Advertisement

Anesthesiology and Intraoperative Electrophysiological Monitoring

  • Tod SloanEmail author
  • Alan David Kaye
Chapter

Abstract

The role of the anesthesiologist during procedures where intraoperative electrophysiological monitoring (IOM) is being performed involves anesthetic titration, attaining physiological homeostasis, and medical management of the patient. Further, the anesthesiologist participates in mitigating neural injury when the monitoring indicates that the nervous system may be at risk for injury. More specifically, the choice of anesthetic agents directly impacts the ability to reliably record IOM responses, and the physiological management (e.g., blood pressure) impacts on the reserve of the nervous system to tolerate procedural trespass. When altered responses indicate the health of the nervous system may be compromised, the insights of the anesthesiologist and the ability to improve the physiological reserve are keys to reducing neurological risk. This chapter discusses these aspects to improve integration of the anesthesiologist into the IOM monitoring team effort.

Keywords

Depression Ischemia Morphine NMDA Acetylcholine anesthesia propofol opioids neuromuscular blockade? 

References

  1. 1.
    Koht A, Neuloh G, Tate MC. Anesthesia for awake craniotomy. In: Koht A, Sloan TB, Toleikis JR, editors. Monitoring the nervous system for anesthesiologists and other health care professionals. Switzerland: Springer; 2017. p. 301–16.CrossRefGoogle Scholar
  2. 2.
    Alkire MT, Hudetz AG, Tononi G. Consciousness and anesthesia. Science. 2008;322(5903):876–80.  https://doi.org/10.1126/science.1149213.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Lyon R, Feiner J, Lieberman JA. Progressive suppression of motor evoked potentials during general anesthesia: the phenomenon of “anesthetic fade”. J Neurosurg Anesthesiol. 2005;17(1):13–9.PubMedGoogle Scholar
  4. 4.
    Nickalls RW, Mapleson WW. Age-related iso-MAC charts for isoflurane, sevoflurane and desflurane in man. Br J Anaesth. 2003;91(2):170–4.  https://doi.org/10.1093/bja/aeg132.CrossRefPubMedGoogle Scholar
  5. 5.
    Miller RD, Eriksson L, Fleisher L, Wiener-Kronish J, Young W, editors. Miller’s anesthesia. 7th ed. Philadelphia: Churchill-Livingstone Elsevier; 2010.  https://doi.org/10.3768/rtipress.2010.pb.0001.1005.CrossRefGoogle Scholar
  6. 6.
    Sloan TB. Anesthesia management and intraoperative Electrophysiologic monitoring. In: Koht A, Sloan TB, Toleikis JR, editors. Editors Monitoring the nervous system for anesthesiologists and other health care professionals. Switzerland: Springer; 2017. p. 317–44.CrossRefGoogle Scholar
  7. 7.
    John ER, Prichep LS. The anesthetic cascade: a theory of how anesthesia suppresses consciousness. Anesthesiology. 2005;102(2):447–71.  https://doi.org/10.1097/00000542-200502000-00030.CrossRefPubMedGoogle Scholar
  8. 8.
    Manninen PH, Lam AM, Nicholas JF. The effects of isoflurane and isoflurane-nitrous oxide anesthesia on brainstem auditory evoked potentials in humans. Anesth Analg. 1985;64(1):43–7.CrossRefGoogle Scholar
  9. 9.
    Sloan T. General anesthesia for monitoring. In: Koht A, Sloan T, Toleikis JR, editors. Monitoring the nervous system for anesthesiologists and other health professionals. New York: Springer; 2012. p. 319–35.CrossRefGoogle Scholar
  10. 10.
    Mavroudakis N, Vandesteene A, Brunko E, Defevrimont M, Zegers de Beyl D. Spinal and brain-stem SEPs and H reflex during enflurane anesthesia. Electroencephalogr Clin Neurophysiol. 1994;92(1):82–5.CrossRefGoogle Scholar
  11. 11.
    Ohara A, Mashimo T, Zhang P, Inagaki Y, Shibuta S, Yoshiya I, et al. A comparative study of the antinociceptive action of xenon and nitrous oxide in rats. Anesth Analg. 1997;85(4):931–6.  https://doi.org/10.1213/00000539-199710000-00039.CrossRefPubMedGoogle Scholar
  12. 12.
    Sloan TB. Evoked potentials In: Albin MA, editor. Textbook of neuroanesthesia with neurosurgical and neuroscience perspectives. New York: McGraw-Hill; 1997. p. 221–76.Google Scholar
  13. 13.
    van Dongen EP, ter Beek HT, Schepens MA, Morshuis WJ, Langemeijer HJ, Kalkman CJ, et al. The influence of nitrous oxide to supplement fentanyl/low-dose propofol anesthesia on transcranial myogenic motor-evoked potentials during thoracic aortic surgery. J Cardiothorac Vasc Anesth. 1999;13(1):30–4.  https://doi.org/10.1016/S1053-0770(99)90169-6.CrossRefPubMedGoogle Scholar
  14. 14.
    van Dongen EP, ter Beek HT, Schepens MA, Morshuis WJ, de Boer A, Aarts LP, et al. Effect of nitrous oxide on myogenic motor potentials evoked by a six pulse train of transcranial electrical stimuli: a possible monitor for aortic surgery. Br J Anaesth. 1999;82(3):323–8.  https://doi.org/10.1093/bja/82.3.323.CrossRefPubMedGoogle Scholar
  15. 15.
    Sakamoto T, Kawaguchi M, Inoue S, Furuya H. Suppressive effect of nitrous oxide on motor evoked potentials can be reversed by train stimulation in rabbits under ketamine/fentanyl anaesthesia, but not with additional propofol. Br J Anaesth. 2001;86(3):395–402.  https://doi.org/10.1093/bja/86.3.395.CrossRefPubMedGoogle Scholar
  16. 16.
    Sloan T, Sloan H, Rogers J. Nitrous oxide and isoflurane are synergistic with respect to amplitude and latency effects on sensory evoked potentials. J Clin Monit Comput. 2010;24(2):113–23.  https://doi.org/10.1007/s10877-009-9219-3.CrossRefPubMedGoogle Scholar
  17. 17.
    Logginidou HG, Li BH, Li DP, Lohmann JS, Schuler HG, DiVittore NA, et al. Propofol suppresses the cortical somatosensory evoked potential in rats. Anesth Analg. 2003;97(6):1784–8.  https://doi.org/10.1213/01.ANE.0000090318.16879.A8.CrossRefPubMedGoogle Scholar
  18. 18.
    Kawaguchi M, Furuya H. Intraoperative spinal cord monitoring of motor function with myogenic motor evoked potentials: a consideration in anesthesia. J Anesth. 2004;18(1):18–28.  https://doi.org/10.1007/s00540-003-0201-9.CrossRefPubMedGoogle Scholar
  19. 19.
    Altermatt FR, Bugedo DA, Delfino AE, Solari S, Guerra I, Muñoz HR, et al. Evaluation of the effect of intravenous lidocaine on propofol requirements during total intravenous anaesthesia as measured by bispectral index. Br J Anaesth. 2012;108(6):979–83.  https://doi.org/10.1093/bja/aes097.CrossRefPubMedGoogle Scholar
  20. 20.
    Cassuto J, Wallin G, Högström S, Faxén A, Rimbäck G. Inhibition of postoperative pain by continuous low-dose intravenous infusion of lidocaine. Anesth Analg. 1985;64(10):971–4.CrossRefGoogle Scholar
  21. 21.
    Sneyd JR, Rigby-Jones AE. New drugs and technologies, intravenous anaesthesia is on the move (again). Br J Anaesth. 2010;105(3):246–54.  https://doi.org/10.1093/bja/aeq190.CrossRefPubMedGoogle Scholar
  22. 22.
    Jones AE. The etomidate debate. Ann Emerg Med. 2010;56(5):490–1.  https://doi.org/10.1016/j.annemergmed.2010.07.008.CrossRefPubMedGoogle Scholar
  23. 23.
    Cherfan AJ, Arabi YM, Al-Dorzi HM, Kenny LP. Advantages and disadvantages of etomidate use for intubation of patients with sepsis. Pharmacotherapy. 2012;32(5):475–82.  https://doi.org/10.1002/j.1875-9114.2012.01027.x.CrossRefPubMedGoogle Scholar
  24. 24.
    Kochs E, Treede RD, Schulte am Esch J. Increase in somatosensory evoked potentials during anesthesia induction with etomidate. Anaesthesist. 1986;35(6):359–64.CrossRefGoogle Scholar
  25. 25.
    Sloan TB, Ronai AK, Toleikis JR, Koht A. Improvement of intraoperative somatosensory evoked potentials by etomidate. Anesth Analg. 1988;67(6):582–5.CrossRefGoogle Scholar
  26. 26.
    McPherson RW, Sell B, Traystman RJ. Effects of thiopental, fentanyl, and etomidate on upper extremity somatosensory evoked potentials in humans. Anesthesiology. 1986;65(6):584–9.  https://doi.org/10.1097/00000542-198612000-00004.CrossRefPubMedGoogle Scholar
  27. 27.
    Russ W, Thiel A, Schwandt HJ, Hempelmann G. Somatosensory evoked potentials under thiopental and etomidate. Anaesthesist. 1986;35(11):679–85.PubMedGoogle Scholar
  28. 28.
    Koht A, Schütz W, Schmidt G, Schramm J, Watanabe E. Effects of etomidate, midazolam, and thiopental on median nerve somatosensory evoked potentials and the additive effects of fentanyl and nitrous oxide. Anesth Analg. 1988;67(5):435-41.  https://doi.org/10.1213/00000539-198805000-00003.CrossRefPubMedGoogle Scholar
  29. 29.
    Langeron O, Lille F, Zerhouni O, Orliaguet G, Saillant G, Riou B, et al. Comparison of the effects of ketamine-midazolam with those of fentanyl-midazolam on cortical somatosensory evoked potentials during major spine surgery. Br J Anaesth. 1997;78(6):701–6.  https://doi.org/10.1093/bja/78.6.701.CrossRefPubMedGoogle Scholar
  30. 30.
    Rampil IJ. Electroencephalogram. In: Albin MA, editor. Textbook of neuroanesthesia with neurosurgical and neuroscience perspectives. New York: McGraw-Hill; 1997. p. 193–220.Google Scholar
  31. 31.
    Sloan TB, Fugina ML, Toleikis JR. Effects of midazolam on median nerve somatosensory evoked potentials. Br J Anaesth. 1990;64(5):590–3.  https://doi.org/10.1093/bja/64.5.590.CrossRefPubMedGoogle Scholar
  32. 32.
    Kalkman CJ, Drummond JC, Ribberink AA, Patel PM, Sano T, Bickford RG. Effects of propofol, etomidate, midazolam, and fentanyl on motor evoked responses to transcranial electrical or magnetic stimulation in humans. Anesthesiology. 1992;76(4):502–9.  https://doi.org/10.1097/00000542-199204000-00003.CrossRefPubMedGoogle Scholar
  33. 33.
    Scheufler K-M, Zentner J. Total intravenous anesthesia for intraoperative monitoring of the motor pathways: an integral view combining clinical and experimental data. J Neurosurg. 2002;96(3):571–9.  https://doi.org/10.3171/jns.2002.96.3.0571.CrossRefPubMedGoogle Scholar
  34. 34.
    Zentner J. Motor evoked potential monitoring in operations of the brainstem and posterior fossa. In: Schramm J, Moller AR, editors. Intraoperative neurophysiological monitoring in neurosurgery. Berlin: Springer; 1991. p. 95–105.CrossRefGoogle Scholar
  35. 35.
    Ghaly RF, Stone JL, Levy WJ, Kartha R, Aldrete A, Brunner EB, et al. The effect of an anesthetic induction dose of midazolam on motor potentials evoked by transcranial magnetic stimulation in the monkey. J Neurosurg Anesth. 1991;3:20–5.  https://doi.org/10.1097/00008506-199103000-00004.CrossRefGoogle Scholar
  36. 36.
    Schonle PW, Isenberg C, Crozier TA, Dressler D, Machetanz J, Conrad B. Changes of transcranially evoked motor responses in man by midazolam, a short acting benzodiazepine. Neurosci Lett. 1989;101(3):321–4.  https://doi.org/10.1016/0304-3940(89)90553-3.CrossRefPubMedGoogle Scholar
  37. 37.
    Crawford ME, Jensen FM, Toftdahl DB, Madsen JB. Direct spinal effect of intrathecal and extradural midazolam on visceral noxius stimulation in rabbits. Br J Anaesth. 1993;70:642–6.  https://doi.org/10.1093/bja/70.6.642.CrossRefPubMedGoogle Scholar
  38. 38.
    Faull RL, Villiger JW. Benzodiazepine receptors in the human spinal cord: a detailed anatomical and pharmacological study. Neuroscience. 1986;17(3):791–802.  https://doi.org/10.1016/0306-4522(86)90045-X.CrossRefPubMedGoogle Scholar
  39. 39.
    Tobias JD, Goble TJ, Bates G, Anderson JT, Hoernschemeyer DG. Effects of dexmedetomidine on intraoperative motor and somatosensory evoked potential monitoring during spinal surgery in adolescents. Paediatr Anaesth. 2008;18(11):1082–8.CrossRefGoogle Scholar
  40. 40.
    Yamamoto Y, Kawaguchi M, Kakimoto M, Inoue S, Furuya H. The effects of dexmedetomidine on myogenic motor evoked potentials in rabbits. Anesth Analg. 2007;104(6):1488–92.  https://doi.org/10.1213/01.ane.0000261518.62873.91.CrossRefPubMedGoogle Scholar
  41. 41.
    Mahmoud M, Sadhasivam S, Salisbury S, Nick TG, Schnell B, Sestokas AK, et al. Susceptibility of transcranial electric motor-evoked potentials to varying targeted blood levels of dexmedetomidine during spine surgery. Anesthesiology. 112(6):1364–73.  https://doi.org/10.1097/ALN.0b013e3181d74f55.CrossRefGoogle Scholar
  42. 42.
    Sloan TB, Vasquez J, Burger E. Methohexital in total intravenous anesthesia during intraoperative neurophysiological monitoring. J Clin Monit Comput. 2013;27(6):697–702.  https://doi.org/10.1007/s10877-013-9490-1.CrossRefPubMedGoogle Scholar
  43. 43.
    Lauretti GR. Mechanisms of analgesia of intravenous lidocaine. Rev Bras Anestesiol. 2008;58(3):280–6.  https://doi.org/10.1590/S0034-70942008000300011.CrossRefPubMedGoogle Scholar
  44. 44.
    Asouhido I, Katsaridis V, Vaidis G, Ioannou P, Givissis P, Christodoulou A, Georgiadis G. Somatosensory evoked potentials suppression due to remifentanil during spinal operations; a prospective clinical study. Scoliosis. 2010;5:8–13.CrossRefGoogle Scholar
  45. 45.
    Schubert A, Licina MG, Lineberry PJ. The effect of ketamine on human somatosensory evoked potentials and its modification by nitrous oxide. [erratum appears in Anesthesiology 1990;72(6):1104]. Anesthesiology. 1990;72(1):33–9.CrossRefGoogle Scholar
  46. 46.
    Schwender D, Klasing S, Madler C, Pöppel E, Peter K. Mid-latency auditory evoked potentials during ketamine anaesthesia in humans. Br J Anaesth. 1993;71(5):629–32.  https://doi.org/10.1093/bja/71.5.629.CrossRefPubMedGoogle Scholar
  47. 47.
    Kano T, Shimoji K. The effects of ketamine and neuroleptanalgesia on the evoked electrospinogram and electromyogram in man. Anesthesiology. 1974;40(3):241–6.  https://doi.org/10.1097/00000542-197403000-00007.CrossRefPubMedGoogle Scholar
  48. 48.
    Glassman SD, Shields CB, Linden RD, Zhang YP, Nixon AR, Johnson JR. Anesthetic effects on motor evoked potentials in dogs. Spine. 1993;18(8):1083–9.  https://doi.org/10.1097/00007632-199306150-00020.CrossRefPubMedGoogle Scholar
  49. 49.
    Taniguchi M, Nadstawek J, Langenbach U, Bremer F, Schramm J. Effects of four intravenous anesthetic agents on motor evoked potentials elicited by magnetic transcranial stimulation. Neurosurgery. 1993;33(3):407–15;. discussion 415.  https://doi.org/10.1007/978-3-642-78801-7_46.CrossRefPubMedGoogle Scholar
  50. 50.
    Kaba A, Laurent SR, Detroz BJ, Sessler DI, Durieux ME, Lamy ML, Joris JL. Intravenous lidocaine infusion facilitates acute rehabilitation after laparoscopic colectomy. Anesthesiology. 2007;106(1):11–8;. discussion 5-6.  https://doi.org/10.1097/00000542-200701000-00007.CrossRefPubMedGoogle Scholar
  51. 51.
    Lauwick S, Kim DJ, Michelagnoli G, Mistraletti G, Feldman L, Fried G, Carli F. Intraoperative infusion of lidocaine reduces postoperative fentanyl requirements in patients undergoing laparoscopic cholecystectomy. Can J Anaesth. 2008;55(11):754–60.CrossRefGoogle Scholar
  52. 52.
    Kuo CP, Jao SW, Chen KM, Wong CS, Yeh CC, Sheen MJ, et al. Comparison of the effects of thoracic epidural analgesia and i.v. infusion with lidocaine on cytokine response, postoperative pain and bowel function in patients undergoing colonic surgery. Br J Anaesth. 2006;97(5):640–6.  https://doi.org/10.1093/bja/ael217.CrossRefPubMedGoogle Scholar
  53. 53.
    Sugimoto M, Uchida I, Mashimo T. Local anaesthetics have different mechanisms and sites of action at the recombinant N-methyl-D-aspartate (NMDA) receptors. Br J Pharmacol. 2003;138(5):876–82.  https://doi.org/10.1038/sj.bjp.0705107.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Gottschalk A, McKay AM, Malik ZM, Forbes M, Durieux ME, Groves DS. Systemic lidocaine decreases the Bispectral index in the presence of midazolam, but not its absence. J Clin Anesth. 2012;24(2):121–5.  https://doi.org/10.1016/j.jclinane.2011.06.018.CrossRefPubMedGoogle Scholar
  55. 55.
    Senturk M, Pembeci K, Menda F, Ozkan T, Gucyetmez B, Tugrul M, et al. Effects of intramuscular administration of lidocaine or bupivacaine on induction and maintenance doses of propofol evaluated by bispectral index. Br J Anaesth. 2002;89(6):849–52.  https://doi.org/10.1093/bja/aef287.CrossRefPubMedGoogle Scholar
  56. 56.
    Telci L, Esen F, Akcora D, Erden T, Canbolat AT, Akpir K. Evaluation of effects of magnesium sulphate in reducing intraoperative anaesthetic requirements. Bri J Anaesth. 2002;89(4):594–8.CrossRefGoogle Scholar
  57. 57.
    Borges LF. Motor evoked potentials. Int Anesthesiol Clin. 1990;28:170–3.  https://doi.org/10.1097/00004311-199002830-00007.CrossRefPubMedGoogle Scholar
  58. 58.
    Kothbauer K. Motor evoked potential monitoring for intramedullary spinal cord surgery. In: Deletis V, Shills J, editors. Neurophysiology in neurosurgery: a modern approach. Amsterdam: Academic Press; 2002. p. 73–92.CrossRefGoogle Scholar
  59. 59.
    Fagerlund MJ, Eriksson LI. Current concepts in neuromuscular transmission. Br J Anaesth. 2009;103(1):108–14.  https://doi.org/10.1093/bja/aep150.CrossRefPubMedGoogle Scholar
  60. 60.
    Ghai B, Makkar JK, Wig J. Neuromuscular monitoring: a review. J Anesth Clin Pharmacol. 2006;22(4):347–56.Google Scholar
  61. 61.
    Davis L, Britten JJ, Morgan M. Cholinesterase. Its significance in anaesthetic practice. Anaesthesia. 1997;52:244–60.CrossRefGoogle Scholar
  62. 62.
    Jonsson M, Gurley D, Dabrowski M, Larsson O, Johnson EC, Eriksson LI. Distinct pharmacologic properties of neuromuscular blocking agents on human neuronal nicotinic acetylcholine receptors: a possible explanation for the train-of-four fade. Anesthesiology. 2006;105(3):521–33.  https://doi.org/10.1097/00000542-200609000-00016.CrossRefPubMedGoogle Scholar
  63. 63.
    Bowman WC. Prejunctional and postjunctional cholinoceptors at the neuromuscular junction. Anesth Analg. 1980;59(12):935–43.CrossRefGoogle Scholar
  64. 64.
    Fodale V, Santamaria LB. Laudanosine, an atracurium and cisatracurium metabolite. Eur J Anaesthesiol. 2002;19(7):466–73.  https://doi.org/10.1097/00003643-200207000-00002.CrossRefPubMedGoogle Scholar
  65. 65.
    Bevan DR, Donati F, Kopman AF. Reversal of neuromuscular blockade. Anesthesiology. 1992;77(4):785–805.CrossRefGoogle Scholar
  66. 66.
    Lee C, Katz RL. Fade of neurally evoked compound electromyogram during neuromuscular block by d-tubocurarine. Anesth Analg. 1977;56(2):271–5.PubMedGoogle Scholar
  67. 67.
    Sloan TB. Muscle relaxant use during intraoperative neurophysiologic monitoring. J Clin Monit Comput. 2013;27:35–46.  https://doi.org/10.1007/s10877-012-9399-0.CrossRefPubMedGoogle Scholar
  68. 68.
    Sloan TB, Heyer EJ. Anesthesia for intraoperative neurophysiologic monitoring of the spinal cord. J Clin Neurophysiol. 2002;19(5):430–43.  https://doi.org/10.1097/00004691-200210000-00006.CrossRefPubMedGoogle Scholar
  69. 69.
    May DM, Jones SJ, Crockard HA. Somatosensory evoked potential monitoring in cervical surgery: identification of pre- and intraoperative risk factors associated with neurological deterioration. J Neurosurg. 1996;85(4):566–73.  https://doi.org/10.3171/jns.1996.85.4.0566.CrossRefPubMedGoogle Scholar
  70. 70.
    Drummond JC. The lower limit of autoregulation: time to revise our thinking? Anesthesiology. 1997;86(6):1431–3.  https://doi.org/10.1097/00000542-199706000-00034.CrossRefPubMedGoogle Scholar
  71. 71.
    Seyal M, Mull B. Mechanisms of signal change during intraoperative somatosensory evoked potential monitoring of the spinal cord. J Clin Neurophysiol. 2002;19(5):409–15.  https://doi.org/10.1097/00004691-200210000-00004.CrossRefPubMedGoogle Scholar
  72. 72.
    Wiedemayer H, Fauser B, Sandalcioglu IE, Schäfer H, Stolke D. The impact of neurophysiological intraoperative monitoring on surgical decisions: a critical analysis of 423 cases. J Neurosurg. 2002;96(2):255–62.  https://doi.org/10.3171/jns.2002.96.2.0255.CrossRefPubMedGoogle Scholar
  73. 73.
    Brodkey JS, Richards DE, Blasingame JP, Nulsen FE. Reversible spinal cord trauma in cats: additive effects of direct pressure and ischemia. J Neurosurg. 1972;37:591–3.  https://doi.org/10.3171/jns.1972.37.5.0591.CrossRefPubMedGoogle Scholar
  74. 74.
    Dolan EJ, Transfeldt EE, Tator CH, Simmons EH, Hughes KF. The effect of spinal distraction on regional blood flow in cats. J Neurosurg. 1980;53:756–64.CrossRefGoogle Scholar
  75. 75.
    Griffiths IR, Trench JG, Crawford RA. Spinal cord blood flow and conduction during experimental cord compression in normotensive and hypotensive dogs. J Neurosurg. 1979;50(3):353–60.  https://doi.org/10.3171/jns.1979.50.3.0353.CrossRefPubMedGoogle Scholar
  76. 76.
    Sloan T, Jameson LC. Monitoring anesthetic effect. In: Koht A, Sloan T, Toleikis JR, editors. Monitoring the nervous system for anesthesiologists and other health professionals. New York: Springer; 2012. p. 337–60.CrossRefGoogle Scholar
  77. 77.
    Sloan TB, Toleikis JR, Toleikis SC, Koht A. Intraoperative neurophysiological monitoring during spine surgery with total intravenous anesthesia or balanced anesthesia with 3% desflurane. J Clin Monit Comput. 2015;29(1):77–85.  https://doi.org/10.1007/s10877-014-9571-9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of Colorado, Department of AnesthesiologyAuroraUSA
  2. 2.Departments of Anesthesiology and Pharmacology, Toxicology, and NeurosciencesLSU School of MedicineShreveportUSA
  3. 3.LSU School of MedicineDepartment of AnesthesiologyNew OrleansUSA
  4. 4.Tulane School of MedicineNew OrleansUSA

Personalised recommendations