Visual Disturbances and Mild Traumatic Brain Injury (mTBI)

  • Lauren C. Ditta
  • Nicole K. Weber
  • Katherine E. Robinson-Freeman
  • Elle McKenzie
  • Samantha A. Thomas
  • Han Jun Kim
  • Ansley Grimes Stanfill
  • Jack W. TsaoEmail author


Over half of a human’s brain circuits are devoted to vision and eye movements, making it a system that can be easily compromised by a mild traumatic brain injury (mTBI). Changes in a patient’s eye movements could be a sensitive and objective biomarker of injury, and could also be useful for assessment of the pathways affected by the damage. Here, we discuss the specific dysfunctions found in afferent, efferent, and visual association pathways that may be useful for making a diagnosis of mTBI. Early diagnosis is critical to prevent further injury and to allow appropriate physical and cognitive rest to ensure full recovery, but more research is greatly needed in this area, since diagnosis of mTBI currently relies heavily on subjective complaints.


Vision Disturbances mTBI Visual dysfunction Visual pathways Afferent pathways Efferent pathways Eye 


  1. 1.
    Heitger MH, Jones RD, MacLeod AD, Snell DL, Frampton CM, Anderson TJ. Impaired eye movements in post-concussion syndrome indicate suboptimal brain function beyond the influence of depression, malingering or intellectual ability. Brain. 2009;132(10):2850–70.PubMedCrossRefGoogle Scholar
  2. 2.
    Shenton ME, Hamoda HM, Schneiderman JS, Bouix S, Pasternak O, Rathi Y, et al. A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav. 2012;6:137–92.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Armstrong RA. Visual problems associated with traumatic brain injury. Clin Exp Optom. 2018;101(6):716–26.PubMedCrossRefGoogle Scholar
  4. 4.
    Ventura RE, Balcer LJ, Galetta SL, Rucker JC. Ocular motor assessment in concussion: current status and future directions. J Neurol Sci. 2016;361:79–86.PubMedCrossRefGoogle Scholar
  5. 5.
    Taghdiri F, Varriano B, Tartaglia MC. Assessment of oculomotor function in patients with postconcussion syndrome: a systematic review. J Head Trauma Rehabil. 2017;32(5):E55–67.PubMedCrossRefGoogle Scholar
  6. 6.
    Diwakar M, Harrington DL, Maruta J, Ghajar J, El-Gabalawy F, Muzzatti L, et al. Filling in the gaps: anticipatory control of eye movements in chronic mild traumatic brain injury. Neuroimage Clin. 2015;8:210–23.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Capó-Aponte JE, Beltran TA, Walsh DV, Cole WR, Dumayas JY. Validation of visual objective biomarkers for acute concussion. Mil Med. 2018;183(suppl_1):9–17.PubMedCrossRefGoogle Scholar
  8. 8.
    Heitger MH, Anderson TJ, Jones RD, Dalrymple-Alford JC, Frampton CM, Ardagh MW. Eye movement and visuomotor arm movement deficits following mild closed head injury. Brain. 2004;127(3):575–90.PubMedCrossRefGoogle Scholar
  9. 9.
    Pierrot-Deseilligny C, Milea D, Müri R. Eye movement control by the cerebral cortex. Curr Opin Neurol. 2004;17(1):17–25.PubMedCrossRefGoogle Scholar
  10. 10.
    Shah-Basak PP, Urbain C, Wong S, da Costa L, Pang EW, Dunkley BT, et al. Concussion alters the functional brain processes of visual attention and working memory. J Neurotrauma. 2018;35(2):267–77.PubMedCrossRefGoogle Scholar
  11. 11.
    Guay S, De Beaumont L, Drisdelle BL, Lina J-M, Jolicoeur P. Electrophysiological impact of multiple concussions in asymptomatic athletes: a re-analysis based on alpha activity during a visual-spatial attention task. Neuropsychologia. 2018;108:42–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Heitger MH, Anderson TJ, Jones RD. Saccade sequences as markers for cerebral dysfunction following mild closed head injury. Prog Brain Res. 2002;140:433–48.PubMedCrossRefGoogle Scholar
  13. 13.
    Heitger MH, Jones RD, Anderson TJ. A new approach to predicting postconcussion syndrome after mild traumatic brain injury based upon eye movement function. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:3570–3.PubMedGoogle Scholar
  14. 14.
    Barnett BP, Singman EL. Vision concerns after mild traumatic brain injury. Curr Treat Options Neurol. 2015;17(2):329.PubMedCrossRefGoogle Scholar
  15. 15.
    Padula WV, Nelson CA, Benabib R, Yilmaz T, Krevisky S. Modifying postural adaptation following a CVA through prismatic shift of visuo-spatial egocenter. Brain Inj. 2009;23(6):566–76.PubMedCrossRefGoogle Scholar
  16. 16.
    Halterman CI, Langan J, Drew A, Rodriguez E, Osternig LR, Chou L-S, et al. Tracking the recovery of visuospatial attention deficits in mild traumatic brain injury. Brain. 2006;129(3):747–53.PubMedCrossRefGoogle Scholar
  17. 17.
    Atkins EJ, Newman NJ, Biousse V. Post-traumatic visual loss. Rev Neurol Dis. 2008;5(2):73–81.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Greenwald BD, Kapoor N, Singh AD. Visual impairments in the first year after traumatic brain injury. Brain Inj. 2012;26(11):1338–59.PubMedCrossRefGoogle Scholar
  19. 19.
    Ventura RE, Balcer LJ, Galetta SL. The neuro-ophthalmology of head trauma. Lancet Neurol. 2014;13(10):1006–16.PubMedCrossRefGoogle Scholar
  20. 20.
    American Academy of Opthalmology. The patient with supranuclear disorders of coular motility. In: Basic and clinical science course: neuro-opthalmology section 5. San Francisco: American Academy of Opthalmology; 2017. p. 211–28.Google Scholar
  21. 21.
    Roper-Hall G, Cruz OA, Chung SM. The post-concussion syndrome: influence on binocular function. J AAPOS. 2015;19(4):e58.CrossRefGoogle Scholar
  22. 22.
    Straube A, Bronstein A, Straumann D, European Federation of Neurologic Societies. Nystagmus and oscillopsia. Eur J Neurol. 2012;19(1):6–14.PubMedCrossRefGoogle Scholar
  23. 23.
    Suh M, Basu S, Kolster R, Sarkar R, McCandliss B, Ghajar J. Increased oculomotor deficits during target blanking as an indicator of mild traumatic brain injury. Neurosci Lett. 2006;410(3):203–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Suh M, Kolster R, Sarkar R, Mccandliss B, Ghajar J. Deficits in predictive smooth pursuit after mild traumatic brain injury. Neurosci Lett. 2006;401:108–13.PubMedCrossRefGoogle Scholar
  25. 25.
    Swenson R. Chapter 11: the cerebral cortex. In: Swenson R, editor. Review of clinical and functional neuroscience. Hanover: Dartmouth Medical School; 2006.Google Scholar
  26. 26.
    Sohlberg MM, Griffiths GG, Fickas S. An evaluation of reading comprehension of expository text in adults with traumatic brain injury. Am J Speech Lang Pathol. 2014;23(2):160.PubMedCrossRefGoogle Scholar
  27. 27.
    Belanger HG, Curtiss G, Demery JA, Lebowitz BK, Vanderploeg RD. Factors moderating neuropsychological outcomes following mild traumatic brain injury: a meta-analysis. J Int Neuropsychol Soc. 2005;11:215–27.PubMedCrossRefGoogle Scholar
  28. 28.
    Ivins BJ, Kane R, Schwab K. Performance on the automated neuropsychological assessment metrics in a nonclinical sample of soldiers screened for mild TBI after returning from Iraq and Afghanistan: a descriptive analysis. J Head Trauma Rehabil. 2009;24(1):24–31.PubMedCrossRefGoogle Scholar
  29. 29.
    Maruta J, Suh M, Niogi SN, Mukherjee P, Ghajar J. Visual tracking synchronization as a metric for concussion screening. J Head Trauma Rehabil. 2010;25(4):293–305.PubMedCrossRefGoogle Scholar
  30. 30.
    Hecimovich M, King D, Dempsey A, Gittins M, Murphy M. In situ use of the King-Devick eye tracking test and changes seen with sport-related concussion: saccadic and blinks counts. Phys Sportsmed. 2019;47(1):78–84.PubMedCrossRefGoogle Scholar
  31. 31.
    Akhand O, Rizzo J-R, Rucker JC, Hasanaj L, Galetta SL, Balcer LJ. History and future directions of vision testing in head trauma. J Neuroophthalmol. 2019;39(1):68–81.PubMedCrossRefGoogle Scholar
  32. 32.
    Purves D, Augustine GJ, Fitzpatrick D, et al. Type of eye movements and their functions. In: Neuroscience. 2nd ed. Sunderland: Sinauer Associates; 2001.Google Scholar
  33. 33.
    Sussman ES, Ho AL, Pendharkar AV, Ghajar J. Clinical evaluation of concussion: the evolving role of oculomotor assessments. Neurosurg Focus. 2016;40(4):E7.PubMedCrossRefGoogle Scholar
  34. 34.
    Barton JJS, Cherkasova MV, Lindgren K, Goff DC, Intriligator JM, Manoach DS. Antisaccades and task switching: studies of control processes in saccadic function in normal subjects and schizophrenic patients. Ann N Y Acad Sci. 2002;956:250–63.PubMedCrossRefGoogle Scholar
  35. 35.
    Ventura R, Balcer L, Galetta S. The concussion toolbox: the role of vision in the assessment of concussion. Semin Neurol. 2015;35(05):599–606.PubMedCrossRefGoogle Scholar
  36. 36.
    Galetta KM, Morganroth J, Moehringer N, Mueller B, Hasanaj L, Webb N, et al. Adding vision to concussion testing. J Neuroophthalmol. 2015;35(3):235–41.PubMedCrossRefGoogle Scholar
  37. 37.
    Oride MKH, Marutani JK, Rouse MW, DeLand PN. Reliability study of the Pierce and King Devick saccade tests. Am J Optom Physiol Opt. 1986;63(6):419–24.PubMedCrossRefGoogle Scholar
  38. 38.
    Galetta KM, Brandes LE, Maki K, Dziemianowicz MS, Laudano E, Allen M, et al. The King-Devick test and sports-related concussion: study of a rapid visual screening tool in a collegiate cohort. J Neurol Sci. 2011;309(1–2):34–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Galetta KM, Barrett J, Allen M, Madda F, Delicata D, Tennant AT, et al. The King-Devick test as a determinant of head trauma and concussion in boxers and MMA fighters. Neurology. 2011;76(17):1456–62.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Lin TP, Adler CH, Hentz JG, Balcer LJ, Galetta SL, Devick S. Slowing of number naming speed by King-Devick test in Parkinson’s disease. Parkinsonism Relat Disord. 2014;20(2):226–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Torres DM, Galetta KM, Phillips HW, Dziemianowicz EMS, Wilson JA, Dorman ES, et al. Sports-related concussion: anonymous survey of a collegiate cohort. Neurol Clin Pract. 2013;3(4):279–87.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    King D, Clark T, Gissane C. Use of a rapid visual screening tool for the assessment of concussion in amateur rugby league: a pilot study. J Neurol Sci. 2012;320(1–2):16–21.PubMedCrossRefGoogle Scholar
  43. 43.
    Leong DF, Balcer LJ, Galetta SL, Liu Z, Master CL. The King-Devick test as a concussion screening tool administered by sports parents. J Sports Med Phys Fitness. 2014;54(1):70–7.PubMedGoogle Scholar
  44. 44.
    Murray NG, D’Amico NR, Powell D, Mormile ME, Grimes KE, Munkasy BA, et al. ASB clinical biomechanics award winner 2016: assessment of gaze stability within 24–48 hours post-concussion. Clin Biomech. 2017;44:21–7.CrossRefGoogle Scholar
  45. 45.
    Raikes AC, Schaefer SY, Studenka BE. Concussion history is negatively associated with visual-motor force complexity: evidence for persistent effects on visual-motor integration. Brain Inj. 2018;32(6):747–54.PubMedCrossRefGoogle Scholar
  46. 46.
    Master C, Storey E, Grady M. Relationship between patient-reported visual symptoms and physician-detected visual deficits after concussion. Arch Phys Med Rehabil. 2018;99(11):e147.CrossRefGoogle Scholar
  47. 47.
    Bin Zahid A, Hubbard ME, Lockyer J, Podolak O, Dammavalam VM, Grady M, et al. Eye tracking as a biomarker for concussion in children. Clin J Sport Med. 2018;1 [Epub ahead of print].Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Lauren C. Ditta
    • 1
  • Nicole K. Weber
    • 2
  • Katherine E. Robinson-Freeman
    • 3
  • Elle McKenzie
    • 3
  • Samantha A. Thomas
    • 3
  • Han Jun Kim
    • 3
  • Ansley Grimes Stanfill
    • 4
  • Jack W. Tsao
    • 5
    • 6
    Email author
  1. 1.Department of OphthalmologyUniversity of Tennessee Health Science CenterMemphisUSA
  2. 2.Department of NeurologyUniversity of Tennessee Health Science Center, Le Bonheur Children’s HospitalMemphisUSA
  3. 3.Department of NeurologyUniversity of Tennessee Health Science CenterMemphisUSA
  4. 4.College of Nursing, University of Tennessee Health Science CenterMemphisUSA
  5. 5.Department of NeurologyUniversity of Tennessee Health Science CenterMemphisUSA
  6. 6.Children’s Foundation Research Institute, Le Bonheur Children’s HospitalMemphisUSA

Personalised recommendations