Electromyography (EMG)

  • Aaron J. Beverwyk
  • Kenneth Mancuso
  • Amit Prabhakar
  • Jonathan Lissauer
  • Alan David Kaye
  • Scott Francis Davis


The recording of compound muscle action potentials (CMAPs) in response to spontaneous or electrically stimulated cranial nerve, spinal nerve, or ventral root activation is known as intraoperative electromyography (EMG). EMG is one of the most useful modalities for intraoperative monitoring (IOM). EMG is beneficial in monitoring neurological function in conjunction with sensory and motor evoked potentials during surgeries involving spinal manipulation and cranial nerve involvement.


Spontaneous EMG (s-EMG) Triggered EMG (t-EMG) Pedicle screws Nerve root 


  1. 1.
    Koht A, Sloan TB, Toleikis JR. Monitoring the nervous system for anesthesiologists and other health care professionals. New York: Springer; 2011.Google Scholar
  2. 2.
    Hilger JA. Facial nerve stimulator. Trans Am Acad Ophthalmol Otolaryngol. 1964;68:74–6. PubMed PMID: 14116425.PubMedGoogle Scholar
  3. 3.
    Rand RW, Kurze TL. Facial nerve preservation by posterior fossa transmeatal microdissection in total removal of acoustic tumours. J Neurol Neurosurg Psychiatry. 1965;28:311–6. PubMed PMID: 14338120, Pubmed Central PMCID: 495910.CrossRefGoogle Scholar
  4. 4.
    Al-Mefty O, Holoubi A, Rifai A, Fox JL. Microsurgical removal of suprasellar meningiomas. Neurosurgery. 1985;16(3):364–72. PubMed PMID: 3982616.CrossRefGoogle Scholar
  5. 5.
    Møller AR. Intraoperative neurophysiological monitoring. New York: Springer; 2010.Google Scholar
  6. 6.
    Calancie B, Lebwohl N, Madsen P, Klose KJ. Intraoperative evoked EMG monitoring in an animal model. A new technique for evaluating pedicle screw placement. Spine (Phila Pa 1976). 1992;17(10):1229–35. PubMed PMID: 1440014.CrossRefGoogle Scholar
  7. 7.
    Calancie B, Madsen P, Lebwohl N. Stimulus-evoked EMG monitoring during transpedicular lumbosacral spine instrumentation. Initial clinical results. Spine (Phila Pa 1976). 1994;19(24):2780–6. PubMed PMID: 7899979.CrossRefGoogle Scholar
  8. 8.
    Husain AM. A practical approach to neurophysiologic intraoperative monitoring [electronic resource]. New York: Demos; 2008.Google Scholar
  9. 9.
    Krassioukov AV, Sarjeant R, Arkia H, Fehlings MG. Multimodality intraoperative monitoring during complex lumbosacral procedures: indications, techniques, and long-term follow-up review of 61 consecutive cases. J Neurosurg Spine. 2004;1(3):243–53. PubMed PMID: 15478361.CrossRefGoogle Scholar
  10. 10.
    Balzer JR, Rose RD, Welch WC, Sclabassi RJ. Simultaneous somatosensory evoked potential and electromyographic recordings during lumbosacral decompression and instrumentation. Neurosurgery. 1998;42(6):1318–24. Discussion 24–5, PubMed PMID: 9632191.CrossRefGoogle Scholar
  11. 11.
    Nichols GS, Manafov E. Utility of electromyography for nerve root monitoring during spinal surgery. J Clin Neurophysiol. 2012;29(2):140–8. PubMed PMID: 22469677.CrossRefGoogle Scholar
  12. 12.
    Santiago-Perez S, Nevado-Estevez R, Aguirre-Arribas J, Perez-Conde MC. Neurophysiological monitoring of lumbosacral spinal roots during spinal surgery: continuous intraoperative electromyography (EMG). Electromyogr Clin Neurophysiol. 2007;47(7–8):361–7. PubMed PMID: 18051630.PubMedGoogle Scholar
  13. 13.
    Welch WC, Rose RD, Balzer JR, Jacobs GB. Evaluation with evoked and spontaneous electromyography during lumbar instrumentation: a prospective study. J Neurosurg. 1997;87(3):397–402. PubMed PMID: 9285605.CrossRefGoogle Scholar
  14. 14.
    Prass RL, Luders H. Acoustic (loudspeaker) facial electromyographic monitoring: Part 1. Evoked electromyographic activity during acoustic neuroma resection. Neurosurgery. 1986;19(3):392–400. PubMed PMID: 3762886.CrossRefGoogle Scholar
  15. 15.
    Schekutiev G, Schmid U. Coaxial insulated bipolar electrode for monopolar and bipolar mapping of neural tissue: technical note with emphasis on the principles of intra-operative stimulation. Acta Neurochir. 1996;138(4):470–474:0942-0940.CrossRefGoogle Scholar
  16. 16.
    Holland NR, Lukaczyk TA, Riley LH 3rd, Kostuik JP. Higher electrical stimulus intensities are required to activate chronically compressed nerve roots. Implications for intraoperative electromyographic pedicle screw testing. Spine (Phila Pa 1976). 1998;23(2):224–7. PubMed PMID: 9474730.CrossRefGoogle Scholar
  17. 17.
    Mandpe AH, Mikulec A, Jackler RK, Pitts LH, Yingling CD. Comparison of response amplitude versus stimulation threshold in predicting early postoperative facial nerve function after acoustic neuroma resection. Am J Otol. 1998;19(1):112–7. PubMed PMID: 9455959.PubMedGoogle Scholar
  18. 18.
    Neff BA, Ting J, Dickinson SL, Welling DB. Facial nerve monitoring parameters as a predictor of postoperative facial nerve outcomes after vestibular schwannoma resection. Otol Neurotol. 2005;26(4):728–32. PubMed PMID: 16015176.CrossRefGoogle Scholar
  19. 19.
    Uribe J, Vale F, Dakwar E. Electromyographic monitoring and its anatomical implications in minimally invasive spine surgery. Spine. 2010;35(265):368–74.CrossRefGoogle Scholar
  20. 20.
    Kim YJ, Lenke LG, Bridwell KH, Cho YS, Riew KD. Free hand pedicle screw placement in the thoracic spine: is it safe? Spine (Phila Pa 1976). 2004;29(3):333–42. Discussion 42, PubMed PMID: 14752359.CrossRefGoogle Scholar
  21. 21.
    Laine T, Lund T, Ylikoski M, Lohikoski J, Schlenzka D. Accuracy of pedicle screw insertion with and without computer assistance: a randomised controlled clinical study in 100 consecutive patients. Eur Spine J. 2000;9(3):235–40. PubMed PMID: 10905443, Pubmed Central PMCID: 3611394.CrossRefGoogle Scholar
  22. 22.
    Alemo S, Sayadipour A. Role of intraoperative neurophysiologic monitoring in lumbosacral spine fusion and instrumentation: a retrospective study. World Neurosurg. 2010;73(1):72–6. Discussion e7, PubMed PMID: 20452872.CrossRefGoogle Scholar
  23. 23.
    Darden BV 2nd, Wood KE, Hatley MK, Owen JH, Kostuik J. Evaluation of pedicle screw insertion monitored by intraoperative evoked electromyography. J Spinal Disord. 1996;9(1):8–16. PubMed PMID: 8727451.CrossRefGoogle Scholar
  24. 24.
    Djurasovic M, Dimar JR 2nd, Glassman SD, Edmonds HL, Carreon LY. A prospective analysis of intraoperative electromyographic monitoring of posterior cervical screw fixation. J Spinal Disord Tech. 2005;18(6):515–8. PubMed PMID: 16306841, Epub 2005/11/25.CrossRefGoogle Scholar
  25. 25.
    Holdefer RN, Heffez DS, Cohen BA. Utility of evoked EMG monitoring to improve bone screw placements in the cervical spine. J Spinal Disord Tech. 2013;26(5):E163–9. PubMed PMID: 23429315.CrossRefGoogle Scholar
  26. 26.
    Parker SL, Amin AG, Farber SH, McGirt MJ, Sciubba DM, Wolinsky JP, et al. Ability of electromyographic monitoring to determine the presence of malpositioned pedicle screws in the lumbosacral spine: analysis of 2450 consecutively placed screws. J Neurosurg Spine. 2011;15(2):130–5. PubMed PMID: 21529126.CrossRefGoogle Scholar
  27. 27.
    Patil S, Lindley EM, Burger EL, Yoshihara H, Patel VV. Pedicle screw placement with O-arm and stealth navigation. Orthopedics. 2012;35(1):e61–5. PubMed PMID: 22229616.CrossRefGoogle Scholar
  28. 28.
    Larson AN, Santos ER, Polly DW Jr, Ledonio CG, Sembrano JN, Mielke CH, et al. Pediatric pedicle screw placement using intraoperative computed tomography and 3-dimensional image-guided navigation. Spine (Phila Pa 1976). 2012;37(3):E188–94. PubMed PMID: 21738101.CrossRefGoogle Scholar
  29. 29.
    Kim YJ, Lenke LG, Cheh G, Riew KD. Evaluation of pedicle screw placement in the deformed spine using intraoperative plain radiographs: a comparison with computerized tomography. Spine (Phila Pa 1976). 2005;30(18):2084–8. PubMed PMID: 16166900.CrossRefGoogle Scholar
  30. 30.
    Bindal RK, Ghosh S. Intraoperative electromyography monitoring in minimally invasive transforaminal lumbar interbody fusion. J Neurosurg Spine. 2007;6(2):126–32. PubMed PMID: 17330579.CrossRefGoogle Scholar
  31. 31.
    de Blas G, Barrios C, Regidor I, Montes E, Burgos J, Piza-Vallespir G, et al. Safe pedicle screw placement in thoracic scoliotic curves using t-EMG: stimulation threshold variability at concavity and convexity in apex segments. Spine (Phila Pa 1976). 2012;37(6):E387–95. PubMed PMID: 22024903.CrossRefGoogle Scholar
  32. 32.
    Min WK, Lee HJ, Jeong WJ, Oh CW, Bae JS, Cho HS, et al. Reliability of triggered EMG for prediction of safety during pedicle screw placement in adolescent idiopathic scoliosis surgery. Asian Spine J. 2011;5(1):51–8. PubMed PMID: 21386946, Pubmed Central PMCID: 3047898.CrossRefGoogle Scholar
  33. 33.
    Raynor BL, Lenke LG, Bridwell KH, Taylor BA, Padberg AM. Correlation between low triggered electromyographic thresholds and lumbar pedicle screw malposition: analysis of 4857 screws. Spine (Phila Pa 1976). 2007;32(24):2673–8. PubMed PMID: 18007243.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Aaron J. Beverwyk
    • 1
  • Kenneth Mancuso
    • 2
  • Amit Prabhakar
    • 3
  • Jonathan Lissauer
    • 4
  • Alan David Kaye
    • 5
    • 6
    • 7
  • Scott Francis Davis
    • 8
  1. 1.Neuromonitoring AssociatesLas VegasUSA
  2. 2.University Medical Center New Orleans, Department of AnesthesiologyNew OrleansUSA
  3. 3.Emory University School of Medicine, Department of Anesthesiology, Division of Critical CareAtlantaUSA
  4. 4.Department of AnesthesiologySchool of Medicine, Louisiana State University Health Sciences CenterNew OrleansUSA
  5. 5.Departments of Anesthesiology and Pharmacology, Toxicology, and NeurosciencesLSU School of MedicineShreveportUSA
  6. 6.LSU School of MedicineDepartment of AnesthesiologyNew OrleansUSA
  7. 7.Tulane School of MedicineNew OrleansUSA
  8. 8.Department of AnesthesiologyLouisiana State University School of Medicine, Tulane University School of MedicineNew OrleansUSA

Personalised recommendations