshihara K, Masuda H, Haga D, et al. Early cerebral circulation disturbance in patients suffering from severe traumatic brain injury (TBI): a xenon CT and perfusion CT study. Neurol Med Chir (Tokyo). 2016;56:501–9.CrossRefGoogle Scholar
  38. 38.
    Fridley J, Robertson C, Gopinath S. Quantitative lobar cerebral blood flow for outcome prediction after traumatic brain injury. J Neurotrauma. 2015;32:75–82.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Inoue Y, Shiozaki T, Tasaki O, Hayakata T, Ikegawa H, Yoshiya K, et al. Changes in cerebral blood flow from the acute to the chronic phase of severe head injury. J Neurotrauma. 2005;22:1411–8.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Yonas H, Pindozola RP, Johnson DW. Xenon/computed tomography cerebral blood flow and its use in clinical management. Neurosurg Clin N Am. 1996;7:605–16.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Carlson AP, Brown AM, Zager E, Ucchino K, Marks MP, Robertson C, et al. Xenon-enhanced cerebral blood flow at 28% xenon provides uniquely safe access to quantitative, clinically useful cerebral blood flow information: a multicenter study. AJNR Am J Neuroradiol. 2011;32:1315–20.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Wintermark M, Sincic R, Sridhar D, Chien JD. Cerebral perfusion CT: technique and clinical applications. J Neuroradiol. 2008;35:253–60.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Wintermark M, Sesay M, Barbier E, Borbély K, Dillon WP, Eastwood JD, et al. Comparative overview of brain perfusion imaging techniques. Stroke. 2005;36(9):e83–99.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Leiva-Salinas C, Provenzale JM, Kudo K, Sasaki M, Wintermark M. The alphabet soup of perfusion CT and MR imaging: terminology revisited and clarified in five questions. Neuroradiology. 2012;54:907–18.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Wintermark M, van Melle G, Schnyder P, Revelly JP, Porchet F, Regli L, et al. Admission perfusion CT: prognostic value in patients with severe head trauma. Radiology. 2004;232(1):211–20.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Noguchi K, Ogawa T, Seto H, Inugami A, Hadeishi H, Fujita H, et al. Subacute and chronic subarachnoid hemorrhage: diagnosis with fluid-attenuated inversion-recovery MR imaging. Radiology. 1997;203(1):257–62.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Woodcock RJ Jr, Short J, Do HM, Jensen ME, Kallmes DF. Imaging of acute subarachnoid hemorrhage with a fluid-attenuated inversion recovery sequence in an animal model: comparison with non-contrast-enhanced CT. AJNR Am J Neuroradiol. 2001;22(9):1698–703.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Ashikaga R, Araki Y, Ishida O. MRI of head injury using FLAIR. Neuroradiology. 1997;39(4):239–42.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Frigon C, Jardine DS, Weinberger E, Heckbert SR, Shaw DW. Fraction of inspired oxygen in relation to cerebrospinal fluid hyperintensity on FLAIR MR imaging of the brain in children and young adults undergoing anesthesia. AJR Am J Roentgenol. 2002;179(3):791–6.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Stuckey SL, Goh TD, Heffernan T, Rowan D. Hyperintensity in the subarachnoid space on FLAIR MRI. AJR Am J Radiol. 2007;189:913–21.Google Scholar
  51. 51.
    Messori A, Polonara G, Mabiglia C, Salvolini U. Is haemosiderin visible indefinitely on gradient-echo MRI following traumatic intracerebral haemorrhage? Neuroradiology. 2003;45(12):881–6.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Haacke EM, Xu Y, Cheng YC, Reichenbach JR. Susceptibility weighted imaging (SWI). Magn Reson Med. 2004;52(3):612–8.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng Y-CN. Susceptibility-weighted imaging: technical aspects and clinical applications, Part 1. AJNR Am J Neuroradiol. 2009;30:19–30.PubMedCrossRefGoogle Scholar
  54. 54.
    Babikian T, Freier MC, Tong KA, Nickerson JP, Wall CJ, Holshouser BA, et al. Susceptibility weighted imaging: neuropsychologic outcome and pediatric head injury. Pediatr Neurol. 2005;33(3):184–94.PubMedCrossRefGoogle Scholar
  55. 55.
    Tong KA, Ashwal S, Holshouser BA, Shutter LA, Herigault G, Haacke EM, et al. Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury: improved detection and initial results. Radiology. 2003;227(2):332–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Tong KA, Ashwal S, Holshouser BA, Nickerson JP, Wall CJ, Shutter LA, et al. Diffuse axonal injury in children: clinical correlation with hemorrhagic lesions. Ann Neurol. 2004;56(1):36–50.PubMedCrossRefGoogle Scholar
  57. 57.
    Arfanakis K, Haughton VM, Carew JD, Rogers BP, Dempsey RJ, Meyerand ME. Diffusion tensor MR imaging in diffuse axonal injury. AJNR Am J Neuroradiol. 2002;23(5):794–802.PubMedGoogle Scholar
  58. 58.
    Le TH, Mukherjee P, Henry RG, Berman JI, Ware M, Manley GT. Diffusion tensor imaging with three-dimensional fiber tractography of traumatic axonal shearing injury: an imaging correlate for the posterior callosal “disconnection” syndrome: case report. Neurosurgery. 2005;56(1):189.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Liu AY, Maldjian JA, Bagley LJ, Sinson GP, Grossman RI. Traumatic brain injury: diffusion-weighted MR imaging findings. AJNR Am J Neuroradiol. 1999;20(9):1636–41.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Niogi SN, Mukherjee P, Ghajar J, Johnson C, Kolster RA, Sarkar R, et al. Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3T diffusion tensor imaging study of mild traumatic brain injury. AJNR Am J Neuroradiol. 2008;29(5):967–73.PubMedCrossRefGoogle Scholar
  61. 61.
    Huisman TA, Sorensen AG, Hergan K, Gonzalez RG, Schaefer PW. Diffusion-weighted imaging for the evaluation of diffuse axonal injury in closed head injury. J Comput Assist Tomogr. 2003;27:5–11.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Eierud C, Craddock RC, Fletcher S, Aulakh M, King-Casas B, Kuehl D, et al. Neuroimaging after mild traumatic brain injury: review and meta-analysis. Neuroimage Clin. 2014;4:283–94.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Conturo TE, Lori NF, Cull TS, Akbudak E, Snyder AZ, Shimony JS, et al. Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A. 1999;96(18):10422–7.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Mori S, van Zijl P. Fiber tracking: principles and strategies—a technical review. NMR Biomed. 2002;15:468–80.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Chamard E, Lefebvre L, Theoret H. Long-term abnormalities in the corpus callosum of female concussed athletes. J Neurotrauma. 2016;33:1220–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Khong E, Odenwald N, Hashim E, Cusimano MD. Diffusion tensor imaging findings in post-concussion syndrome patients after mild traumatic brain injury: a systematic review. Front Neurol. 2016;7:156.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Rutgers DR, Toulgoat F, Cazejust J, Fillard P, Lasjaunias P, Ducreux D. White matter abnormalities in mild traumatic brain injury: a diffusion tensor imaging study. AJNR Am J Neurorad. 2008;29:514–9.CrossRefGoogle Scholar
  68. 68.
    Alhilali LM, Delic JA, Gumus S, Fakhran S. Evaluation of white matter injury patterns underlying neuropsychiatric symptoms after mild traumatic brain injury. Radiology. 2015;277:793–800.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Messe A, Caplain S, Paradot G, Garrigue D, Mineo JF, Ares GS, et al. Diffusion tensor imaging and white matter lesions at the subacute stage in mild traumatic brain injury with persistent neurobehavioral impairment. Hum Brain Mapp. 2011;32:999–1011.PubMedCrossRefGoogle Scholar
  70. 70.
    Meola A, Yeh FC, Fellows-Mayle W, Weed J, Fernandez-Miranda JC. Human connectome-based tractographic atlas of the brainstem connections and surgical approaches. Neurosurgery. 2016;79:437–54.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Fernandez-Miranda JC, Pathak S, Engh J, Jarbo K, Verstynen T, Yeh FC, et al. High-definition fiber tractography of the human brain: neuroanatomical validation and neurosurgical applications. Neurosurgery. 2012;71:430–53.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Van Essen DC, Ugurbil K, Auerbach E, Barch D, Behrens TE, Bucholz R, et al. The human connectome project: a data acquisition perspective. NeuroImage. 2012;62:222–2231.Google Scholar
  73. 73.
    Croall I, Smith FE, Blamire AM. Magnetic resonance spectroscopy for traumatic brain injury. Top Magn Reson Imaging. 2015;24:267–74.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Ross BD, Ernst T, Kreis R, Haseler LJ, Bayer S, Danielsen E, et al. 1H MRS in acute traumatic brain injury. J Magn Reson Imaging. 1998;8:829–40.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Garnett MR, Blamire AM, Corkill RG, Cadoux-Hudson TA, Rajagopalan B, Styles P. Early proton magnetic resonance spectroscopy in normal-appearing brain correlates with outcome in patients following traumatic brain injury. Brain. 2000;123(Pt 10):2046–54.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Garnett MR, Blamire AM, Rajagopalan B, Styles P, Cadoux-Hudson TA. Evidence for cellular damage in normal-appearing white matter correlates with injury severity in patients following traumatic brain injury: a magnetic resonance spectroscopy study. Brain. 2000;123(Pt 7):1403–9.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Sinson G, Bagley LJ, Cecil KM, Torchia M, McGowan JC, Lenkinski RE, et al. Magnetization transfer imaging and proton MR spectroscopy in the evaluation of axonal injury: correlation with clinical outcome after traumatic brain injury. AJNR Am J Neuroradiol. 2001;22(1):143–51.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Brooks WM, Stidley CA, Petropoulos H, Jung RE, Weers DC, Friedman SD, et al. Metabolic and cognitive response to human traumatic brain injury: a quantitative proton magnetic resonance study. J Neurotrauma. 2000;17:629–40.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Friedman SD, Brooks WM, Jung RE, Chiulli SJ, Sloan JH, Montoya BT, et al. Quantitative proton MRS predicts outcome after traumatic brain injury. Neurology. 1999;52:1384–91.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Gasparovic C, Yeo R, Mannell M, Ling J, Elgie R, Phillips J, Doezema D. Et al. Neurometabolite concentrations in gray and white matter in mild traumatic brain injury: an 1H-magnetic resonance spectroscopy study. J Neurotrauma. 2009;26:1635–43.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Yeo RA, Gasparovic C, Merideth F, Ruhl D, Doezema D, Mayer AR. A longitudinal proton magnetic resonance spectroscopy study of mild traumatic brain injury. J Neurotrauma. 2011;28(1):1–11.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Vagnozzi R, Signoretti S, Cristofori L, Alessandrini F, Floris R, Isgrò E, et al. Assessment of metabolic brain damage and recovery following mild traumatic brain injury: a multicentre, proton magnetic resonance spectroscopic study in concussed patients. Brain. 2010;133:3232–42.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Bagley LJ, McGowan JC, Grossman RI. Magnetization transfer imaging of traumatic brain. J Magn Reson Imaging. 2000;11:1–8.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    McGowan JC, Yang JH, Plotkin RC, Grossman RI, Umile EM, Cecil KM, et al. Magnetization transfer imaging in the detection of injury associated with mild head trauma. AJNR Am J Neuroradiol. 2000;21:875–80.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Mamere AE, Saraiva LA, Matos AL, Carneiro AA, Santos AC. AJNR Am J Neuroradiol. 2009;30:947–52.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Lewine JD, Davis JT, Sloan JH, Kodituwakku PW, Orrison WW Jr. Neuromagnetic assessment of pathophysiologic brain activity induced by minor head trauma. AJNR Am J Neuroradiol. 1999;20(5):857–66.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Lewine JD, Davis JT, Bigler ED, Thoma R, Hill D, Funke M, et al. Objective documentation of traumatic brain injury subsequent to mild head trauma: multimodal brain imaging with MEG, SPECT, and MRI. J Head Trauma Rehabil. 2007;22(3):141–55.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Huang MX, Theilmann RJ, Robb A, Angeles A, Nichols S, Drake A, et al. Integrated imaging approach with MEG and DTI to detect mild traumatic brain injury in military and civilian patients. J Neurotrauma. 2009;26:1213–26.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Huang MX, Nichols S, Robb A, Angeles A, Drake A, Holland M, et al. An automatic MEG low-frequency source imaging approach for detecting injuries in mild and moderate TBI patients with blast and non-blast causes. NeuroImage. 2012;61:1067–82.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Coles JP, Fryer TD, Smielewski P, Chatfield DA, Steiner LA, Johnston AJ, et al. Incidence and mechanisms of cerebral ischemia in early clinical head injury. J Cereb Blood Flow Metab. 2004;24(2):202–11.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Coles JP. Regional ischemia after head injury. Curr Opin Crit Care. 2004;10:120–5.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Byrnes KR, Wilson EM, Brabazon F, von Leden R, Jurgens JS, Oakes TR, et al. FDG-PET imaging in mild traumatic brain injury: a critical review. Front Neuroenerg. 2014;5:1–24.CrossRefGoogle Scholar
  93. 93.
    Bergsneider M, Hovda DA Shalmon E, Kelly DF, Vespa PM, Martin NA, et al. Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study. J Neurosurg. 1997;86:241–51.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Bergsneider M, Hovda DA, McArthur DL, Etchepare M, Huang SC, Sehati N, et al. Metabolic recovery following human traumatic brain injury based on FDG-PET: time course and relationship to neurological disability. J Head Trauma Rehabil. 2001;16(2):135–48.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Kato T, Nakayama N, Yasokawa Y, Okumura A, Shinoda J, Iwama T. Statistical image analysis of cerebral glucose metabolism in patients with cognitive impairment following diffuse traumatic brain injury. J Neurotrauma. 2007;24(6):919–26.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Nakashima T, Nakayama N, Miwa K, Okumura A, Soeda A, Iwama T. Focal brain glucose hypometabolism in patients with neuropsychologic deficits after diffuse axonal injury. AJNR Am J Neuroradiol. 2007;28(2):236–42.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Peskind ER, Petrie EC, Cross DJ, Pagulayan K, McCraw K, Hoff D, et al. Cerebrocerebellar hypometabolism associated with repetitive blast exposure mild traumatic brain injury in 12 Iraq War Veterans with persistent post-concussive symptoms. NeuroImage. 2011;54(Suppl 1):S76–82.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Hong YT, Veenith T, Dewar D, Outtrim JG, Mani V, Williams C, et al. Amyloid imaging with carbon 11-labeled Pittsburgh compound B for traumatic brain injury (mTBI). JAMA Neurol. 2014;71:23–31.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Small GW, Kepe V, Siddarth P, Ercoli LM, Merrill DA, Donoghue N, et al. PET scanning of brain tau in retired national football league players: preliminary findings. Am J Geriatr Psychiatry. 2013;21:38–44.CrossRefGoogle Scholar
  100. 100.
    Barrio JR, Small GW, Wong KP, Huang SC, Liu J, Giza CC, et al. In vivo characterization of chronic traumatic encephalopathy using [F-18]FDDNP PET brain imaging. Proc Natl Acad Sci U S A. 2015;112:E2039–47.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Raji CA, Tarzwell R, Pavel D, Schneider H, Uszier M, Thornton J, et al. Clinical utility of SPECT neuroimaging in the diagnosis and treatment of traumatic brain injury: a systematic review. PLoS One. 2014;9:e91088.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Kinuya K, Kakuda K, Nobata K, Sakai S, Yamamoto K, Itoh S, et al. Role of brain perfusion single-photon emission tomography in traumatic head injury. Nucl Med Commun. 2004;25(4):333–7.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Laatsch L, Pavel D, Jobe T, Lin Q, Quintana JC. Incorporation of SPECT imaging in a longitudinal cognitive rehabilitation therapy programme. Brain Inj. 1999;13:555–70.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Harch PG, Andrews SR, Fogarty EF, Amen D, Pezzullo JC, Lucarini J, et al. A phase I study of low-pressure hyperbaric oxygen therapy for blast-induced post-concussion syndrome and post-traumatic stress disorder. J Neurotrauma. 2012;29:168–85.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Amen DG, Wu JC, Taylor D, Willeumier K. Reversing brain damage in former NFL players: implications for traumatic brain injury and substance abuse rehabilitation. J Psychoactive Drugs. 2011;43:1–5.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Boussi-Gross R, Golan H, Fishlev G, Bechor Y, Volkov O, Bergan J, et al. Hyperbaric oxygen therapy can improve post concussion syndrome years after mild traumatic brain injury – randomized prospective trial. PLoS One. 2013;8:e79995.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Gean AD, Kates RS, Lee S. Neuroimaging in head injury. New Horiz. 1995;3(3):549–61.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Gean AD. Brain injury: lessons from war and terrorism. Philadelphia: Wolters Kluwer Health/Lippincott Williams and Wilkins; 2014.Google Scholar
  109. 109.
    Knight B. Explosive bullets: a new hazard for doctors. Br Med J (Clin Res Ed). 1982;284:768–9.CrossRefGoogle Scholar
  110. 110.
    Forbes JA, Laughlin BS, Newberry S, Ryhn M, Pasley J, Newberry T. Stratification of risk to the surgical team in removal of small arms ammunition implanted in the craniofacial region: case report. J Neurosurg. 2016;125:661–6.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Schlager D, Johnson T, McFall R. Safety of imaging exploding bullets with ultrasound. Ann Emerg Med. 1996;28:183–7.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Briggs M. Traumatic pneumocephalus. Br J Surg. 1974;61(4):307–12.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Zee CS, Go JL. CT of head trauma. Neuroimaging Clin N Am. 1998;8(3):525–39.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Zimmerman RA, Bilaniuk LT, Bruce D, Dolinskas C, Obrist W, Kuhl D. Computed tomography of pediatric head trauma: acute general cerebral swelling. Radiology. 1978;126(2):403–8.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Gomori JM, Grossman RI, Goldberg HI, Zimmerman RA, Bilaniuk LT. Intracranial hematomas: imaging by high-field MR. Radiology. 1985;157(1):87–93.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Fobben ES, Grossman RI, Atlas SW, Hackney DB, Goldberg HI, Zimmerman RA, et al. MR characteristics of subdural hematomas and hygromas at 1.5T. AJR Am J Roentgenol. 1989;153(3):589–95.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Al-Nakshabandi NA. The swirl sign. Radiology. 2001;218(2):433.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Greenberg J, Cohen WA, Cooper PR. The “hyperacute” extraaxial intracranial hematoma: computed tomographic findings and clinical significance. Neurosurgery. 1985;17(1):48–56.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Pruthi N, Balasubramaniam A, Chandramouli BA, Somanna S, Devi BI, Vasudevan PS, et al. Mixed-density extradural hematomas on computed tomography-prognostic significance. Surg Neurol. 2009;71(2):202–6.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Kumbhani SR, Purcell DD, Gean AD. Contrast extravasation within a traumatic epidural hematoma: have we been missing something? Paper presented at: American Society of Neuroradiology 47th annual meeting and NER Foundation symposium 2009. Vancouver, Canada; 16–21 May, 2009.Google Scholar
  121. 121.
    Le TH, Gean AD. Neuroimaging of traumatic brain injury. Mt Sinai J Med. 2009;76(2):145–62.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Gean AD, Fischbein NJ, Purcell DD, Aiken AH, Manley GT, Stiver SI. Benign anterior temporal epidural hematoma: indolent lesion with a characteristic CT imaging appearance following blunt head trauma. Radiology. 2010;257:212–8.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Jennett B, Adams JH, Murray LS, Graham DI. Neuropathology in vegetative and severely disabled patients after head injury. Neurology. 2001;56(4):486–90.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Inglese M, Makani S, Johnson G, Cohen BA, Silver JA, Gonen O, et al. Diffuse axonal injury in mild traumatic brain injury: a diffusion tensor imaging study. J Neurosurg. 2005;103(2):298–303.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Mittl RL, Grossman RI, Hiehle JF, Hurst RW, Kauder DR, Gennarelli TA, et al. Prevalence of MR evidence of diffuse axonal injury in patients with mild head injury and normal head CT findings. AJNR Am J Neuroradiol. 1994;15(8):1583–9.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Gennarelli TA, Thibault LE, Adams JH, Graham DI, Thompson CJ, Marcincin RP. Diffuse axonal injury and traumatic coma in the primate. Ann Neurol. 1982;12(6):564–74.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Adams JH, Graham DI, Gennarelli TA, Maxwell WL. Diffuse axonal injury in non-missile head injury. J Neurol Neurosurg Psychiatry. 1991;54(6):481–3.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Lee H, Wintermark M, Gean AD, Ghajar J, Manley GT, Mukherjee P. Focal lesions in acute mild traumatic brain injury and neurocognitive outcome: CT versus 3T MRI. J Neurotrauma. 2008;25(9):1049–56.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Gentry LR. Head trauma. In: Atlas SW, editor. Magnetic resonance imaging of the brain and spine. 2nd ed. Philadelphia: Lippincott-Raven; 1996. p. 611–47.Google Scholar
  130. 130.
    Kurland D, Hong C, Aarabi B, Gerzanich V, Simard JM. Hemorrhagic progression of a contusion after traumatic brain injury: a review. J Neurotrauma. 2012;29:19–31.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Huang AP, Lee CW, Hsieh HJ, Yang CC, Tsai YH, Tsuang FY, et al. Early parenchymal contrast extravasation predicts subsequent hemorrhage progression, clinical deterioration, and need for surgery in patients with traumatic cerebral contusion. J Trauma. 2011;71:1593–9.PubMedPubMedCentralGoogle Scholar
  132. 132.
    Wang Y, Lou X, Li Y, Sui B, Sun S, Li C, et al. Imaging investigation of intracranial arterial dissecting aneurysms using 3T high-resolution MRI and DSA: from the interventional neuroradiologists’ view. Acta Neurochir. 2014;156:515–25.PubMedCrossRefGoogle Scholar
  133. 133.
    Mandell DM, Mossa-Basha M, Qiao Y, Hess CP, Hui F, Matouk C, et al. Intracranial vessel wall MRI: principles and expert consensus recommendations of the American Society of Neuroradiology. Am J Neurorad. 2017;38(2):218–29.CrossRefGoogle Scholar
  134. 134.
    Hardwood-Nash DC, Fritz CR. Neuroradiology in infants and children. St. Louis: CV Mosby; 1976.Google Scholar
  135. 135.
    Dubey A, Sung WS, Chen YY, Amato D, Mujic A, Waites P, et al. Traumatic intracranial aneurysm: a brief review. J Clin Neurosci. 2008;15(6):609–12.PubMedCrossRefGoogle Scholar
  136. 136.
    deSouza RM, Shah M, Koumellis P, Foroughi M. Subarachnoid hemorrhage secondary to traumatic intracranial aneurysm of the posterior cerebral circulation: case series and literature review. Acta Neurochir. 2016;158:1731–40.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Vertinsky AT, Schwartz NE, Fischbein NJ, Rosenberg J, Albers GW, Zaharchuk G. Comparison of multidetector CT angiography and MR imaging of cervical artery dissection. AJNR Am J Neuroradiol. 2008;29(9):1753–60.PubMedCrossRefGoogle Scholar
  138. 138.
    Tsuji K, Nakagawa N, Fukawa N, Nagatsuka K, Nakano N, Kato A. A novel technique for identifying the fistulous point in a direct carotid-cavernous fistula. J Clin Neurosci. 2016;25:152–5.PubMedCrossRefGoogle Scholar
  139. 139.
    Stiver SI. Complications of decompressive craniectomy for traumatic brain injury. Neurosurg Focus. 2009;26:E7–23.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Stone JA, Castillo M, Neelon B, Mukherji SK. Evaluation of CSF leaks: high-resolution CT compared with contrast-enhanced CT and radionuclide cisternography. AJNR Am J Neuroradiol. 1999;20(4):706–12.PubMedPubMedCentralGoogle Scholar
  141. 141.
    Zapalac JS, Marple BF, Schwade ND. Skull base cerebrospinal fluid fistulas: a comprehensive diagnostic algorithm. Otolaryngol Head Neck Surg. 2002;126(6):669–76.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Curnes JT, Vincent LM, Kowalsky RJ, McCartney WH, Staab EV. CSF rhinorrhea: detection and localization using overpressure cisternography with Tc-99 m-DTPA. Radiology. 1985;154(3):795–9.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    La Fata V, McLean N, Wise SK, DelGaudio JM, Hudgins PA. CSF leaks: correlation of high-resolution CT and multiplanar reformations with intraoperative endoscopic findings. AJNR Am J Neuroradiol. 2008;29(3):536–41.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Bhattacharjee Y. Neuroscience. Shell shock revisited: solving the puzzle of blast trauma. Science. 2008;319:406–8.PubMedCrossRefGoogle Scholar
  145. 145.
    Gean AD. Imaging of head trauma. Philadelphia: Williams & Wilkins-Lippincott; 1994. p. 191.Google Scholar
  146. 146.
    Gean AD. Imaging of head trauma. Philadelphia: Williams & Wilkins-Lippincott; 1994. p. 192.Google Scholar
  147. 147.
    Gean AD. Imaging of head trauma. Philadelphia: Williams & Wilkins-Lippincott; 1994. p. 76.Google Scholar
  148. 148.
    Gean AD. Imaging of head trauma. Philadelphia: Williams & Wilkins-Lippincott; 1994. p. 119.Google Scholar
  149. 149.
    Gean AD. Brain injury: applications from war and terrorism. Philadelphia: Wolters Kluwer; 2014. p. 110.Google Scholar
  150. 150.
    Gean AD. Brain injury: applications from war and terrorism. Philadelphia: Wolters Kluwer; 2014. p. 84–5.Google Scholar
  151. 151.
    Gean AD. Imaging of head trauma. Philadelphia: Williams & Wilkins-Lippincott; 1994. p. 185.Google Scholar
  152. 152.
    Gean ADF. Brain injury: applications from war and terrorism. Philadelphia: Wolters Kluwer; 2014. p. 13.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Prime Diagnostic ImagingPlanoUSA
  2. 2.Department of NeuroradiologyUniversity of California, Zuckerberg San Francisco General Hospital and Trauma CenterSan FranciscoUSA
  3. 3.San FranciscoUSA

Personalised recommendations