Advertisement

Multi-tasking to Correct: Motion-Compensated MRI via Joint Reconstruction and Registration

  • Veronica CoronaEmail author
  • Angelica I. Aviles-Rivero
  • Noémie Debroux
  • Martin Graves
  • Carole Le Guyader
  • Carola-Bibiane Schönlieb
  • Guy Williams
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11603)

Abstract

This work addresses a central topic in Magnetic Resonance Imaging (MRI) which is the motion-correction problem in a joint reconstruction and registration framework. From a set of multiple MR acquisitions corrupted by motion, we aim at - jointly - reconstructing a single motion-free corrected image and retrieving the physiological dynamics through the deformation maps. To this purpose, we propose a novel variational model. First, we introduce an \(L^2\) fidelity term, which intertwines reconstruction and registration along with the weighted total variation. Second, we introduce an additional regulariser which is based on the hyperelasticity principles to allow large and smooth deformations. We demonstrate through numerical results that this combination creates synergies in our complex variational approach resulting in higher quality reconstructions and a good estimate of the breathing dynamics. We also show that our joint model outperforms in terms of contrast, detail and blurring artefacts, a sequential approach.

Keywords

2D registration Reconstruction Joint model Motion correction Magnetic Resonance Imaging Nonlinear elasticity Weighted total variation 

Notes

Acknowledgements

VC acknowledges the financial support of the Cambridge Cancer Centre. Support from the CMIH and CCIMI University of Cambridge is greatly acknowledged.

References

  1. 1.
    Adluru, G., DiBella, E.V., Schabel, M.C.: Model-based registration for dynamic cardiac perfusion MRI. J. Magn. Reson. Imaging 24(5), 1062–70 (2006)CrossRefGoogle Scholar
  2. 2.
    Aviles-Rivero, A.I., Williams, G., Graves, M.J., Schönlieb, C.B.: Compressed sensing plus motion (CS+M): a new perspective for improving undersampled MR image reconstruction. arXiv preprint arXiv:1810.10828 (2018)
  3. 3.
    Baldi, A.: Weighted BV functions. Houston J. Math. 27(3), 683–705 (2001)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Ball, J.M.: Global invertibility of Sobolev functions and the interpenetration of matter. Proc. Roy. Soc. Edinb. A 88(3–4), 315–328 (1981)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Baumgartner, C.F., Kolbitsch, C., McClelland, J.R., Rueckert, D., King, A.P.: Autoadaptive motion modelling for MR-based respiratory motion estimation. Med. Image Anal. 35, 83–100 (2017)CrossRefGoogle Scholar
  6. 6.
    Blume, M., Martinez-Moller, A., Keil, A., Navab, N., Rafecas, M.: Joint reconstruction of image and motion in gated positron emission tomography. IEEE Trans. Med. Imaging 29(11), 1892–1906 (2010)CrossRefGoogle Scholar
  7. 7.
    Bresson, X., Esedo\(\bar{\rm g}\)lu, S., Vandergheynst, P., Thiran, J.P., Osher, S.: Fast global minimization of the active contour/snake model. J. Math. Imaging Vis. 28(2), 151–167 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Burger, M., Dirks, H., Schönlieb, C.B.: A variational model for joint motion estimation and image reconstruction. SIAM J. Imaging Sci. 11(1), 94–128 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Burger, M., Modersitzki, J., Ruthotto, L.: A hyperelastic regularization energy for image registration. SIAM J. Sci. Comput. 35(1), B132–B148 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1), 89–97 (2004)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Chun, S., Fessler, J.: Joint image reconstruction and nonrigid motion estimation with a simple penalty that encourages local invertibility. In: Proceedings of the SPIE, vol. 7258Google Scholar
  12. 12.
    Demengel, F., Demengel, G., Erné, R.: Functional Spaces for the Theory of Elliptic Partial Differential Equations. Universitext. Springer, London (2012).  https://doi.org/10.1007/978-1-4471-2807-6CrossRefzbMATHGoogle Scholar
  13. 13.
    Droske, M., Rumpf, M.: A variational approach to nonrigid morphological image registration. SIAM J. Appl. Math. 64(2), 668–687 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gupta, S.N., Solaiyappan, M., Beache, G.M., Arai, A.E., Foo, T.K.: Fast method for correcting image misregistration due to organ motion in time-series MRI data. Magn. Reson. Med. 49(3), 506–514 (2003)CrossRefGoogle Scholar
  15. 15.
    Jansen, M., Kuijf, H., Veldhuis, W., Wessels, F., Van Leeuwen, M., Pluim, J.: Evaluation of motion correction for clinical dynamic contrast enhanced MRI of the liver. Phys. Med. Biol. 62(19), 7556 (2017)CrossRefGoogle Scholar
  16. 16.
    Johansson, A., Balter, J., Cao, Y.: Rigid-body motion correction of the liver in image reconstruction for golden-angle stack-of-stars DCE MRI. Magn. Reson. Med. 79(3), 1345–1353 (2018)CrossRefGoogle Scholar
  17. 17.
    Ledesma-Carbayo, M.J., Kellman, P., Arai, A.E., McVeigh, E.R.: Motion corrected free-breathing delayed-enhancement imaging of myocardial infarction using nonrigid registration. J. Magn. Reson. Imaging 26(1), 184–90 (2007)CrossRefGoogle Scholar
  18. 18.
    Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58, 1182–1195 (2007)CrossRefGoogle Scholar
  19. 19.
    Mair, B.A., Gilland, D.R., Sun, J.: Estimation of images and nonrigid deformations in gated emission CT. IEEE Trans. Med. Imaging 25(9), 1130–1144 (2006)CrossRefGoogle Scholar
  20. 20.
    Modersitzki, J.: FAIR: Flexible Algorithms for Image Registration. SIAM, Philadelphia (2009)CrossRefGoogle Scholar
  21. 21.
    Odille, F., et al.: Joint reconstruction of multiple images and motion in MRI: application to free-breathing myocardial T2 quantification. IEEE Trans. Med. Imaging 35(1), 197–207 (2016)CrossRefGoogle Scholar
  22. 22.
    Schumacher, H., Modersitzki, J., Fischer, B.: Combined reconstruction and motion correction in SPECT imaging. ITNS 56(1), 73–80 (2009)Google Scholar
  23. 23.
    von Siebenthal, M., Szekely, G., Gamper, U., Boesiger, P., Lomax, A., Cattin, P.: 4D MR imaging of respiratory organ motion and its variability. Phys. Med. Biol. 52(6), 1547 (2007)CrossRefGoogle Scholar
  24. 24.
    Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: a factorization method. Int. J. Comput. Vis. 9, 137–154 (1992)CrossRefGoogle Scholar
  25. 25.
    de Vos, B.D., Berendsen, F.F., Viergever, M.A., Staring, M., Išgum, I.: End-to-end unsupervised deformable image registration with a convolutional neural network. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 204–212. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-67558-9_24CrossRefGoogle Scholar
  26. 26.
    Yang, X., Kwitt, R., Styner, M., Niethammer, M.: Quicksilver: fast predictive image registration-a deep learning approach. NeuroImage 158, 378–396 (2017)CrossRefGoogle Scholar
  27. 27.
    Zaitsev, M., Maclaren, J., Herbst, M.: Motion artifacts in MRI: a complex problem with many partial solutions. J. Magn. Reson. Imaging 42(4), 887–901 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Veronica Corona
    • 1
    Email author
  • Angelica I. Aviles-Rivero
    • 2
  • Noémie Debroux
    • 1
  • Martin Graves
    • 3
  • Carole Le Guyader
    • 4
  • Carola-Bibiane Schönlieb
    • 1
  • Guy Williams
    • 5
  1. 1.DAMTPUniversity of CambridgeCambridgeUK
  2. 2.DPMMSUniversity of CambridgeCambridgeUK
  3. 3.Department of RadiologyUniversity of CambridgeCambridgeUK
  4. 4.LMINormandie Université, INSA de RouenRouenFrance
  5. 5.Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK

Personalised recommendations